首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Acrodysostosis is a rare autosomal-dominant condition characterized by facial dysostosis, severe brachydactyly with cone-shaped epiphyses, and short stature. Moderate intellectual disability and resistance to multiple hormones might also be present. Recently, a recurrent mutation (c.1102C>T [p.Arg368]) in PRKAR1A has been identified in three individuals with acrodysostosis and resistance to multiple hormones. After studying ten unrelated acrodysostosis cases, we report here de novo PRKAR1A mutations in five out of the ten individuals (we found c.1102C>T [p.Arg368] in four of the ten and c.1117T>C [p.Tyr373His] in one of the ten). We performed exome sequencing in two of the five remaining individuals and selected phosphodiesterase 4D (PDE4D) as a candidate gene. PDE4D encodes a class IV cyclic AMP (cAMP)-specific phosphodiesterase that regulates cAMP concentration. Exome analysis detected heterozygous PDE4D mutations (c.673C>A [p.Pro225Thr] and c.677T>C [p.Phe226Ser]) in these two individuals. Screening of PDE4D identified heterozygous mutations (c.568T>G [p.Ser190Ala] and c.1759A>C [p.Thr587Pro]) in two additional acrodysostosis cases. These mutations occurred de novo in all four cases. The four individuals with PDE4D mutations shared common clinical features, namely characteristic midface and nasal hypoplasia and moderate intellectual disability. Metabolic screening was normal in three of these four individuals. However, resistance to parathyroid hormone and thyrotropin was consistently observed in the five cases with PRKAR1A mutations. Finally, our study further supports the key role of the cAMP signaling pathway in skeletogenesis.  相似文献   

2.
3.
《Cellular signalling》2014,26(11):2446-2459
Acrodysostosis without hormone resistance is a rare skeletal disorder characterized by brachydactyly, nasal hypoplasia, mental retardation and occasionally developmental delay. Recently, loss-of-function mutations in the gene encoding cAMP-hydrolyzing phosphodiesterase-4D (PDE4D) have been reported to cause this rare condition but the pathomechanism has not been fully elucidated. To understand the pathogenetic mechanism of PDE4D mutations, we conducted 3D modeling studies to predict changes in the binding efficacy of cAMP to the catalytic pocket in PDE4D mutants. Our results indicated diminished enzyme activity in the two mutants we analyzed (Gly673Asp and Ile678Thr; based on PDE4D4 residue numbering). Ectopic expression of PDE4D mutants in HEK293 cells demonstrated this reduction in activity, which was identified by increased cAMP levels. However, the cells from an acrodysostosis patient showed low cAMP accumulation, which resulted in a decrease in the phosphorylated cAMP Response Element-Binding Protein (pCREB)/CREB ratio. The reason for this discrepancy was due to a compensatory increase in expression levels of PDE4A and PDE4B isoforms, which accounted for the paradoxical decrease in cAMP levels in the patient cells expressing mutant isoforms with a lowered PDE4D activity. Skeletal radiographs of 10-week-old knockout (KO) rats showed that the distal part of the forelimb was shorter than in wild-type (WT) rats and that all the metacarpals and phalanges were also shorter in KO, as the name acrodysostosis implies. Like the G-protein α-stimulatory subunit and PRKAR1A, PDE4D critically regulates the cAMP signal transduction pathway and influences bone formation in a way that activity-compromising PDE4D mutations can result in skeletal dysplasia. We propose that specific inhibitory PDE4D mutations can lead to the molecular pathology of acrodysostosis without hormone resistance but that the pathological phenotype may well be dependent on an over-compensatory induction of other PDE4 isoforms that can be expected to be targeted to different signaling complexes and exert distinct effects on compartmentalized cAMP signaling.  相似文献   

