首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 15 毫秒
1.
Src family tyrosine kinases respond to a variety of signals by regulating the organization of the actin cytoskeleton. Here, we show that during early oogenesis Src64 mutations lead to uneven accumulation of cortical actin, defects in fusome formation, mislocalization of septins, defective transport of Orb protein into the oocyte, and possible defects in cell division. Similar mutant phenotypes suggest that Src64, the Tec29 tyrosine kinase, and the actin crosslinking protein Kelch act together to regulate actin crosslinking, much as they do later during ring canal growth. Condensation of the oocyte chromatin into a compact karyosome is also defective in Src64, Tec29, and kelch mutants and in mutants for spire and chickadee (profilin), genes that regulate actin polymerization. These data, along with changes in G-actin accumulation in the oocyte nucleus, suggest that Src64 is involved in a nuclear actin function during karyosome condensation. Our results indicate that Src64 regulates actin dynamics at multiple stages of oogenesis.  相似文献   

2.
Macrophage colony-stimulating factor (M-CSF) is a growth factor that is known to trigger several signalling pathways through receptor tyrosine kinase activation. We investigated the specific requirements for the activation of phospholipase C gamma 2 (PLC-γ2) during the differentiation of mouse bone marrow-derived macrophage precursors. M-CSF stimulation induced rapid PLC-γ2 translocation and phosphorylation from the cytosolic compartment to the cell periphery. Both events were dependent on cytoskeleton integrity and Src kinase activity, but only PLC-γ2 phosphorylation did not require PI3-kinase activity. Biochemical experiments as well as confocal microscopy analyses indicate that the translocation of PLC-γ2 is mediated by the direct association of this protein with the actin cytoskeleton. Using GST-fusion proteins containing various deletions of the PLC-γ2 Src homology region, it was found that PLC-γ2 binds to F-actin via its SH2 domains, a feature that has equally been found in a co-sedimentation assay. This association, which is increased during actin reorganisation and disrupted by cytoskeleton inhibitors, seems to be a primary means to recruit this enzyme to the cell periphery. These results indicate that, upon M-CSF stimulation, PLC-γ2 cellular localisation and phosphorylation are strongly dependent on cytoskeleton architecture of the macrophage precursor as well as the PI3-kinase and the Src kinases.  相似文献   

3.
4.
Here, we describe a new muscle LIM domain protein, UNC-95, and identify it as a novel target for the RING finger protein RNF-5 in the Caenorhabditis elegans body wall muscle. unc-95(su33) animals have disorganized muscle actin and myosin-containing filaments as a result of a failure to assemble normal muscle adhesion structures. UNC-95 is active downstream of PAT-3/beta-integrin in the assembly pathways of the muscle dense body and M-line attachments, and upstream of DEB-1/vinculin in the dense body assembly pathway. The translational UNC-95::GFP fusion construct is expressed in dense bodies, M-lines, and muscle-muscle cell boundaries as well as in muscle cell bodies. UNC-95 is partially colocalized with RNF-5 in muscle dense bodies and its expression and localization are regulated by RNF-5. rnf-5(RNAi) or a RING domain deleted mutant, rnf-5(tm794), exhibit structural defects of the muscle attachment sites. Together, our data demonstrate that UNC-95 constitutes an essential component of muscle adhesion sites that is regulated by RNF-5.  相似文献   

5.
It has recently been suggested that estrogen inhibits glial activation and the release of neurotoxic mediators. The mechanisms involved in this anti-inflammatory effect are unclear. We found that an nM concentration of 17-beta estradiol inhibits protein kinaseC-betaII translocation induced by lipopolysaccharide in primary astrocytes. Estradiol treatment did not change the total content of kinaseC-betaII or of lipopolysaccharide receptor, but dose-dependently reduced the levels of receptors for activated C kinases-1 (RACK-1), the anchoring protein involved in protein kinase C (PKC) shuttling. This decrease could thus account for the defective protein kinaseC-betaII activation. Pre-treatment with 1 nmbeta-estradiol, which reduced by approximately 35% the expression of RACK-1, prevented the lipopolysaccharide-induced expression of tumour necrosis factor-alpha mRNA and of the inducible form of nitric oxide (NO) synthase. As a consequence, the production of tumour necrosis factor-alpha and NO were decreased. An antisense oligonucleotide for RACK-1 also reduced tumour necrosis factor-alpha and nitric oxide production on lipopolysaccharide stimulation. These results demonstrate that estrogen reduction of the RACK-1 expression, leading to a defective protein kinase-C activation counteracts the inflammatory response in astrocytes.  相似文献   

