首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Aims To identify the relative contributions of environmental determinism, dispersal limitation and historical factors in the spatial structure of the floristic data of inselbergs at the local and regional scales, and to test if the extent of species spatial aggregation is related to dispersal abilities. Location Rain forest inselbergs of Equatorial Guinea, northern Gabon and southern Cameroon (western central Africa). Methods We use phytosociological relevés and herbarium collections obtained from 27 inselbergs using a stratified sampling scheme considering six plant formations. Data analysis focused on Rubiaceae, Orchidaceae, Melastomataceae, Poaceae, Commelinaceae, Acanthaceae, Begoniaceae and Pteridophytes. Data were investigated using ordination methods (detrended correspondence analysis, DCA; canonical correspondence analysis, CCA), Sørensen's coefficient of similarity and spatial autocorrelation statistics. Comparisons were made at the local and regional scales using ordinations of life‐form spectra and ordinations of species data. Results At the local scale, the forest‐inselberg ecotone is the main gradient structuring the floristic data. At the regional scale, this is still the main gradient in the ordination of life‐form spectra, but other factors become predominant in analyses of species assemblages. CCA identified three environmental variables explaining a significant part of the variation in floristic data. Spatial autocorrelation analyses showed that both the flora and the environmental factors are spatially autocorrelated: the similarity of species compositions within plant formations decreasing approximately linearly with the logarithm of the spatial distance. The extent of species distribution was correlated with their a priori dispersal abilities as assessed by their diaspore types. Main conclusions At a local scale, species composition is best explained by a continuous cline of edaphic conditions along the forest‐inselberg ecotone, generating a wide array of ecological niches. At a regional scale, these ecological niches are occupied by different species depending on the available local species pool. These subregional species pools probably result from varying environmental conditions, dispersal limitation and the history of past vegetation changes due to climatic fluctuations.  相似文献   

2.

Background

The Nigeria-Cameroon chimpanzee (Pan troglodytes ellioti) is found in the Gulf of Guinea biodiversity hotspot located in western equatorial Africa. This subspecies is threatened by habitat fragmentation due to logging and agricultural development, hunting for the bushmeat trade, and possibly climate change. Although P. t. ellioti appears to be geographically separated from the neighboring central chimpanzee (P. t. troglodytes) by the Sanaga River, recent population genetics studies of chimpanzees from across this region suggest that additional factors may also be important in their separation. The main aims of this study were: 1) to model the distribution of suitable habitat for P. t. ellioti across Cameroon and Nigeria, and P. t. troglodytes in southern Cameroon, 2) to determine which environmental factors best predict their optimal habitats, and 3) to compare modeled niches and test for their levels of divergence from one another. A final aim of this study was to examine the ways that climate change might impact suitable chimpanzee habitat across the region under various scenarios.

Results

Ecological niche models (ENMs) were created using the software package Maxent for the three populations of chimpanzees that have been inferred to exist in Cameroon and eastern Nigeria: (i) P. t. troglodytes in southern Cameroon, (ii) P. t. ellioti in northwestern Cameroon, and (iii) P. t. ellioti in central Cameroon. ENMs for each population were compared using the niche comparison test in ENMtools, which revealed complete niche divergence with very little geographic overlap of suitable habitat between populations.

Conclusions

These findings suggest that a positive relationship may exist between environmental variation and the partitioning of genetic variation found in chimpanzees across this region. ENMs for each population were also projected under three different climate change scenarios for years 2020, 2050, and 2080. Suitable habitat of P. t. ellioti in northwest Cameroon / eastern Nigeria is expected to remain largely unchanged through 2080 in all considered scenarios. In contrast, P. t. ellioti in central Cameroon, which represents half of the population of this subspecies, is expected to experience drastic reductions in its ecotone habitat over the coming century.

