首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary The effects of dopamine applied to the antennal lobes of the honeybee are investigated using the proboscis conditioning paradigm (Kuwabara 1957). The percentage of bees responding to a conditioned olfactory stimulus after a single conditioning trial is reduced significantly by the application of dopamine (10–6 M) to the antennal lobes of the bee brain. Reduction in response levels is significantly smaller in bees conditioned to the olfactory stimulus in multiple conditioning trials prior to treatment with dopamine. The effects of dopamine on the percentage of bees responding to a conditioned olfactory stimulus are blocked by the butyrophenone, haloperidol (10–5 M). The possible role of dopaminergic interneurones in the antennal lobes of the bee brain is discussed.  相似文献   

2.
The mushroom bodies (MBs), a paired structure in the insect brain, play a major role in storing and retrieving olfactory memories. We tested whether olfactory learning and odor processing is impaired in honeybees in which MB subunits were partially ablated. Using hydroxyurea (HU) to selectively kill proliferating cells, we created honeybees with varying degrees of MB lesions. Three‐dimensional reconstructions of brains were generated to analyze the drug‐induced morphological changes. These reconstructions show that, with few exceptions, only the MBs were affected by the drug, while other brain areas remained morphometrically intact. Typically, lesions affected only the MB in one hemisphere of the brain. To preclude HU‐induced physiologic deficits in the antennal lobe (AL) affecting olfactory learning, we measured the responses to odors in the AL using an in vivo calcium imaging approach. The response patterns did not differ between the AL of intact versus ablated brain sides within respective specimens. We, therefore, carried out side‐specific classical discriminative olfactory conditioning of the proboscis extension reflex (PER) with control bees and with HU‐treated bees with or without MB ablations. All experimental groups learned equally to discriminate and respond to a rewarded (CS+) but not to an unrewarded (CS?) conditioned stimulus during acquisition and retention tests. Thus, our results indicate that partial MB lesions do not affect this form of elemental olfactory learning. © 2002 Wiley Periodicals, Inc. J Neurobiol 53: 343–360, 2002  相似文献   

3.
喙伸反应(PER)试验适用于评价杀虫剂对蜜蜂行为的影响。本实验利用喙伸反应研究了亚致死剂量(LD50/100~LD50/10)溴氰菊酯和吡虫啉对意蜂Apis mellifera ligustica L.工蜂嗅觉敏感性的影响。结果发现,经口饲喂溴氰菊酯5ng和10ng后,工蜂对0.1%的蔗糖溶液的敏感性显著下降(P<0.05),水应激指数降低,但对0.3%,1%,3%,10%和30%的蔗糖溶液的敏感性没有显著变化;而经口饲喂吡虫啉0.3ng和0.6ng后,工蜂对上述各浓度蔗糖溶液的敏感性变化不明显,但其水应激指数升高。  相似文献   

4.
The mushroom bodies (MBs), a paired structure in the insect brain, play a major role in storing and retrieving olfactory memories. We tested whether olfactory learning and odor processing is impaired in honeybees in which MB subunits were partially ablated. Using hydroxyurea (HU) to selectively kill proliferating cells, we created honeybees with varying degrees of MB lesions. Three-dimensional reconstructions of brains were generated to analyze the drug-induced morphological changes. These reconstructions show that, with few exceptions, only the MBs were affected by the drug, while other brain areas remained morphometrically intact. Typically, lesions affected only the MB in one hemisphere of the brain. To preclude HU-induced physiologic deficits in the antennal lobe (AL) affecting olfactory learning, we measured the responses to odors in the AL using an in vivo calcium imaging approach. The response patterns did not differ between the AL of intact versus ablated brain sides within respective specimens. We, therefore, carried out side-specific classical discriminative olfactory conditioning of the proboscis extension reflex (PER) with control bees and with HU-treated bees with or without MB ablations. All experimental groups learned equally to discriminate and respond to a rewarded (CS+) but not to an unrewarded (CS-) conditioned stimulus during acquisition and retention tests. Thus, our results indicate that partial MB lesions do not affect this form of elemental olfactory learning.  相似文献   

