首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
Extracellular vesicles (EVs) are membrane‐enclosed particles that are released by virtually all cells from all living organisms. EVs shuttle biologically active cargo including protein, RNA, and DNA between cells. When shed by cancer cells, they function as potent intercellular messangers with important functional consequences. Cells produce a diverse spectrum of EVs, spanning from small vesicles of 40–150 nm in diameter, to large vesicles up to 10 μm in diameter. While this diversity was initially considered to be purely based on size, it is becoming evident that different classes of EVs, and different populations within one EV class may harbor distinct molecular cargo and play specific functions. Furthermore, there are considerable cell type‐dependent differences in the cargo and function of shed EVs. This review focuses on the most recent proteomic studies that have attempted to capture the EV heterogeneity by directly comparing the protein composition of different EV classes and EV populations derived from the same cell source. Recent studies comparing protein composition of the same EV class(es) derived from different cell types are also summarized. Emerging approaches to study EV heterogeneity and their important implications for future studies are also discussed.  相似文献   

2.
细胞外囊泡(Extracellular Vesicles, EVs)是从细胞膜上脱落或者分泌的双层膜结构的囊泡状小体。真核生物、细菌、古细菌和支原体等具有细胞结构的生物均能够释放EVs。细菌分泌的EVs含有DNA、RNA及蛋白质等多种成分,其在细菌毒力保持、免疫逃逸、细菌间物质运输、宿主细胞免疫调节、宿主转录基因调节、耐药性等方面发挥巨大作用。细菌可以分为胞内菌(Intracellular bacteria)和胞外菌(Extracellular bacteria),二者EVs在释放机制、生理学功能和临床应用等方面存在着区别与联系。就胞内菌和胞外菌的囊泡分泌机制、功能及应用作一阐述。  相似文献   

3.
4.
Extracellular vesicles (EVs) have emerged as a ubiquitous mechanism for transferring information between cells and organisms across all three kingdoms of life. Parasitic unicellular eukaryotes use EVs as vehicles for intercellular communication and host manipulation. Pathogenic protozoans are able to modulate the immune system of the host and establish infection by transferring a wide range of molecules contained in different types of EVs. In addition to effects on the host, EVs are able to transfer virulence factors, drug‐resistance genes and differentiation factors between parasites. In this review we cover the current knowledge on EVs from anaerobic or microaerophilic extracellular protozoan parasites, including Trichomonas vaginalis, Tritrichomonas foetus, Giardia intestinalis and Entamoeba histolytica, with a focus on their potential role in the process of infection. The role of EVs in host: parasite communication adds a new level of complexity to our understanding of parasite biology, and may be a key to understand the complexity behind their mechanism of pathogenesis.  相似文献   

5.
The underlying mechanism of normal lung organogenesis is not well understood. An increasing number of studies are demonstrating that extracellular vesicles (EVs) play critical roles in organ development by delivering microRNAs (miRNA) to neighboring and distant cells. miRNAs are important for fetal lung growth; however, the role of miRNA–EVs (miRNAs packaged inside the EVs) during fetal lung development is unexplored. The aim of this study was to examine the expression of miRNA–EVs in MLE-12, a murine lung epithelial cell line subjected to mechanical stretch in vitro with the long-term goal to investigate their potential role in the fetal lung development. Both cyclic and continuous mechanical stretch regulate miRNA differentially in EVs released from MLE-12 and intracellularly, demonstrating that mechanical signals regulate the expression of miRNA–EVs in lung epithelial cells. These results provide a proof-of-concept for the potential role that miRNA–EVs could play in the development of fetal lung.  相似文献   