Electronic supplementary material

The online version of this article (doi:10.1186/s12862-014-0275-z) contains supplementary material, which is available to authorized users.  相似文献   

3.
Studies of realized niche shifts in alien species typically ignore the potential effects of intraspecific niche variation and different invaded‐range environments on niche lability. We incorporate our detailed knowledge of the native‐range source populations and global introduction history of the delicate skink Lampropholis delicata to examine intraspecific variation in realized niche expansion and unfilling, and investigate how alternative niche modelling approaches are affected by that variation. We analyzed the realized niche dynamics of L. delicata using an ordination method, ecological niche models (ENMs), and occurrence records from 1) Australia (native range), 2) New Zealand, 3) Hawaii, 4) the two distinct native‐range clades that were the sources for the New Zealand and Hawaii introductions, and 5) the species’ global range (including Lord Howe Island, Australia). We found a gradient of realized niche change across the invaded ranges of L. delicata: niche stasis on Lord Howe Island, niche unfilling in New Zealand (16%), and niche unfilling (87%) and expansion (14%) in Hawaii. ENMs fitted to native‐range data generally identified suitable climatic conditions at sites where the species has established non‐native populations, whereas ENMs based on native‐range source clades and non‐native populations had lower spatial transferability. Our results suggest that the extent to which realized niches are maintained during invasion does not depend on species‐level traits. When realized niche shifts are predominately due to niche unfilling, fully capturing species’ responses along climatic gradients by basing ENMs on native distributions may be more important for accurate invasion forecasts than incorporating phylogenetic differentiation, or integrating niche changes in the invaded range.  相似文献   

4.
Almost all primates experience seasonal fluctuations in the availability of key food sources. However, the degree to which this fluctuation impacts foraging behavior varies considerably. Eastern chimpanzees (Pan troglodytes schweinfurthii) in Nyungwe National Park, Rwanda, live in a montane forest environment characterized by lower primary productivity and resource diversity than low‐elevation forests. Little is known about chimpanzee feeding ecology in montane forests, and research to date predominantly relies on indirect methods such as fecal analyses. This study is the first to use mostly observational data to examine how seasonal food availability impacts the feeding ecology of montane forest chimpanzees. We examine seasonal changes in chimpanzee diet and fallback foods (FBFs) using instantaneous scan samples and fecal analyses, supported by inspection of feeding remains. Chimpanzee fruit abundance peaked during the major dry season, with a consequent change in chimpanzee diet reflecting the abundance and diversity of key fruit species. Terrestrial herbaceous vegetation was consumed throughout the year and is defined as a “filler” FBF. In contrast to studies conducted in lower‐elevation chimpanzee sites, figs (especially Ficus lutea) were preferred resources, flowers were consumed at seasonally high rates and the proportion of non‐fig fruits in the diet were relatively low in the current study. These divergences likely result from the comparatively low environmental diversity and productivity in higher‐elevation environments.  相似文献   

5.
《Ostrich》2013,84(3):79-88
The reproductive biology of two species of African hornbill, the Black-casqued Hornbill, Ceratogymna atrata, and the Whitethighed Hornbill, Ceratogymna cylindricus, was investigated over a four-year period (1994–1997) on a 25km 2 site in lowland rainforest in south-central Cameroon. Nesting attempts varied considerably among years, with the percentage of successful nests highest in 1995, with 64% and 54% of Black-casqued and White-thighed Hornbill fledging offspring, respectively. There were no nesting attempts in 1994, despite the fact that hornbills were present in the study area. Large differences in fruit availability were also noted across years, suggesting that reproductive activity and success are related to fruit availability. Data collected from 38 nests, over four breeding seasons (1994–1997), showed a preference for nest cavities in larger trees within areas of the forest containing larger trees. Hornbills did not show preferences for particular tree species, with the possible exception of Petersianthus macrocarpus, in which nine of the active nest cavities were found. Comparisons showed few significant differences in cavity characteristics between the two species . While cavities may have been a limiting factor in nesting in 1995, the year with the highest fruit availability, cavities were not limiting during other years when fruit availability was lower. Hornbill diets, as determined from seed traps at cavities, showed significant year-to-year variation. Although courtship and exploratory behaviour of cavities by pairs took place in most years, females did not wall themselves into cavities unless fruit was plentiful. Hornbills appear to time reproduction to coincide with peak food supply and successfully reproduce only when food is plentiful, and may curtail or forego nesting in years when fruit availability is low.  相似文献   