5.
A recent study showed that the stingless bee Melipona quadrifasciata could learn to discriminate odors in a classical conditioning of proboscis extension response (PER). Here we used this protocol to investigate the ability of these bees to use olfactory information obtained within the colony in an experimental context: the PER paradigm. We compared their success in solving a classical differential conditioning depending on the previous olfactory experiences received inside the nest. We found that M. quadrifasciata bees are capable of transferring the food-odor information acquired in the colony to a differential conditioning in the PER paradigm. Bees attained higher discrimination levels when they had previously encountered the rewarded odor associated to food inside the hive. The increase in the discrimination levels, however, was in some cases unspecific to the odor used indicating a certain degree of generalization. The influence of the food scent offered at a field feeder 24 h before the classical conditioning could also be seen in the discrimination attained by the foragers in the PER setup, detecting the presence of long-term memory. Moreover, the improved performance of recruited bees in the PER paradigm suggests the occurrence of social learning of nectar scents inside the stingless bees’ hives.  相似文献   

6.
We previously studied a conditioning paradigm to associate the proboscis extension reflex (PER) with monochromatic light (conditioned stimulus; CS) in harnessed honeybees. Here, we established a novel conditioning paradigm to associate the PER with a motion cue generated using graphics interchange format (GIF) animations with a speed of 12 mm/s speed and a frame rate of 25 Hz as the CS, which were projected onto a screen consisting of a translucent circular cone that largely covered the visual field of the harnessed bee using two liquid crystal projectors. The acquisition rate reached a plateau at approximately 40% after seven trials, indicating that the bees were successfully conditioned with the motion cue. We demonstrated four properties of the conditioning paradigm. First, the acquisition rate was enhanced by antennae deprivation, suggesting that sensory input from the antennae interferes with the visual associative learning. Second, bees conditioned with a backward-direction motion cue did not respond to the forward-direction, suggesting that bees can discriminate the two directions in this paradigm. Third, the bees can retain memory for motion cue direction for 48 h. Finally, the acquisition rate did not differ significantly between foragers and nurse bees. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

7.
Reliable retention of olfactory learning following a 1-trial classical conditioning of the proboscis extension reflex (PER) is not achieved in honeybees until they are 6-7 days old. Here we show that treatment of newly emerged honeybees with juvenile hormone (JH) has a profound effect on the maturation of short-term olfactory memory. JH-treated individuals display excellent short-term (1 h) memory of associative learning at times as early as 3 days of age and perform consistently better than untreated bees for at least the first week of their lives. By contrast, the retention of long-term (24 h) memory following a 3-trial conditioning of the PER is not significantly improved in JH-treated bees. Our study also shows that experience and (or) chemosensory activation are not essential to improve learning performance in olfactory tasks. The lack of accelerated development of long-term retention of olfactory memories in JH-treated honeybees is discussed in the context of neural circuits suspected to mediate memory formation and retrieval in the honeybee brain.  相似文献   

8.
We investigated the ability of honeybees, Apis mellifera, to use olfactory information gained in a given experimental context, in other contexts. First, restrained bees were subjected to a Pavlovian associative learning procedure, based on the conditioning of the proboscis extension response (PER), where a floral odour was paired with a sugar reward. We observed the orientation behaviour of conditioned and na?ve bees in a four-armed olfactometer with four contiguous fields either scented with the conditioning odour or unscented. Information transfer was clearly shown, conditioned bees orienting towards the conditioning odour, whilst na?ve bees shunned it. Second, the effect of passive olfactory exposures during the bees' development was assessed in two behavioural contexts: either orientation in the olfactometer or a PER conditioning procedure. Two exposure periods were applied: (1) the pupal stage (9 days before emergence); (2) the early adult stage (8 days after emergence). No effect of preimaginal exposure was recorded, but exposure during the early adult stage induced a higher choice frequency of the odour field in the olfactometer, and lower learning performance in the PER conditioning assay. These observations show that olfactory information gained during development can modify bees' later behaviour in different contexts: this is another instance of olfactory information transfer in bees. These results also suggest that nonassociative learning phenomena, taking place at a critical period during development, might be involved in the maturation of the bees' olfactory system, and in the organization of odour-mediated behaviours. Copyright 2000 The Association for the Study of Animal Behaviour.  相似文献   