6.
New insight into the role of extracellular vesicles in kidney disease   总被引:1,自引:0,他引:1  
Extracellular vesicles (EVs) are released to maintain cellular homeostasis as well as to mediate cell communication by spreading protective or injury signals to neighbour or remote cells. In kidney, increasing evidence support that EVs are signalling vesicles for different segments of tubules, intra‐glomerular, glomerular‐tubule and tubule‐interstitial communication. EVs released by kidney resident and infiltrating cells can be isolated from urine and were found to be promising biomarkers for kidney disease, reflecting deterioration of renal function and histological change. We have here summarized the recent progress about the functional role of EVs in kidney disease as well as challenges and future directions involved.  相似文献   

7.
Recently, many studies have investigated the role of extracellular vesicles (EVs) on reproductive events, including embryo development and death, oviduct–embryo crosstalk, in vitro fertilization and others. The aim of this study was to demonstrate whether outgrowth embryo–derived EVs function as bioactive molecules and regulate mouse embryonic developmental competence in vitro and implantation potential in utero. The EVs from mouse outgrowth embryos on 7.5 days postcoitum were detected and selectively isolated to evaluate the embryotrophic functions on preimplantation embryos. Developmental outcomes such as the percentage of blastocyst formation, hatching, and trophoblastic outgrowth were assessed. Furthermore, the total cell number and apoptotic index of blastocysts, which were incubated with EVs during the culture period, were evaluated by fluorescence microscopy. Implantation potential in utero was investigated following embryo transfer. The EVs from outgrowth embryo–conditioned media have rounded membrane structures that range in diameter from 20 to 225 nm. Incubation with EVs improved preimplantation embryonic development by increasing cell proliferation and decreasing apoptosis in blastocysts. Moreover, the implantation rates following embryo transfer were significantly higher in EV–supplemented embryos compared with the control. Collectively, EVs from outgrowth embryo could enhance the embryonic developmental competence and even implantation potential in mice.  相似文献   

8.
《PLoS biology》2021,19(4)
Neural stem cell (NSC) transplantation induces recovery in animal models of central nervous system (CNS) diseases. Although the replacement of lost endogenous cells was originally proposed as the primary healing mechanism of NSC grafts, it is now clear that transplanted NSCs operate via multiple mechanisms, including the horizontal exchange of therapeutic cargoes to host cells via extracellular vesicles (EVs). EVs are membrane particles trafficking nucleic acids, proteins, metabolites and metabolic enzymes, lipids, and entire organelles. However, the function and the contribution of these cargoes to the broad therapeutic effects of NSCs are yet to be fully understood. Mitochondrial dysfunction is an established feature of several inflammatory and degenerative CNS disorders, most of which are potentially treatable with exogenous stem cell therapeutics. Herein, we investigated the hypothesis that NSCs release and traffic functional mitochondria via EVs to restore mitochondrial function in target cells. Untargeted proteomics revealed a significant enrichment of mitochondrial proteins spontaneously released by NSCs in EVs. Morphological and functional analyses confirmed the presence of ultrastructurally intact mitochondria within EVs with conserved membrane potential and respiration. We found that the transfer of these mitochondria from EVs to mtDNA-deficient L929 Rho0 cells rescued mitochondrial function and increased Rho0 cell survival. Furthermore, the incorporation of mitochondria from EVs into inflammatory mononuclear phagocytes restored normal mitochondrial dynamics and cellular metabolism and reduced the expression of pro-inflammatory markers in target cells. When transplanted in an animal model of multiple sclerosis, exogenous NSCs actively transferred mitochondria to mononuclear phagocytes and induced a significant amelioration of clinical deficits. Our data provide the first evidence that NSCs deliver functional mitochondria to target cells via EVs, paving the way for the development of novel (a)cellular approaches aimed at restoring mitochondrial dysfunction not only in multiple sclerosis, but also in degenerative neurological diseases.