6.
The northern boundary of boreal forest and the ranges of tree species are expected to shift northward in response to climate warming, which will result in a decrease in the albedo of areas currently covered by tundra vegetation, an increase in terrestrial carbon sequestration, and an alteration of biodiversity in the current Low Arctic. Central to the prediction of forest expansion is an increase in the reproductive capacity and establishment of individual trees. We assessed cone production, seed viability, and transplanted seedling success of Picea glauca (Moench.) Voss. (white spruce) in the early 1990s and again in the late 2000s at four forest stand sites and eight tree island sites (clonal populations beyond present treeline) in the Mackenzie Delta region of the Northwest Territories, Canada. Over the past 20 years, average temperatures in this region have increased by 0.9 °C. This area has the northernmost forest‐tundra ecotone in North America and is one of the few circumpolar regions where the northern limit of conifer trees reaches the Arctic Ocean. We found that cone production and seed viability did not change between the two periods of examination and that both variables decreased northward across the forest‐tundra ecotone. Nevertheless, white spruce individuals at the northern limit of the forest‐tundra ecotone produced viable seeds. Furthermore, transplanted seedlings were able to survive in the northernmost sites for 15 years, but there were no signs of natural regeneration. These results indicate that if climatic conditions continue to ameliorate, reproductive output will likely increase, but seedling establishment and forest expansion within the forest‐tundra of this region is unlikely to occur without the availability of suitable recruitment sites. Processes that affect the availability of recruitment sites are likely to be important elsewhere in the circumpolar ecotone, and should be incorporated into models and predictions of climate change and its effects on the northern forest‐tundra ecotone.  相似文献   

7.
Long‐distance seed dispersal influences many critical ecological processes by improving chances of gene flow and maintaining genetic diversity among plant populations. Accordingly, large‐scale movements by frugivores may have important conservation implications as they provide an opportunity for long‐distance seed dispersal. We studied movement patterns, resource tracking, and potential long‐distance seed dispersal by two species of Ceratogymna hornbills, the black‐casqued hornbill C. atrata, and the white‐thighed hornbill C. cylindricus, in lowland tropical forests of Cameroon. We determined fruiting phenology of 24 tree species important in hornbill diet at monthly intervals and compared these patterns to monthly hornbill census data. After capture and radio‐tagging of 16 hornbills, we used radio telemetry by vehicle and fixed wing aircraft to determine the extent of long‐distance movements. Hornbills exhibited up to 20‐fold changes in numbers in response to fruit availability in our 25 km2 study area. Also, hornbills made large‐scale movements up to 290 km, which are larger than any movement previously reported for large avian frugivores. Together, these observations provide direct evidence that hornbills are not resident and that hornbills track available fruit resources. Our results suggest that Ceratogymna hornbills embark on long‐distance movements, potentially dispersing seeds and contributing to rain forest regeneration and diversity.  相似文献   

8.
We examined changes in the types of fungi consumed by six species of small mammals across a habitat gradient in north‐eastern New South Wales that graded from swamp, to woodland, to open forest and then to rainforest. All mammals ate some fungus, but only bush rats (Rattus fuscipes) regularly did so, and their diet included most of the fungal taxa that we identified across all mammals in the study. The composition of bush rat diet changed significantly with each change in habitat from woodland, to forest, to rainforest. In particular, there was a significant difference in the diets of rats caught either side of the open forest‐rainforest ecotone, which marks the change in fungal community from one dominated by ectomycorrhizal fungi, to a community dominated by arbuscular mycorrhizal fungi. Movement patterns of bush rats living around the open forest‐rainforest ecotone suggest that they transport fungal spores between these contrasting fungal communities. Therefore, bush rats have the potential, by way of spore dispersal, to influence the structure of vegetation communities.  相似文献   