6.
RGS5 is a member of regulators of G protein signaling (RGS) proteins that attenuate heterotrimeric G protein signaling by functioning as GTPase-activating proteins (GAPs). We investigated phosphorylation of RGS5 and the resulting change of its function. In 293T cells, transiently expressed RGS5 was phosphorylated by endogenous protein kinases in the basal state. The phosphorylation was enhanced by phorbol 12-myristate 13-acetate (PMA) and endothelin-1 (ET-1), and suppressed by protein kinase C (PKC) inhibitors, H7, calphostin C and staurosporine. These results suggest involvement of PKC in phosphorylation of RGS5. In in vitro experiments, PKC phosphorylated recombinant RGS5 protein at serine residues. RGS5 protein phosphorylated by PKC showed much lower binding capacity for and GAP activity toward Galpha subunits than did the unphosphorylated RGS5. In cells expressing RGS5, the inhibitory effect of RGS5 on ET-1-induced Ca(2+) responses was enhanced by staurosporine. Mass spectrometric analysis of the phosphorylated RGS5 revealed that Ser166 was one of the predominant phosphorylation sites. Substitution of Ser166 by aspartic acid abolished the binding capacity to Galpha subunits and the GAP activity, and markedly reduced the inhibitory effect on ET-1-induced Ca(2+) responses. These results indicate that phosphorylation at Ser166 of RGS5 by PKC causes loss of the function of RGS5 in G protein signaling. Since this serine residue is conserved in RGS domains of many RGS proteins, the phosphorylation at Ser166 by PKC might act as a molecular switch and have functional significance.  相似文献   

7.
8.
Mitogen-activated protein (MAP) kinase, protein kinase C (PKC), cAMP, and okadaic acid (OA)-sensitive protein phosphatases (PPs) have been suggested to be involved in oocyte meiotic resumption. However, whether these protein kinases and phosphatases act by independent pathways or interact with each other in regulating meiosis resumption is unknown. In the present study, we aimed to determine the regulation of meiosis resumption and MAP kinase phosphorylation by PKC, cAMP, and OA-sensitive PPs in rat oocytes using an in vitro oocyte maturation system and Western blot analysis. We found that ERK1 and ERK2 isoforms of MAP kinases existed in a dephosphorylated (inactive) form in germinal vesicle breakdown (GVBD)-incompetent and GVBD-competent germinal vesicle intact (GVI) oocytes as well as GVBD oocytes at equivalent levels. These results indicate that MAP kinases are not responsible for the initiation of normal meiotic resumption in rat oocytes. However, when GVBD-incompetent and GVBD-competent oocytes were incubated in vitro for 5 h, MAP kinases were phosphorylated (activated) in GVBD-competent oocytes, but not in meiotic-incompetent oocytes, suggesting that oocytes acquire the ability to phosphorylate MAP kinase during acquisition of meiotic competence. We also found that both meiosis resumption and MAP kinase phosphorylation were inhibited by PKC activation or cAMP elevation. Moreover, these inhibitory effects were overcome by OA, which inhibited PP1/PP2A activities. These results suggest that both cAMP elevation and PKC activation inhibit meiosis resumption and MAP kinase phosphorylation at a step prior to OA-sensitive protein phosphatases. In addition, inhibitory effects of cAMP elevation on meiotic resumption and MAP kinase phosphorylation were not reversed by calphostin C-induced PKC inactivation, indicating that cAMP inhibits both meiotic resumption and MAP kinase activation in a PKC-independent manner.  相似文献   