9.
The oriental fruit fly, Bactrocera dorsalis, is a serious pest of fruits and vegetables. Methyl eugenol (ME), a male attractant, is used to against this fly by mass trapping. Control effect may be influenced by learning, which could modify the olfactory response of the fly to this attractant. To collect the behavioral evidence, studies on the capability of this fly for olfactory learning are necessary. We investigated olfactory learning in male flies with a classical olfactory conditioning procedure using restrained individuals under laboratory conditions. The acquisition of the proboscis extension reflex was used as the criterion for conditioning. A high conditioned response level was found in oriental fruit flies when an odor was presented in paired association with a sucrose reward but not when the odor and sucrose were presented unpaired. We also found that the conditioning performance was influenced by the odor concentration, intertrial interval, and starvation time. A slight sensitization elicited by imbibing sucrose was observed. These results indicate that oriental fruit flies have a high capacity to form an olfactory memory as a result of classical conditioning.  相似文献   

10.
Learning in insects has been extensively studied using different experimental approaches. One of them, the proboscis extension response (PER) paradigm, is particularly well suited for quantitative studies of cognitive abilities of honeybees under controlled conditions. The goal of this study was to analyze the capability of three eusocial bee species to be olfactory conditioned in the PER paradigm. We worked with two Brazilian stingless bees species, Melipona quadrifasciata and Scaptotrigona aff. depilis, and with the invasive Africanized honeybee, Apis mellifera. These three species present very different recruitment strategies, which could be related with different odor-learning abilities. We evaluated their gustatory responsiveness and learning capability to discriminate floral odors. Gustatory responsiveness was similar for the three species, although S. aff. depilis workers showed fluctuations along the experimental period. Results for the learning assays revealed that M. quadrifasciata workers can be conditioned to discriminate floral odors in a classical differential conditioning protocol and that this discrimination is maintained 15 min after training. During conditioning, Africanized honeybees presented the highest discrimination, for M. quadrifasciata it was intermediate, and S. aff. depilis bees presented no discrimination. The differences found are discussed considering the putative different learning abilities and procedure effect for each species.  相似文献   

11.
The active compounds of oak‐sap odour in attracting adults of two butterflies, Kaniska canace (L.) and Vanessa indica (Herbst) (Lepidoptera: Nymphalidae), were identified by chemical analyses, electroantennogram (EAG) and two behavioural assays: proboscis extension reflex (PER) and attraction to artificial tree models. Fourteen compounds were identified from two sap samples collected in 1997 and 1998, of which the major volatiles were ethanol and acetic acid (≈ 900 p.p.m. and 500 p.p.m. in sap, respectively). However, the chemical composition of the minor volatiles varied considerably between the two samples. Among 13 chemicals tested, V. indica showed strong PER to five aliphatic acids (acetic, propionic, butyric, isobutyric and isovaleric), 2‐methylpropan‐1‐ol and 3‐hydroxybutan‐2‐one, whereas the PER‐active compounds for K. canace were these seven compounds and also ethanol, 3‐methylbutan‐1‐ol and 1‐hydroxypropan‐2‐one. In two‐choice behavioural bioassays, the model scented with a sap‐odour mimic, which was an aqueous mixture of the PER‐active compounds, was more attractive to the two butterflies than an unscented control. These results demonstrated that the sap odour stimulates foraging behaviour of the butterfly. Although EAG responses of both butterflies to 3‐methylbutan‐1‐ol and that of V. indica to 2‐methylpropan‐1‐ol were positively dose‐dependent, responses to other compounds were not strong and not dose‐dependent at 1–100 μg doses. These EAG responsiveness suggests that the olfactory receptors for these compounds might be few in the antenna and that the butterflies have enough olfactory sensitivity to the dose of 1 μg.  相似文献   

12.
Olfactory interference during inhibitory backward pairing in honey bees   总被引:1,自引:0,他引:1  
Dacher M  Smith BH 《PloS one》2008,3(10):e3513

Background

Restrained worker honey bees are a valuable model for studying the behavioral and neural bases of olfactory plasticity. The proboscis extension response (PER; the proboscis is the mouthpart of honey bees) is released in response to sucrose stimulation. If sucrose stimulation is preceded one or a few times by an odor (forward pairing), the bee will form a memory for this association, and subsequent presentations of the odor alone are sufficient to elicit the PER. However, backward pairing between the two stimuli (sucrose, then odor) has not been studied to any great extent in bees, although the vertebrate literature indicates that it elicits a form of inhibitory plasticity.