4.
Acrodysostosis is a dominantly-inherited, multisystem disorder characterized by skeletal, endocrine, and neurological abnormalities. To identify the molecular basis of acrodysostosis, we performed exome sequencing on five genetically independent cases. Three different missense mutations in PDE4D, which encodes cyclic AMP (cAMP)-specific phosphodiesterase 4D, were found to be heterozygous in three of the cases. Two of the mutations were demonstrated to have occurred de novo, providing strong genetic evidence of causation. Two additional cases were heterozygous for de novo missense mutations in PRKAR1A, which encodes the cAMP-dependent regulatory subunit of protein kinase A and which has been recently reported to be the cause of a form of acrodysostosis resistant to multiple hormones. These findings demonstrate that acrodysostosis is genetically heterogeneous and underscore the exquisite sensitivity of many tissues to alterations in cAMP homeostasis.  相似文献   

5.
Regarding mutations of PROP1 (Prophet of POU1F1) gene significantly associating with combined pituitary hormone deficiency (CPHD) in human patients and animals, PROP1 gene is a novel important candidate gene for detecting genetic variation and growth, reproduction, metabolism traits selection and breeding. The aim of this study was to detect PROP1 gene mutation of the exon 1–3 and its association with wool traits in 345 Chinese Merino sheep. In this study, on the basis of PCR-SSCP and DNA sequencing methods, ten novel SNPs within the sheep PROP1 gene, namely, AY533708: g.45A > G resulting in Glu15Glu, g.1198A > G, g.1341G > C resulting in Arg63Ser, g.1389G > A resulting in Ala79Ala, g.1402C > T resulting in Leu84Leu, g.1424A > G resulting in Asn91Ser, g.1522C > T, g.1556A > T, g.1574T > C, g.2430C > G were reported. In addition, association analysis showed that three genotypes of P4 fragment were significantly associated with fiber diameter in the analyzed population (P = 0.044). These results strongly suggested that polymorphisms of the PROP1 gene could be a useful molecular marker for sheep breeding and genetics through marker-assisted selection (MAS).  相似文献   

6.
Molecular testing for mutations in the connexin 26 gene (GJB2) is a routine diagnostic analysis for subjects with hereditary hearing loss worldwide. However, till now there is no assessment of the diagnostic significance of this analysis for Russian patients, and there are difficulties in interpretation of the results of DNA diagnostics. In the present study, a sample of 705 patients with nonsyndromic autosomal recessive hearing loss from different regions of Russian Federation was investigated. A portion of DFNB1 hearing loss caused by mutations in the GJB2 gene among the sample was 46%. The frequency of DFNB1 hearing loss was 1:1000, that is, the frequency of isolated autosomal recessive hearing loss 1:500 in the population. It was found that each sixteenth individual in Russia is a heterozygous carrier of the mutation in the GJB2 gene. Totally, 20 pathological GJB2 alleles were detected; among them, a c.35delG mutation with the allelic frequency 81% prevails. Six most frequent mutations (c.35delG, c.313_326del14, c.23+1G>A (IVS1+1G>A), c.235delC, c.167delT, and p.Glu120del), which account for 95% of pathological GJB2 alleles, were detected. Mutations previously not described in the GJB2 gene (c.129delG, p.Gly200Arg, and c[Arg127His, Gly160Ser]) were found. An optimal algorithm of molecular testing of Russian patients which detects up to 100% of mutations in the GJB2 gene was suggested. Data concerning a clinical significance of p.Met34Thr and p.Val37Ile mutations are confirmed in the study. Eight polymorphic substitutions in the GJB2 gene which do not have clinical significance (p.Val27Ile, c.*3C>A, p.Val153Ile, p.Gly160Ser, c.Arg127His, p.Glu114Gly (c.341A>G), c.-45C>A, and p.Ala149Thr) were also detected.  相似文献   