9.
The C5a anaphylatoxin protein plays a central role in inflammation associated with complement activation. This protein is commonly regarded as one of the most potent inducers of the inflammatory response and a C5a peptide agonist was used as a molecular adjuvant. However, the full length C5a protein has not been tested as a potential tumor therapy. In this report, we describe the creation of a mini-gene construct that directs C5a expression to any cell of interest. Functional expression could be demonstrated in the murine mammary sarcoma, EMT6. When C5a expressing cells were injected into syngeneic mice, most C5a-expressing clones had significantly reduced tumor growth. Further characterization of a clone expressing low levels of C5a demonstrated that one-third of mice injected with this line had complete tumor regression. The mice whose tumors regressed were immune to subsequent challenge with unmodified EMT6 cells, suggesting that a component of the innate immune response can be used to augment adaptive immunity. Cellular analyses demonstrated that a significant difference in actual tumor cell number could be detected as early as day 10. A block in cell cycle progression was evident at all time points and high levels of apoptosis were observed early in the regression event. These data demonstrate that the complement protein C5a can play a significant protective role in tumor immunity.  相似文献   

10.
11.
A major feature of Alzheimer's disease is the deposition of the amyloid beta peptide (Abeta) in the brain by mechanisms which remain unclear. One hypothesis suggests that oxidative stress and Abeta aggregation are interrelated processes. Protein kinase C, a major neuronal regulatory protein is activated after oxidative stress and is also altered in the Alzheimer's disease brain. Therefore, we examined the effects of Abeta(1-40) peptide on the protein kinase C cascade and cell death in primary neuronal cultures following anoxic conditions. Treatment with Abeta(1-40) for 48 h caused a significant increase in the content and activity of Ca2+ dependent and Ca2+ independent protein kinase C isoforms. By 72 h various protein kinase C isoforms were down-regulated. Following 90 min anoxia and 6 h normoxia, a decrease in protein kinase C isoforms was noticed, independent of Abeta(1-40) treatment. A combination of Abeta(1-40) and 30-min anoxia enhanced cytotoxicity as noticed by a marked loss in the mitochondrial ability to convert 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide and by enhanced 4',6-diamidino-2-phenylindole nuclear staining. Phosphorylation of two downstream protein kinase C substrates of apparent molecular mass 80 and 43 kDa, tentatively identified as the myristoyl alanine-rich C-kinase substrate (MARCKS), were gradually elevated up to 72 h upon incubation with Abeta(1-40). Anoxia followed by 30 min normoxia enhanced MARCKS phosphorylation in the membrane but not in the cytosolic fraction. In the presence of Abeta(1-40), phosphorylation of MARCKS was reduced. After 6 h normoxia, MARCKS phosphorylatability was diminished possibly because of protein kinase C down-regulation. The data suggest that a biphasic modulation of protein kinase C and MARCKS by Abeta(1-40) combined with anoxic stress may play a role in Alzheimer's disease pathology.  相似文献   

12.
Glycolysis and pentose phosphate pathway (PPP) in red blood cell (RBC) are modulated by the cell oxygenation state. This metabolic modulation is connected to variations in intracellular nicotinamide adenine dinucleotide phosphate‐reduced form (NADPH) and adenosine triphosphate (ATP) levels as a function of the oxygenation state of the cell, and, consequently, it should have physiologic relevance. In the present study, we analysed the effects of amyloid beta peptide (1–42) (Abeta) on RBC metabolism and its relationship with the activity of protein kinase C (PKC). Our results showed that metabolic response to Abeta depended on the degree of cell oxygenation. In particular, under high O2 pressure, in Abeta‐treated RBC, glucose metabolized through PPP approached that metabolized by RBC under low O2 pressure, differently to that observed in untreated cells. The effect of Abeta on RBC metabolism was paralleled by increase in PKC enzyme activity, but cytosolic Ca2+ concentration does not seem to be involved in this mechanism. Incubation of Abeta‐treated RBC with a specific inhibitor of PKC partially restores PPP flux. A possible rationalization of the different metabolic behaviours shown by RBC following Abeta treatment is proposed. It takes into account the known post‐translational modifications to cytoskeleton proteins induced by PKC. The reduction in PPP flux may lead to a weakened defence system of antioxidant reserve in RBC, becoming a source of reactive species, and, consequently, its typical, structural and functional features are lost. Therefore, oxidative stress may outflow from the RBC and trigger damage events in adjacent cells and tissue, thus contributing to vascular damage. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