Methodology/Principal Findings

If hungry bees are fed with sucrose, they will release a long lasting PER; however, this PER can be interrupted if an odor is presented 15 seconds (but not 7 or 30 seconds) after the sucrose (backward pairing). We refer to this previously unreported process as olfactory interference. Bees receiving this 15 second backward pairing show reduced performance after a subsequent single forward pairing (excitatory conditioning) trial. Analysis of the results supported a relationship between olfactory interference and a form of backward pairing-induced inhibitory learning/memory. Injecting the drug cimetidine into the deutocerebrum impaired olfactory interference.

Conclusions/Significance

Olfactory interference depends on the associative link between odor and PER, rather than between odor and sucrose. Furthermore, pairing an odor with sucrose can lead either to association of this odor to PER or to the inhibition of PER by this odor. Olfactory interference may provide insight into processes that gate how excitatory and inhibitory memories for odor-PER associations are formed.  相似文献   

13.
Apis mellifera jemenitica is the indigenous race of honey bees in the Arabian Peninsula and is tolerant to local drought conditions. Experiments were undertaken to determine the differences in associative learning and memory of honey bee workers living in the arid zone of Saudi Arabia, utilizing the proboscis extension response (PER). These experiments were conducted on the indigenous race (A. m. jemenitica) along with two introduced European races (A. m. carnica and A. m. ligustica). The data revealed that A. m. jemenitica is amenable to PER conditioning and may be used in conditioning experiments within the olfactory behavioral paradigm. The results also demonstrated that the three races learn and retain information with different capacities relative to each other during the experimental time periods. Native Arabian bees (A. m. jemenitica) exhibited significantly lower PER percentage during second and third conditioning trials when compared to exotic races. Apis mellifera jemenitica also exhibited reduced memory retention at 2?h and 24?h when compared to A. m. carnica and A. m. ligustica. Therefore, the native Arabian bees were relatively slow learners with reduced memory retention compared to the other two races that showed similar learning and memory retention. Three or five conditioning trials and monthly weather conditions (October and December) had no significant effects on learning and memory in A. m. jemenitica. These results emphasized a novel line of research to explore the mechanism and differences in associative learning as well as other forms of learning throughout the year among bee races in the harsh arid conditions of Saudi Arabia. This is the first study in Saudi Arabia to demonstrate inter-race differences regarding olfactory associative learning between native Arabian bees and two introduced European honey bee races.  相似文献   

14.
15.
Honey bees are a key-model in the study of learning and memory, because they show considerable learning abilities, their brain is well described and is accessible to a wide range of physiological recordings and treatments. We use in vivo calcium imaging to study olfactory perception in the bee brain, and combine this method to appetitive olfactory conditioning to unravel the neural substrates of olfactory learning. Odours are detected by receptor neurons on the antennae. Each receptor neuron projects to the first-order neuropile of the olfactory pathway, the antennal lobe, connecting to projection neurons in one of its 160 functional units, the glomeruli. In calcium imaging experiments, each odour elicits a particular activity pattern of antennal lobe glomeruli, according to a code conserved between individuals. The antennal lobe is also a site where the olfactory memory is formed. Using optical imaging, two studies have shown modulations of odour representation in the antennal lobe after learning, with different effects depending on the type of conditioning used. While simple differential conditioning (A + B- training) showed an increased calcium response to the reinforced odour, side-specific conditioning (A + B-/B + A- training) decorrelated the calcium responses of odours between brain sides. This difference may owe to the formation of different memories, which will be addressed in future work. By specifically staining antennal lobe neuronal subpopulations, we hope to be able in the future to study synaptic plasticity in the honey bee.  相似文献   

16.
Summary

Conditioning of isolated ants was attempted in the ant Myrmica sabuleti. Isolated ants did not die and could be visually as well as olfactorily conditioned. They acquired and kept ? or partly lost ? their visual ? or their olfactory ? conditioned responses as do ants living in a colony. Each individual of an ant colony is thus able to learn and memorize by itself. Any collective conditioning, learning and memory actually reflect the individuals’ performance. Naive workers paired with isolated previously conditioned ants apparently acquired olfactory conditioning in a shorter time than isolated ants, reaching a conditioning score identical to that of isolated ants. But they lost their apparent conditioning as soon as the olfactory cue was removed. Thus, imitation of nestmates exists in ants but does not lead, by itself, to learning sensu stricto since nothing of what has been imitated is retained.  相似文献   