7.
A bilaterally blind woman, with a three generation family history of autosomal dominant congenital cataracts, variably associated with iris colobomata and microcornea, sought preconception genetic consultation. Whole-exome sequencing was performed in three affected family members, one unaffected first degree relative, and one spouse. The sequence variant c.168C>G; p.(Tyr56?) in CRYGD, previously reported as pathogenic, and a novel mutation c.809C>A; p.(Ser270Tyr) in MAF, were identified in two affected family members; the grandmother, and half-brother of the proband. The proband inherited only the MAF mutation, whereas her clinically unaffected sister had the CRYGD change. In silico analysis supported a pathogenic role of p.(Ser270Tyr) in MAF, which was absent from publicly available whole-exome datasets, and 1161 Czech individuals. The frequency of CRYGD p.(Tyr56?) in the ExAC dataset was higher than the estimated incidence of congenital cataract in the general population. Our study highlights that patients with genetically heterogeneous conditions may exhibit rare variants in more than one disease-associated gene, warranting caution with data interpretation, and supporting parallel screening of all genes known to harbour pathogenic mutations for a given phenotype. The pathogenicity of sequence variants previously reported as cataract-causing may require re-assessment in light of recently released datasets of human genomic variation.  相似文献   

8.
9.
Single base substitutions in DNA mismatch repair genes which are predicted to lead either to missense or silent mutations, or to intronic variants outside the highly conserved splicing region are often found in hereditary nonpolyposis colorectal cancer (HNPCC) families. In order to use the variants for predictive testing in persons at risk, their pathogenicity has to be evaluated. There is growing evidence that some substitutions have a detrimental influence on splicing. We examined 19 unclassified variants (UVs) detected in MSH2 or MLH1 genes in patients suspected of HNPCC for expression at RNA level. We demonstrate that 10 of the 19 UVs analyzed affect splicing. For example, the substitution MLH1,c.2103G>C in the last position of exon 18 does not result in a missense mutation as theoretically predicted (p.Gln701His), but leads to a complete loss of exon 18. The substitution MLH1,c.1038G>C (predicted effect p.Gln346His) leads to complete inactivation of the mutant allele by skipping of exons 10 and 11, and by activation of a cryptic intronic splice site. Similarly, the intronic variant MLH1,c.306+2dupT results in loss of exon 3 and a frameshift mutation due to a new splice donor site 5 bp upstream. Furthermore, we confirmed complete exon skipping for the mutations MLH1,c.1731G>A and MLH1,c.677G>A. Partial exon skipping was demonstrated for the mutations MSH2,c.1275A>G, MLH1,c.588+5G>A, MLH1,c.790+4A>G and MLH1,c.1984A>C. In contrast, five missense mutations (MSH2,c.4G>A, MSH2,c.2123T>A, MLH1,c.464T>G, MLH1,c.875T>C and MLH1,c.2210A>T) were found in similar proportions in the mRNA as in the genomic DNA. We conclude that the mRNA examination should precede functional tests at protein level. Databases: HNPCC – OMIM 114500, MSH2 – OMIM: 120435; GenBank: NM_000251.1, MLH1 – OMIM: 120436; GenBank: NM_000249.2, InSiGHT mutation database: , Programs: BDGP: , ESEfinder program:  相似文献   

10.
汉族马凡综合征(MFS)患者FBN1基因两种新发突变分析   总被引:1,自引:0,他引:1  
为调查马凡综合征(Marfan syndrome, MFS)患者的原纤维蛋白-1(Fibrillin-1, FBN1)基因突变情况, 应用聚合酶链反应(PCR)和变性高效液相色谱法(Denaturing high-performance liquid chromatography, DHPLC)对MFS患者的FBN1基因进行突变筛查, 对DHPLC初筛异常的DNA片段进行测序分析。结果在两个MFS家系中发现FBN1基因两种新的突变: 一种为复合突变包含第55号外显子的缺失突变c.6862_6871delGGCTGTGTAG (p.Gly2288MetfsX109)、同义突变c.6861A>G和内含子的突变c.[6871+1_6871+11delGTAAGAGGATC; 6871+34dupCATCAGAAGTGACAGTGGACA]; 另一种为第20号外显子的错义突变c.2462G>A(p.Cys821Tyr)。研究表明, FBN1基因的缺失突变c.[6862_6871delGGCTGTGTAG; 6871+1_6871+11delGTAAGAGGATC] (p.Gly2288MetfsX109)和错义突变c.2462G>A(p.Cys821Tyr)可能分别是这两个家系患者的致病原因。  相似文献   