9.
We describe chimpanzee seed dispersal in the tropical montane forest of Nyungwe National Park (NNP), Rwanda, for a total of three years from January 1998 through May 2000 and May 2006 through March 2007. Relatively few studies have examined chimpanzee seed dispersal in montane communities where there are generally fewer fruiting tree species than in lowland forests. Such studies may reveal new insights into chimpanzee seed dispersal behaviors and the role that they play in forest regeneration processes. Chimpanzees are large‐bodied, highly frugivorous, and tend to deposit the seeds of both large‐ and small‐seeded fruits they consume in a viable state. We found that chimpanzees dispersed a total of 37 fruiting species (20 families) in their feces, 35% of which were large‐seeded trees (≥0.5 cm). A single large‐seeded tree, Syzygium guineense, was the only species to be dispersed in both wadges and feces. Based on phenological patterns of the top five large‐seeded tree species found in chimpanzee feces, our results indicate that chimpanzees do not choose fruits based on their availability. There was, however, a positive relationship between the presence of Ekebergia capensis seeds in chimpanzee feces and S. guineense seeds in chimpanzee wadges and their respective fruit availabilities. Our data reveal that proportionately fewer chimpanzee fecal samples at NNP contained seeds than that reported in two other communities in the Albertine Rift including one at mid‐elevation and one in montane forest. As in other chimpanzee communities, seeds of Ficus spp. were the most common genus in NNP chimpanzee feces. Our data do not support previous studies that describe Ficus spp. as a fallback food for chimpanzees and highlights an intriguing relationship between chimpanzees and the large‐seeded tree species, S. guineense. Am. J. Primatol. 71:901–911, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

10.
The role of fire in governing rainforest–eucalypt forest ecotone dynamics is of theoretical interest and has conservation management implications. Several eucalypt forests in the Wet Tropics of Australia have an endangered status due to extensive conversion to rainforest. Rainforest plants are known to survive occasional low intensity fires in the eucalypt forest ecotone. However, the ability of rainforest plants to survive frequent fires remains untested. The timing of rainforest expansion is also a subject of interest, and is generally considered to be delayed until fire has been absent for several years. We used 14 years of data collected across 13 plots in the Wet Tropics of north‐eastern Australia to test predictions regarding rainforest seedling recruitment and post‐fire regenerative capacity. The 13 plots received different numbers of fires, between zero and five, over the 14‐year study. The recruitment of new rainforest plants in the ecotone was most abundant in the initial year after fire. If this post‐fire pulse of recruitment is left undisturbed, it can facilitate the subsequent germination of additional rainforest species. The removal of grass cover, whether temporarily in the immediate post‐fire environment or once a developing rainforest mid strata shades out grasses, appears crucial to abundant rainforest recruitment. A variety of tropical rainforest species can persist under a frequent fire regime through resprouting. The difference in the mode of resprouting, between ground‐level coppicing rainforest plants and canopy resprouting eucalypt forest trees, is the critical mechanism that causes regular fire to maintain an open structure in eucalypt forests. The inability of rainforest species to maintain their height when fires fully scorch their crowns, temporarily resets the forest's open structure and delays the rainforest's ability to dominate through shading out grasses to transform the ecosystem into a closed forest.  相似文献   

11.
The limit of a species’ distribution can be determined biotically if an environmental gradient causes the loss of critical mutualists such as pollinators. We assessed this hypothesis for Embothrium coccineum, a self‐incompatible red‐flowered treelet growing along a strong west‐east precipitation gradient from rainforest to forest‐steppe ecotone in the rain shadow of the southern Andes in northwestern Patagonia. For 16 populations along this gradient, we quantified composition of the pollinator assemblage, pollination efficiency and limitation, and reproductive output. The treelet has a generalized pollination system, but the hummingbird Sephanoides sephaniodes was the most effective pollinator. The relative importance of this hummingbird as a flower visitor within populations influenced pollen transfer and fruit set more strongly than local precipitation. As hummingbirds and other pollinators, including passerine birds and nemestrinid flies, were replaced by bees towards the dry eastern range limit, pollen limitation increased and reproduction eventually failed. These results support the hypothesis that pollinators can act as important biotic filters influencing plant distribution, and warn against predictions of geographical range shifts based solely on climatic variables.  相似文献   