17.
【目的】为了探究桔小实蝇 Bactrocera dorsalis (Hendel)雄成虫的嗅觉学习能力。【方法】本研究采用经典性嗅觉条件反射训练法(classical olfactory conditioning)在室内对固定的羽化后14-17日龄的桔小实蝇雄成虫进行气味与食物的联合学习训练, 即薄荷精油和10%蔗糖溶液联合的奖赏性训练(appetitive conditioning)以及甲基丁香酚(methyl eugenol, ME)和饱和盐溶液联合的惩罚性训练(aversive conditioning),并以伸喙反射行为(proboscis extension reflex, PER)作为学习与否的判定标准。【结果】经过奖赏性训练后,桔小实蝇雄成虫对薄荷精油的伸喙反射率可从0%增加至68%;而经过惩罚性训练后,桔小实蝇对甲基丁香酚的伸喙反射率可从100%降低至36.54%,且这种伸喙反射率的变化是通过气味条件刺激(conditioned stimulus)和食物非条件刺激(unconditioned stimulus)的对称性联合而产生的。【结论】结果表明,桔小实蝇雄性成虫具有较强的联系性嗅觉学习能力,并且两种刺激的联合是形成学习记忆的必要条件。  相似文献   

18.
We are only starting to understand how variation in cognitive ability can result from local adaptations to environmental conditions. A major question in this regard is to what extent selection on cognitive ability in a specific context affects that ability in general through correlated evolution. To address this question, we performed artificial selection on visual associative learning in female Nasonia vitripennis wasps. Using appetitive conditioning in which a visual stimulus was offered in association with a host reward, the ability to learn visual associations was enhanced within 10 generations of selection. To test for correlated evolution affecting this form of learning, the ability to readily form learned associations in females was also tested using an olfactory instead of a visual stimulus in the appetitive conditioning. Additionally, we assessed whether the improved associative learning ability was expressed across sexes by color‐conditioning males with a mating reward. Both females and males from the selected lines consistently demonstrated an increased associative learning ability compared to the control lines, independent of learning context or conditioned stimulus. No difference in relative volume of brain neuropils was detected between the selected and control lines.  相似文献   

19.
Discriminative classical conditioning of an olfactory avoidance response was demonstrated in the blowfly, Phormia regina.Learning indices were calculated as the fraction of flies avoiding the CS+ (conditioned stimulus paired with electric shock reinforcement) minus the fraction of flies avoiding the CS-(conditioned stimulus not paired with electric shock), averaged over two different groups of flies, in which reciprocal odors were used as the CS+. Avoidance responses to both odors presented simultaneously at a T-maze choice point yielded mean learning indices of zero for naive flies or pseudoconditioned (shock alone) or sensitized (odors alone) controls. In contrast, pairing an odor with electric shock produced a mean learning index significantly greater than zero. These results are similar to those reported for Drosophila melanogaster.Blow flies, however, showed much lower levels of associative learning than fruit flies.  相似文献   

20.
We investigated here the role of transmissions mediated by GABA and glutamate-gated chloride channels (GluCls) in olfactory learning and memory in honeybees, both of these channels being a target for fipronil. To do so, we combined olfactory conditioning with injections of either the GABA- and glutamate-interfering fipronil alone, or in combination with the blocker of glutamate transporter l-trans-Pyrrolidine-2,4-Dicarboxylicacid (l -trans-PDC), or the GABA analog Trans-4-Aminocrotonic Acid (TACA). Our results show that a low dose of fipronil (0.1 ng/bee) impaired olfactory memory, while a higher dose (0.5 ng/bee) had no effect. The detrimental effect induced by the low dose of fipronil was rescued by the coinjection of l-trans-PDC but was rather increased by the coinjection of TACA. Moreover, using whole-cell patch-clamp recordings, we observed that l-trans-PDC reduced glutamate-induced chloride currents in antennal lobe cells. We interpret these results as reflecting the involvement of both GluCl and GABA receptors in the impairment of olfactory memory induced by fipronil.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号