11.
Focal segmental glomerulosclerosis (FSGS) is the most common glomerular histological lesion associated with high‐grade proteinuria and end‐stage renal disease. Histologically, FSGS is characterized by focal segmental sclerosis with foot process effacement. The aim of this study was to identify the disease‐causing mutation in a four‐generation Chinese family with FSGS. A novel missense mutation, c.1856G>A (p.Gly619Asp), in the collagen type IV alpha‐4 gene (COL4A4) was identified in six patients and it co‐segregated with the disease in this family. The variant is predicted to be disease‐causing and results in collagen IV abnormalities. Our finding broadens mutation spectrum of the COL4A4 gene and extends the phenotypic spectrum of collagen IV nephropathies. Our study suggests that exome sequencing is a cost‐effective and efficient approach for identification of disease‐causing mutations in phenotypically complex or equivocal disorders. Timely screening for COL4A3/COL4A4 mutations in patients with familial FSGS may help both accurately diagnose and treat these patients.  相似文献   

12.

Purpose

To describe at molecular level a family with pulverulent congenital cataract associated with a CRYGC gene mutation.

Methods

One family with several affected members with pulverulent congenital cataract and 230 healthy controls were examined. Genomic DNA from leukocytes was isolated to analyze the CRYGA-D cluster, CX46, CX50 and MIP genes through high-resolution melting curve and DNA sequencing.

Results

DNA sequencing in the affected members revealed the c.143G>A mutation (p.R48H) in exon 2 of the CRYGC gene; 230 healthy controls and ten healthy relatives were also analyzed and none of them showed the c.143G>A mutation. No other polymorphisms or mutations were found to be present.

Conclusion

In the present study, we described a family with pulverulent congenital cataract that segregated the c.143G>A mutation (p.R48H) in the CRYGC gene. A few mutations have been described in the CRYGC gene in autosomal dominant cataract, none of them with pulverulent cataract making clear the clinical heterogeneity of congenital cataract. This mutation has been associated with the phenotype of congenital cataract but also is considered an SNP in the NCBI data base. Our data and previous report suggest that p.R48H could be a disease-causing mutation and not an SNP.  相似文献   

13.
The development of next generation sequencing techniques has facilitated the detection of mutations at an unprecedented rate. These efficient tools have been particularly beneficial for extremely heterogeneous disorders such as autosomal recessive non-syndromic hearing loss, the most common form of genetic deafness. GJB2 mutations are the most common cause of hereditary hearing loss. Amongst them the NM_004004.5: c.506G > A (p.Cys169Tyr) mutation has been associated with varying severity of hearing loss with unclear segregation patterns. In this study, we report a large consanguineous Emirati family with severe to profound hearing loss fully segregating the GJB2 missense mutation p.Cys169Tyr. Whole exome sequencing (WES), in silico, splicing and expression analyses ruled out the implication of any other variants and confirmed the implication of the p.Cys169Tyr mutation in this deafness family. We also show preliminary murine expression analysis that suggests a link between the TMEM59 gene and the hearing process. The present study improves our understanding of the molecular pathogenesis of hearing loss. It also emphasizes the significance of combining next generation sequencing approaches and segregation analyses especially in the diagnosis of disorders characterized by complex genetic heterogeneity.  相似文献   

14.
An analysis of the frequency of H63D (c.187C>G) mutations in the HFE gene in 19 populations from Central Eurasia demonstrated that the distribution of the mutation in the region of interest was not uniform and that there were the areas of H63D accumulation. The investigation of three polymorphic variants, c.340+4T>C (rs2071303, IVS2(+4)T>C), c.893-44T>C (rs1800708, IVS4(-44)T>C), and c.1007-47G>A (rs1572982, IVS5(-47)A>G), in the HFE gene in individuals homozygous for H63D mutations in the HFE gene revealed the linkage of H63D with three haplotypes, *CTA, *TTG, and *TTA. These findings indicated the partial spread of the mutation in Central Eurasia from Western Europe, as well as the possible repeated appearance of the mutation on the territory on interest.  相似文献   