12.
Few studies have found strong evidence to suggest that ecotones promote species richness and diversity. In this study we examine the responses of a high‐Andean bird community to changes in vegetation and topographical characteristics across an Andean tree‐line ecotone and adjacent cloud forest and puna grassland vegetation in southern Peru. Over a 6‐month period, birds and vegetation were surveyed using a 100 m fixed‐width Distance Sampling point count method. Vegetation analyses revealed that the tree‐line ecotone represented a distinctive high‐Andean vegetation community that was easily differentiated from the adjacent cloud forest and puna grassland based on changes in tree‐size characteristics and vegetation cover. Bird community composition was strongly seasonal and influenced by a pool of bird species from a wider elevational gradient. There were also clear differences in bird community measures between tree‐line vegetation, cloud forest and puna grassland with species turnover (β‐diversity) most pronounced at the tree‐line. Canonical Correspondence Analysis revealed that the majority of the 81 bird species were associated with tree‐line vegetation. Categorizing patterns of relative abundance of the 42 most common species revealed that the tree‐line ecotone was composed primarily of cloud forest specialists and habitat generalists, with very few species from the puna grassland. Only two species, Thlypopsis ruficeps and Anairetes parulus, both widespread Andean species more typical of montane woodland vegetation edges, were categorized as ecotone specialists. However, our findings were influenced by significant differences in species detectability between all three vegetation communities. Our study highlights the importance of examining ecotones at an appropriate spatial and temporal scale. Selecting a suitable distance between sampling points based on the detection probabilities of the target bird species is essential to obtain an unbiased picture of how ecotones influence avian richness and diversity.  相似文献   

13.
Aims: The upper elevation limit of forest vegetation in mountain ranges (the alpine treeline ecotone) is expected to be highly sensitive to global change. Treeline shifts and/or ecotone afforestation could cause fragmentation and loss of alpine habitat, and are expected to trigger considerable alterations in alpine vegetation. We performed an analysis of vegetation structure at the treeline ecotone to evaluate whether distribution of the tree population determines the spatial pattern of vegetation (species composition and diversity) across the transition from subalpine forest to alpine vegetation. Location: Iberian eastern range of the Pyrenees. Methods: We studied 12 alpine Pinus uncinata treeline ecotones. Rectangular plots ranging from 940 to 1900 m2 were placed along the forest‐alpine vegetation transition, from closed forest to the treeless alpine area. To determine community structure and species distribution in the treeline ecotone, species variation along the forest‐alpine vegetation transition was sampled using relevés of 0.5 m2 set every 2 m along the length of each plot. Fuzzy C‐means clustering was performed to assess the transitional status of the relevés in terms of species composition. The relation of P. uncinata canopy cover to spatial pattern of vegetation was evaluated using continuous wavelet transform analysis. Results: Vegetation analyses revealed a large degree of uniformity of the subalpine forest between all treeline ecotone areas studied. In contrast, the vegetation mosaic found upslope displayed great variation between sites and was characterized by abrupt changes in plant community across the treeline ecotone. Plant richness and diversity significantly increased across the ecotone, but tree cover and diversity boundaries were not spatially coincident. Conclusions: Our results revealed that no intermediate communities, in terms of species composition, are present in the treeline ecotone. Ecotone vegetation reflected both bedrock type and fine‐scale heterogeneity at ground level, thereby reinforcing the importance of microenvironmental conditions for alpine community composition. Tree cover did not appear to be the principal driver of alpine community changes across the treeline ecotone. Microenvironmental heterogeneity, together with effects of past climatic and land‐use changes on ecotone vegetation, may weaken the expected correlation between species distribution and vegetation structure.  相似文献   

14.
The effect of fruit availability on chimpanzee party size was investigated in the montane forest of Kahuzi. Seasonal variation in both fruit availability and party size was examined. Fruit abundance per se does not affect chimpanzee party size. However, seasonality and distribution patterns of fruits are both determinant ecological factors that control the size of chimpanzee parties at Kahuzi. There was no correlation between fruit abundance and the spatial distribution of fruits. When fruits were clumped and available in large amounts for a long period, chimpanzee party size increased, or otherwise decreased when fruits were highly available for only a limited period. Tree species that produced only a small amount of ripe fruit throughout the year did not affect the foraging party size of chimpanzees. Temporal and spatial variability in fruit abundance seems to constrain grouping patterns of chimpanzees at Kahuzi more so than in other chimpanzee habitats previously described.  相似文献   