This study shows that neural stem cells are able to transfer functional mitochondria via extracellular vesicles to target cells both in vitro and in vivo, suggesting that functional mitochondrial transfer via extracellular vesicles is a signaling mechanism used by neural stem cells to modulate the physiology and metabolism of target cells.  相似文献   

9.
Cell transplantation therapy has certain limitations including immune rejection and limited cell viability, which seriously hinder the transformation of stem cell-based tissue regeneration into clinical practice. Extracellular vesicles (EVs) not only possess the advantages of its derived cells, but also can avoid the risks of cell transplantation. EVs are intelligent and controllable biomaterials that can participate in a variety of physiological and pathological activities, tissue repair and regeneration by transmitting a variety of biological signals, showing great potential in cell-free tissue regeneration. In this review, we summarized the origins and characteristics of EVs, introduced the pivotal role of EVs in diverse tissues regeneration, discussed the underlying mechanisms, prospects, and challenges of EVs. We also pointed out the problems that need to be solved, application directions, and prospects of EVs in the future and shed new light on the novel cell-free strategy for using EVs in the field of regenerative medicine.  相似文献   

10.
Both gram-negative and gram-positive bacteria release extracellular vesicles (EVs) that contain components from their mother cells. Bacterial EVs are similar in size to mammalian-derived EVs and are thought to mediate bacteria–host communications by transporting diverse bioactive molecules including proteins, nucleic acids, lipids, and metabolites. Bacterial EVs have been implicated in bacteria–bacteria and bacteria–host interactions, promoting health or causing various pathologies. Although the science of bacterial EVs is less developed than that of eukaryotic EVs, the number of studies on bacterial EVs is continuously increasing. This review highlights the current state of knowledge in the rapidly evolving field of bacterial EV science, focusing on their discovery, isolation, biogenesis, and more specifically on their role in microbiota–host communications. Knowledge of these mechanisms may be translated into new therapeutics and diagnostics based on bacterial EVs.  相似文献   

11.
Mitochondria are indispensable organelles for maintaining cell energy metabolism, and also are necessary to retain cell biological function by transmitting information as signal organelles. Hypoxia, one of the important cellular stresses, can directly regulates mitochondrial metabolites and mitochondrial reactive oxygen species (mROS), which affects the nuclear gene expression through mitochondrial retrograde signal pathways, and also promotes the delivery of signal components into cytoplasm, causing cellular injury. In addition, mitochondria can also trigger adaptive mechanisms to maintain mitochondrial function in response to hypoxia. Extracellular vesicles (EVs), as a medium of information transmission between cells, can change the biological effects of receptor cells by the release of cargo, including nucleic acids, proteins, lipids, mitochondria, and their compositions. The secretion of EVs increases in cells under hypoxia, which indirectly changes the mitochondrial function through the uptake of contents by the receptor cells. In this review, we focus on the mitochondrial regulation indirectly through EVs under hypoxia, and the possible mechanisms that EVs cause the changes in mitochondrial function. Finally, we discuss the significance of this EV-mitochondria axis in hypoxic diseases.Subject terms: Extracellular signalling molecules, Endosomes, Endosomes, Mitochondria  相似文献   

12.
细胞外囊泡(extracellular vesicles, EVs)是一类具有脂质双分子层的膜性囊泡,可以被各种类型细胞分泌,是生物体通信的重要介质,参与原核生物和真核生物细胞之间的信号传输。在肠道微生态中,微生物-宿主的双向通信通常不需要细胞直接接触,微生物群来源EVs是这种“跨界”对话的关键参与者。肠-肝轴是连接肠道微生物与肝脏的桥梁,参与包含酒精性脂肪性肝病在内的多种肝脏疾病的发生与发展,近年研究发现肠道菌群来源的EVs在肝脏疾病的进程中具有重要的调控作用。本文概述了肠道菌群来源EVs的研究进展,特别是EVs的产生机制、包裹的内容物、在细菌-宿主互作以及在肝脏疾病中的作用。  相似文献   