15.
The primary structure of the APC gene DNA was examined in 108 patients younger than 45 years old diagnosed with “familial adenomatous polyposis, classic form” using PCR, conformation-sensitive electrophoresis, and Sanger sequencing. Mutations in the APC gene were observed in 78 patients; de novo mutations were observed in 17 cases. In the majority of cases (n = 45), patients exhibited frameshift mutations, 28 patients had nonsense mutations, and other 5 patients showed splicing mutations. We also revealed recurring variants: p.Arg232X (2 cases), p.Asp849GlufsX11 (2), p.Ser1068GlyfsX57 (2), p.Arg216X (3), p.Gln1062X (5), p.Arg213X (5), and p.Glu1309AspfsX4 (16). It was shown that, compared with other pathogenic variants in the APC gene in Russian patients, mutation p.Glu1309AspfsX4 does not result in earlier development of colorectal cancer and polyps. Nineteen mutations were described for the first time. The identified mutations were located between codons 142 and 1492 of the APC gene. This indicates the importance of investigation of all the gene coding exons. Pathogenic variants were observed in 16 of 35 studied relatives of the mutation carriers. All 16 relatives were included in the “risk group” for lifelong clinical monitoring.  相似文献   

16.
We performed analysis of KCNT1 in two unrelated patients with malignant migrating partial seizures in infancy. Both patients had intractable focal seizures since two months of age. Their seizures were characterized by a shift of epileptic focus during a single seizure and were resistant to most antiepileptic drugs but responded to vagus nerve stimulation in one and clorazepate in the other. Bidirectional sequencing for KCNT1 was analyzed by standard Sanger sequencing method. A de novo c.862G > A (p.Gly288Ser) missense mutation was identified at the pore region of KCNT1 channel in both patients, whereas all KCNT1 mutations in the previous reports were identified mostly in the intracellular C-terminal region. Computational analysis suggested possible changes in the molecular structure and the ion channel property induced by the Gly288Ser mutation. Because the G-to-A transition was located at CG dinucleotide sequences as previously reported for KCNT1 mutations, the recurrent occurrence of de novo KCNT1 mutations indicated the hot spots of these locations.  相似文献   

17.
Catel-Manzke syndrome is characterized by Pierre Robin sequence and a unique form of bilateral hyperphalangy causing a clinodactyly of the index finger. We describe the identification of homozygous and compound heterozygous mutations in TGDS in seven unrelated individuals with typical Catel-Manzke syndrome by exome sequencing. Six different TGDS mutations were detected: c.892A>G (p.Asn298Asp), c.270_271del (p.Lys91Asnfs22), c.298G>T (p.Ala100Ser), c.294T>G (p.Phe98Leu), c.269A>G (p.Glu90Gly), and c.700T>C (p.Tyr234His), all predicted to be disease causing. By using haplotype reconstruction we showed that the mutation c.298G>T is probably a founder mutation. Due to the spectrum of the amino acid changes, we suggest that loss of function in TGDS is the underlying mechanism of Catel-Manzke syndrome. TGDS (dTDP-D-glucose 4,6-dehydrogenase) is a conserved protein belonging to the SDR family and probably plays a role in nucleotide sugar metabolism.  相似文献   

18.

Background

Neuronal ceroid lipofuscinoses type I and type II (NCL1 and NCL2) also known as Batten disease are the commonly observed neurodegenerative lysosomal storage disorder caused by mutations in the PPT1 and TPP1 genes respectively. Till date, nearly 76 mutations in PPT1 and approximately 140 mutations, including large deletion/duplications, in TPP1 genes have been reported in the literature. The present study includes 34 unrelated Indian patients (12 females and 22 males) having epilepsy, visual impairment, cerebral atrophy, and cerebellar atrophy.

Methods

The biochemical investigation involved measuring the palmitoyl protein thioesterase 1 and tripeptidy peptidase l enzyme activity from the leukocytes. Based on the biochemical analysis all patients were screened for variations in either PPT1 gene or TPP1 gene using bidirectional Sanger sequencing. In cases where Sanger sequencing results was uninformative Multiplex Ligation-dependent Probe Amplification technique was employed. The online tools performed the protein homology modeling and orthologous conservation of the novel variants.