15.
In the debate over modes of vertebrate diversification in tropical rainforests, two competing hypotheses of speciation predominate: those that emphasize the role of geographical isolation during glacial periods and those that stress the role of ecology and diversifying selection across ecotones or environmental gradients. To investigate the relative roles of selection versus isolation in refugia, we contrasted genetic and morphologic divergence of the olive sunbird (Cyanomitra olivacea) at 18 sites (approximately 200 individuals) across the forest–savanna ecotone of Central Africa in a region considered to have harboured three hypothesized refugia during glacial periods. Habitats were characterized using bioclimatic and satellite remote‐sensing data. We found relatively high levels of gene flow between ecotone and forest populations and between refugia. Consistent with a pattern of divergence‐with‐gene‐flow, we found morphological characters to be significantly divergent across the gradient [forest versus ecotone (mean ± SD): wing length 60.47 ± 1.81 mm versus 62.18 ± 1.35 mm; tarsus length 15.51 ± 0.82 mm versus 16.00 ± 0.57 mm; upper mandible length 21.77 ± 1.09 mm versus 23.19 ± 0.98 mm, respectively]. Within‐habitat comparisons across forest and ecotone sites showed no significant differences in morphology. The results show that divergence in morphological traits is tied to environmental variables across the gradient and is occurring despite gene flow. The pattern of divergence‐with‐gene‐flow found is similar to that described for other rainforest species across the gradient. These results suggest that neither refugia, nor isolation‐by‐distance have played a major role in divergence in the olive sunbird, although ecological differences along the forest and savanna ecotone may impose significant selection pressures on the phenotype and potentially be important in diversification. © 2011 The Linnean Society of London, Biological Journal of the Linnean Society, 2011, 103 , 821–835.  相似文献   

16.
The composition of Ficus sp. and Musanga leo‐errerae in Chimpanzees’ diet was investigated by faecal analysis and direct observation in the medium altitude forest of Kalinzu, along the albertine rift, south‐western Uganda. The fruit availability of Ficus species showed significant variations while that of Musanga leo‐errerae was consistent and significantly higher than that of Ficus (P = 0.053; t = ?2.034) all year round. Their consumption was not opportunistic as no correlation existed between their fruit abundance and their occurrence in chimpanzee faecal samples/diet (Musanga leo‐errerae: r = 0.153, P = 0.456; Ficus sp.: r = 0.039, P = 0.848). Results showed that Musanga leo‐errerae and Ficus species seeds occurred in 80.2% and 67.2% respectively of the total 2635 chimpanzee faecal samples analyzed. Although there was no significant difference between chimpanzees party size that fed on Musanga leo‐errerae and Ficus tree species, the rate of consumption was significantly different in the low (t = 3.835; P = 0.031) than the high fruiting season (t = 2.379; P = 0.063). Ficus sp. and Musanga leo‐errerae genera function as coexistent keystone fruits for chimpanzees because they perfectly complement each other in terms of chimpanzees’ sustenance. This information has significant implications in the management of tropical forests like Kibale, Budongo, Bwindi Impenetrable, Gombe and Mahale inhabited by primate populations especially the endangered ones like the chimpanzee.  相似文献   

17.
Climate change related risks and impacts on ectotherms will be mediated by habitats and their influence on local thermal environments. While many studies have documented morphological and genetic aspects of niche divergence across habitats, few have examined thermal performance across such gradients and directly linked this variation to contemporary climate change impacts. In this study, we quantified variation in thermal performance across a gradient from forest to gallery forest‐savanna mosaic in Cameroon for a skink species (Trachylepis affinis) known to be diverging genetically and morphologically across that habitat gradient. Based on these results, we then applied a mechanistic modelling approach (NicheMapR) to project changes in potential activity, as constrained by thermal performance, in response to climate change. As a complimentary approach, we also compared mechanistic projections with climate‐driven changes in habitat suitability based on species distribution models of forest and ecotone skinks. We found that ecotone skinks may benefit from warming and experience increased activity while forest skinks will likely face a drastic decrease in thermal suitability across the forest zone. Species distribution models projected that thermal suitability for forest skinks in coastal forests would decline but in other parts of the forest zone skinks are projected to experience increased thermal suitability. The results here highlight the utility of mechanistic approaches in revealing and understanding patterns of climate change vulnerability which may not be detected with species distribution models alone. This study also emphasizes the importance of intra‐specific physiological variation, and habitat‐specific thermal performance relationships in particular, in determining warming responses.  相似文献   