13.
Membrane-coupled RNA transport is an emerging theme in fungal biology. This review focuses on the RNA cargo and mechanistic details of transport via two inter-related sets of organelles: endosomes and extracellular vesicles for intra- and intercellular RNA transfer. Simultaneous transport and translation of messenger RNAs (mRNAs) on the surface of shuttling endosomes is a conserved process pertinent to highly polarised eukaryotic cells, such as hyphae or neurons. Here we detail the endosomal mRNA transport machinery components and mRNA targets of the core RNA-binding protein Rrm4. Extracellular vesicles (EVs) are newly garnering interest as mediators of intercellular communication, especially between pathogenic fungi and their hosts. Landmark studies in plant–fungus interactions indicate EVs as a means of delivering various cargos, most notably small RNAs (sRNAs), for cross-kingdom RNA interference. Recent advances and implications of the nascent field of fungal EVs are discussed and potential links between endosomal and EV-mediated RNA transport are proposed.  相似文献   

14.
Extracellular vesicles (EVs) are lipid bilayered compartments released by virtually all living cells, including fungi. Among the diverse molecules carried by fungal EVs, a number of immunogens, virulence factors and regulators have been characterised. Within EVs, these components could potentially impact disease outcomes by interacting with the host. From this perspective, we previously demonstrated that EVs from Candida albicans could be taken up by and activate macrophages and dendritic cells to produce cytokines and express costimulatory molecules. Moreover, pre‐treatment of Galleria mellonella larvae with fungal EVs protected the insects against a subsequent lethal infection with C. albicans yeasts. These data indicate that C. albicans EVs are multi‐antigenic compartments that activate the innate immune system and could be exploited as vaccine formulations. Here, we investigated whether immunisation with C. albicans EVs induces a protective effect against murine candidiasis in immunosuppressed mice. Total and fungal antigen‐specific serum IgG antibodies increased by 21 days after immunisation, confirming the efficacy of the protocol. Vaccination decreased fungal burden in the liver, spleen and kidney of mice challenged with C. albicans. Splenic levels of cytokines indicated a lower inflammatory response in mice immunised with EVs when compared with EVs + Freund's adjuvant (ADJ). Higher levels of IL‐12p70, TNFα and IFNγ were detected in mice vaccinated with EVs + ADJ, while IL‐12p70, TGFβ, IL‐4 and IL‐10 were increased when no adjuvants were added. Full protection of lethally challenged mice was observed when EVs were administered, regardless the presence of adjuvant. Physical properties of the EVs were also investigated and EVs produced by C. albicans were relatively stable after storage at 4, ?20 or ?80°C, keeping their ability to activate dendritic cells and to protect G. mellonella against a lethal candidiasis. Our data suggest that fungal EVs could be a safe source of antigens to be exploited in vaccine formulations.  相似文献   

15.
细胞外囊泡(Extracellular vesicles,EVs)是指细胞分泌的双层膜转运囊泡。EVs能从细胞中摄取大分子物质,并将其转移至受体细胞。在这些大分子物质中,研究最多的就是microRNA (miRNA)。miRNA是一种参与基因表达调控的非编码RNA,已证实在哺乳动物卵泡液EVs中有不同的非编码RNA存在,EVs携带miRNA可以作为自分泌和旁分泌的替代机制,影响卵泡发育。文中系统介绍了EVs的种类、特征和分离鉴定方法,重点综述了EVs及携带的miRNA对卵泡发育的作用,包括早期卵泡发育、卵母细胞成熟、卵泡优势化以及对颗粒细胞功能的影响。同时对卵泡液中EVs及其携带的miRNA的未来研究进行了展望,为卵泡液中EVs及携带的miRNA功能的研究及应用提供了思路和方向。  相似文献   