Results

Out of 34 patients analyzed, the biochemical assay confirmed 12 patients with NCL1 and 22 patients with NCL2. Molecular analysis of PPT1 gene in NCL1 patients revealed three known mutations (p.Val181Met, p.Asn110Ser, and p.Trp186Ter) and four novel variants (p.Glu178Asnfs*13, p.Pro238Leu, p.Cys45Arg, and p.Val236Gly). In the case of NCL2 patients, the TPP1 gene analysis identified seven known mutations and eight novel variants. Overall these 15 variants comprised seven missense variants (p.Met345Leu, p.Arg339Trp, p.Arg339Gln, p.Arg206Cys, p.Asn286Ser, p.Arg152Ser, p.Tyr459Ser), four frameshift variants (p.Ser62Argfs*19, p.Ser153Profs*19, p.Phe230Serfs*28, p.Ile484Aspfs*7), three nonsense variants (p.Phe516*, p.Arg208*, p.Tyr157*) and one intronic variant (g.2023_2024insT). No large deletion/duplication was identified in three NCL1 patients where Sanger sequencing study was normal.

Conclusion

The given study reports 34 patients with Batten disease. In addition, the study contributes four novel variants to the spectrum of PPT1 gene mutations and eight novel variants to the TPP1 gene mutation data. The novel pathogenic variant p.Pro238Leu occurred most commonly in the NCL1 cohort while the occurrence of a known pathogenic mutation p.Arg206Cys dominated in the NCL2 cohort. This study provides an insight into the molecular pathology of NCL1 and NCL2 disease for Indian origin patients.
  相似文献   

19.
Peters anomaly is a rare form of anterior segment ocular dysgenesis, which can also be associated with additional systemic defects. At this time, the majority of cases of Peters anomaly lack a genetic diagnosis. We performed whole exome sequencing of 27 patients with syndromic or isolated Peters anomaly to search for pathogenic mutations in currently known ocular genes. Among the eight previously recognized Peters anomaly genes, we identified a de novo missense mutation in PAX6, c.155G>A, p.(Cys52Tyr), in one patient. Analysis of 691 additional genes currently associated with a different ocular phenotype identified a heterozygous splicing mutation c.1025+2T>A in TFAP2A, a de novo heterozygous nonsense mutation c.715C>T, p.(Gln239*) in HCCS, a hemizygous mutation c.385G>A, p.(Glu129Lys) in NDP, a hemizygous mutation c.3446C>T, p.(Pro1149Leu) in FLNA, and compound heterozygous mutations c.1422T>A, p.(Tyr474*) and c.2544G>A, p.(Met848Ile) in SLC4A11; all mutations, except for the FLNA and SLC4A11 c.2544G>A alleles, are novel. This is the first study to use whole exome sequencing to discern the genetic etiology of a large cohort of patients with syndromic or isolated Peters anomaly. We report five new genes associated with this condition and suggest screening of TFAP2A and FLNA in patients with Peters anomaly and relevant syndromic features and HCCS, NDP and SLC4A11 in patients with isolated Peters anomaly.  相似文献   

20.
Oculocutaneous albinism type 4 (OCA4) is an autosomal recessive hypopigmentary disorder caused by mutations in the Membrane‐Associated Transporter Protein gene (SLC45A2). The SLC45A2 protein is a 530‐amino‐acid polypeptide that contains 12 putative transmembrane domains, and appears to be a transporter that mediates melanin synthesis. Eighteen pathological mutations have been reported so far. In this study, six novel mutations, p.Y49C (c.146A > G), p.G89R (c.265G > A), p.C229Y (c.686G > A), p.T437A (c.1309A > G), p.T440A (c.1318A > G) and p.G473D (c.1418G > A) were found in eight Japanese patients with various clinical phenotypes. The phenotypes of OCA4 were as various as the other types of OCA and probably depended on the mutation sites in the SLC45A2 gene.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号