13.
14.
The IFN-induced double-stranded RNA (dsRNA)-activated protein kinase PKR is one of the key molecules in the antiviral effects of IFN. To clarify the effects of hepatitis C virus nonstructural protein 5A (NS5A) on antiviral activity of IFN, in particular on PKR kinase activity, in mammalian cells, we established inducible NS5A-expressing cell lines derived from human osteosarcoma (Saos-2). The cells expressing NS5A derived from an IFN-resistant clone (NS5A-lb) that interacted with endogenous PKR in vitro, showed a suppressive effect on IFN function as determined by interference with vesicular stomatitis virus (VSV) infection, whereas NS5A (NS5A-2a) from an IFN-sensitive clone did not block the antiviral effect of IFN. A mutant with deletion of the IFN sensitivity determining region (ISDR) in NS5A-1b (NS5A-AISDR) also interacted with PKR and suppressed its activity in vitro. However, neither NS5A-2a nor the C-terminal truncated mutant of NS5A-1b (NS5A-deltaC) blocked PKR activity. These observations confirmed the previous report that the inhibitory effect of NS5A on IFN activity is mediated at least in part by the repression of PKR. In addition, we showed that IFN sensitivity was determined not only by the ISDR but that the involvement of the C-terminal region of NS5A-1b is important for the suppression of PKR activity.  相似文献   

15.
To analyze the role of S19 ribosomal protein (RP S19) in apoptosis, murine NIH3T3 were transfected with either hemagglutinin peptide-tagged (HA) wild-type human RP S19 or a mutant (Gln137Asn) that is resistant to transglutaminase-catalyzed cross-linked-dimerization. Transfection with the mutant HA-RP S19 inhibited manganese (II) (Mn II)-induced apoptosis whereas the wild-type HA-RP S19 augmented apoptosis and a mock transfection had no effect. Release of the wild-type HA-RP S19 dimer but not the mutant HA-RP S19 was observed during the apoptosis. The reduced rate of apoptosis of the cells transfected with the mutant HA-RP S19 was overcome by addition of extracellular wild-type RP S19 dimer. The apoptosis rates in cells transfected with either form of human HA-RP S19 and in mock transfectants were reduced to about 40% by the presence of anti-RP S19 antibody in the culture medium. Immunofluorescence staining and fluorescence-activated cell sorting (FACS) analysis showed that the cell surface expression of the receptor for cross-linked RP S19 dimer, C5a receptor, increased during apoptosis, concomitant with phosphatidylserine exposure. The expression of the C5a receptor gene also increased twofold. Apoptosis rates in the transfected and control cell lines were also reduced by the presence of an anti-mouse C5a receptor monoclonal antibody or of a peptide C5a receptor antagonist. These results indicated the presence of an RP S19 dimer- and C5a receptor-mediated autocrine-type augmentation mechanism during Mn II-induced apoptosis in the mouse fibroblastic cell line. In contrast to the RP S19 dimer, C5a actually inhibited apoptosis, suggesting that signaling through the C5a receptor varies depending on the ligand bound.  相似文献   

16.
The metabotropic glutamate receptor 5 (mGluR5) exhibits a rapid loss of receptor responsiveness to prolonged or repeated agonist exposure. This receptor desensitization has been seen in a variety of native and recombinant systems, and is thought to result from receptor-mediated, protein kinase C (PKC)-dependent phosphorylation of the receptor, uncoupling it from the G protein in a negative feedback regulation. We have investigated the rapid PKC-mediated desensitization of mGluR5 in cortical cultured astrocytes by measuring downstream signals from activation of mGluR5. These include activation of phosphoinositide (PI) hydrolysis, intracellular calcium transients, and extracellular signal-regulated kinase 2 (ERK2) phosphorylation. We present evidence that PKC plays an important role in rapid desensitization of PI hydrolysis and calcium signaling, but not in ERK2 phosphorylation. This differential regulation of mGluR5-mediated responses suggests divergent signaling and regulatory pathways which may be important mechanisms for dynamic integration of signal cascades.  相似文献   

17.
18.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号