18.
Phylogeography and ecological niche models (ENMs) suggest that late Quaternary glacial cycles have played a prominent role in shaping present population genetic structure and diversity, but have not applied quantitative methods to dissect the relative contribution of past and present climate vs. other forces. We integrate multilocus phylogeography, climate‐based ENMs and multivariate statistical approaches to infer the effects of late Quaternary climate change on contemporary genetic variation of valley oak (Quercus lobata Née). ENMs indicated that valley oak maintained a stable distribution with local migration from the last interglacial period (~120 ka) to the Last Glacial Maximum (~21 ka, LGM) to the present compared with large‐scale range shifts for an eastern North American white oak (Quercus alba L.). Coast Range and Sierra Nevada foothill populations diverged in the late Pleistocene before the LGM [104 ka (28–1622)] and have occupied somewhat distinct climate niches, according to ENMs and coalescent analyses of divergence time. In accordance with neutral expectations for stable populations, nuclear microsatellite diversity positively correlated with niche stability from the LGM to present. Most strikingly, nuclear and chloroplast microsatellite variation significantly correlated with LGM climate, even after controlling for associations with geographic location and present climate using partial redundancy analyses. Variance partitioning showed that LGM climate uniquely explains a similar proportion of genetic variance as present climate (16% vs. 11–18%), and together, past and present climate explains more than geography (19%). Climate can influence local expansion–contraction dynamics, flowering phenology and thus gene flow, and/or impose selective pressures. These results highlight the lingering effect of past climate on genetic variation in species with stable distributions.  相似文献   

19.
Aim We explore the impact of calibrating ecological niche models (ENMs) using (1) native range (NR) data versus (2) entire range (ER) data (native and invasive) on projections of current and future distributions of three Hieracium species. Location H. aurantiacum, H. murorum and H. pilosella are native to Europe and invasive in Australia, New Zealand and North America. Methods Differences among the native and invasive realized climatic niches of each species were quantified. Eight ENMs in BIOMOD were calibrated with (1) NR and (2) ER data. Current European, North American and Australian distributions were projected. Future Australian distributions were modelled using four climate change scenarios for 2030. Results The invasive climatic niche of H. murorum is primarily a subset of that expressed in its native range. Invasive populations of H. aurantiacum and H. pilosella occupy different climatic niches to those realized in their native ranges. Furthermore, geographically separate invasive populations of these two species have distinct climatic niches. ENMs calibrated on the realized niche of native regions projected smaller distributions than models incorporating data from species’ entire ranges, and failed to correctly predict many known invasive populations. Under future climate scenarios, projected distributions decreased by similar percentages, regardless of the data used to calibrate ENMs; however, the overall sizes of projected distributions varied substantially. Main conclusions This study provides quantitative evidence that invasive populations of Hieracium species can occur in areas with different climatic conditions than experienced in their native ranges. For these, and similar species, calibration of ENMs based on NR data only will misrepresent their potential invasive distribution. These errors will propagate when estimating climate change impacts. Thus, incorporating data from species’ entire distributions may result in a more thorough assessment of current and future ranges, and provides a closer approximation of the elusive fundamental niche.  相似文献   

20.
Understanding ecological niche evolution over evolutionary timescales is crucial to elucidating the biogeographic history of organisms. Here, we used, for the first time, climate‐based ecological niche models (ENMs) to test hypotheses about ecological divergence and speciation processes between sister species pairs of lemurs (genus Eulemur) in Madagascar. We produced ENMs for eight species, all of which had significant validation support. Among the four sister species pairs, we found nonequivalent niches between sisters, varying degrees of niche overlap in ecological and geographic space, and support for multiple divergence processes. Specifically, three sister‐pair comparisons supported the null model that niches are no more divergent than the available background region. These findings are consistent with an allopatric speciation model, and for two sister pairs (E. collaris–E. cinereiceps and E. rufus–E. rufifrons), a riverine barrier has been previously proposed for driving allopatric speciation. However, for the fourth sister pair E. flavifrons–E. macaco, we found support for significant niche divergence, and consistent with their parapatric distribution on an ecotone and the lack of obvious geographic barriers, these findings most strongly support a parapatric model of speciation. These analyses thus suggest that various speciation processes have led to diversification among closely related Eulemur species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号