16.
《Reproductive biology》2022,22(2):100645
Extracellular vesicles (EVs) are small, nanometre sized, membrane-enclosed structures released by cells and are thought to be crucial in cellular communication. The cargo of these vesicles includes lipids, proteins, RNAs and DNA, and control various biological processes in their target tissues depending on the parental and receiver cell’s origin and phenotype. Recently data has accumulated in the role of EVs in embryo implantation and pregnancy, with EVs identified in the uterine cavity of women, sheep, cows, horses, and mice, in which they aid blastocyst and endometrial preparation for implantation. Herein is a critical review to decipher the role of extracellular vesicles in endometrial receptivity and their potential in reproductive therapies and diagnosis. The current knowledge of the function of embryo and endometrial derived EVs and their cargoes, with regards to their effect on implantation and receptivity are summarized and evaluated. The findings of the below review highlight that the combined knowledge on EVs deriving from the endometrium and embryo have the potential to be translated to various clinical applications including treatment, a diagnostic biomarker for diseases and a drug delivery tool to ultimately improve pregnancy rates.  相似文献   

17.
18.
Extracellular vesicles (EVs) are lipid‐bilayered vesicles that are released by multiple cell types and contain nucleic acids and proteins. Very little is known about how the cargo is packaged into EVs. Ubiquitination of proteins is a key posttranslational modification that regulates protein stability and trafficking to subcellular compartments including EVs. Recently, arrestin‐domain containing protein 1 (Arrdc1), an adaptor for the Nedd4 family of ubiquitin ligases, has been implicated in the release of ectosomes, a subtype of EV that buds from the plasma membrane. However, it is currently unknown whether Arrdc1 can regulate the release of exosomes, a class of EVs that are derived endocytically. Furthermore, it is unclear whether Arrdc1 can regulate the sorting of protein cargo into the EVs. Exosomes and ectosomes are isolated from mouse embryonic fibroblasts isolated from wild type and Arrdc1‐deficient (Arrdc1?/?) mice. Nanoparticle tracking analysis–based EV quantitation shows that Arrdc1 regulates the release of both exosomes and ectosomes. Proteomic analysis highlights the change in protein cargo in EVs upon deletion of Arrdc1. Functional enrichment analysis reveals the enrichment of mitochondrial proteins in ectosomes, while proteins implicated in apoptotic cleavage of cell adhesion proteins and formation of cornified envelope are significantly depleted in exosomes upon knockout of Arrdc1.  相似文献   

19.
细胞外囊泡(extracellular vesicle,EV)是由细胞释放到细胞外微环境的膜性囊泡,携带母细胞来源分子,参与机体的生理和病理活动过程,鉴定其组成并研究其功能已成为研究热点。目前,对不同物种、不同组织和不同细胞来源的细胞外囊泡组份的研究,获得了大量的蛋白质、核酸、脂类和其他分子数据。为更好地使用这些数据,已有不同的研究机构建立了相应的数据库,为该领域的研究提供了便利。ExoCarta、Vesiclepedia和Evpedia数据库是目前收录数据比较全面的、最具影响力的细胞外囊泡数据库。本文将介绍这3个数据库的特点和应用,为研究者选择使用胞外囊泡数据库提供参考。  相似文献   

20.
Extracellular vesicles (EVs) are nano-sized vesicles, released from many cell types including cardiac cells, have recently emerged as intercellular communication tools in cell dynamics. EVs are an important mediator of signaling within cells that influencing the functional behavior of the target cells. In heart complex, cardiac cells can easily use EVs to transport bioactive molecules such as proteins, lipids, and RNAs to the regulation of neighboring cell function. Cross-talk between intracardiac cells plays pivotal roles in the heart homeostasis and in adaptive responses of the heart to stress. EVs were released by cardiomyocytes under baseline conditions, but stress condition such as hypoxia intensifies secretome capacity. EVs secreted by cardiac progenitor cells and cardiosphere-derived cells could be pinpointed as important mediators of cardioprotection and cardiogenesis. Furthermore, EVs from many different types of stem cells could potentially exert a therapeutic effect on the damaged heart. Recent evidence shows that cardiac-derived EVs are rich in microRNAs, suggesting a key role in the controlling of cellular processes. EVs harboring exosomes may be clinically useful in cell-free therapy approaches and potentially act as prognosis and diagnosis biomarkers of cardiovascular diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号