首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Genetic variation at the major histocompatibility complex (MHC) is vitally important for wildlife populations to respond to pathogen threats. As natural populations can fluctuate greatly in size, a key issue concerns how population cycles and bottlenecks that could reduce genetic diversity will influence MHC genes. Using 454 sequencing, we characterized genetic diversity at the DRB Class II locus in montane voles (Microtus montanus), a North American rodent that regularly undergoes high‐amplitude fluctuations in population size. We tested for evidence of historic balancing selection, recombination, and gene duplication to identify mechanisms maintaining allelic diversity. Counter to our expectations, we found strong evidence of purifying selection acting on the DRB locus in montane voles. We speculate that the interplay between population fluctuations and gene duplication might be responsible for the weak evidence of historic balancing selection and strong evidence of purifying selection detected. To further explore this idea, we conducted a phylogenetically controlled comparative analysis across 16 rodent species with varying demographic histories and MHC duplication events (based on the maximum number of alleles detected per individual). On the basis of phylogenetic generalized linear model‐averaging, we found evidence that the estimated number of duplicated loci was positively related to allelic diversity and, surprisingly, to the strength of purifying selection at the DRB locus. Our analyses also revealed that species that had undergone population bottlenecks had lower allelic richness than stable species. This study highlights the need to consider demographic history and genetic structure alongside patterns of natural selection to understand resulting patterns of genetic variation at the MHC.  相似文献   

2.
Recombination rate is heterogeneous across the genome of various species and so are genetic diversity and differentiation as a consequence of linked selection. However, we still lack a clear picture of the underlying mechanisms for regulating recombination. Here we estimated fine‐scale population recombination rate based on the patterns of linkage disequilibrium across the genomes of multiple populations of two closely related flycatcher species (Ficedula albicollis and F. hypoleuca). This revealed an overall conservation of the recombination landscape between these species at the scale of 200 kb, but we also identified differences in the local rate of recombination despite their recent divergence (<1 million years). Genetic diversity and differentiation were associated with recombination rate in a lineage‐specific manner, indicating differences in the extent of linked selection between species. We detected 400–3,085 recombination hotspots per population. Location of hotspots was conserved between species, but the intensity of hotspot activity varied between species. Recombination hotspots were primarily associated with CpG islands (CGIs), regardless of whether CGIs were at promoter regions or away from genes. Recombination hotspots were also associated with specific transposable elements (TEs), but this association appears indirect due to shared preferences of the transposition machinery and the recombination machinery for accessible open chromatin regions. Our results suggest that CGIs are a major determinant of the localization of recombination hotspots, and we propose that both the distribution of TEs and fine‐scale variation in recombination rate may be associated with the evolution of the epigenetic landscape.  相似文献   

3.
Reto Burri 《Molecular ecology》2017,26(15):3853-3856
Selection has a deep impact on the distribution of genetic diversity and population differentiation along the genome (the genomic landscapes of diversity and differentiation), reducing diversity and elevating differentiation not only at the sites it targets, but also at linked neutral sites. Fuelled by the high‐throughput sequencing revolution, these genomic footprints of selection have been extensively exploited over the past decade with the aim to identify genomic regions involved in adaptation and speciation. However, while this research has shown that the genomic landscapes of diversity and differentiation are usually highly heterogeneous, it has also led to the increasing realization that this heterogeneity may evolve under processes other than adaptation or speciation. In particular, instead of being an effect of selective sweeps or barriers to gene flow, accentuated differentiation can evolve by any process reducing genetic diversity locally within the genome (Charlesworth, 1998 ), including purifying selection at linked sites (background selection). In particular, in genomic regions where recombination is infrequent, accentuated differentiation can evolve as a by‐product of diversity reductions unrelated to adaptation or speciation (Cruickshank & Hahn, 2014 ; Nachman & Payseur, 2012 ; Noor & Bennett, 2009 ). In such genomic regions, linkage extends over physically larger genome stretches, and selection affects a particularly high number of linked neutral sites. Even though the effects of selection on linked neutral diversity (linked selection) within populations are well documented (Cutter & Payseur, 2013 ), recent observations of diversity and differentiation landscapes that are highly correlated even among independent lineages suggest that the effects of long‐term linked selection may have a deeper impact on the evolution of the genomic landscapes of diversity and differentiation than previously anticipated. The study on Saxicola stonechats by Van Doren et al. ( 2017 ) reported in the current issue of Molecular Ecology lines in with a rapidly expanding body of evidence in this direction. Correlations of genomic landscapes extending from within stonechats to comparisons with Ficedula flycatchers add to recent insights into the timescales across which the effects of linked selection persist. Absent and inverted correlations of genomic landscapes in comparisons involving an island taxon, on the other hand, provide important empirical clues about the role of demographic constraints in the evolution of the genomic landscapes of diversity and differentiation.  相似文献   

4.
Ninety-five genomic sequences of the ligand-binding domain of glutamate-gated chloride channel genes of three populations of the parasitic nematode H. placei were evaluated for patterns of diversity, demography, and selection. These genes code for subunits of ion channels, which are involved in the mode of action of the most commonly used antiparasitic drugs, the macrocyclic lactones. An extremely high frequency of unique segregating sites in exons and introns was observed, with significantly negative neutrality tests in each population for noncoding, synonymous, and nonsynonymous sites. Several tests indicated that support for balancing selection, positive selection, and hitchhiking was lacking. McDonald–Kreitman tests using H. contortus or C. elegans as an outgroup revealed an extreme excess of replacement polymorphism, consistent with weak purifying selection. Although these tests agree that negative selection may explain the excess of replacement changes, an alternative interpretation is required for the significantly negative Fu and Lis D statistics based on silent and noncoding sites. These include homogeneous forces such as background selection and demographic expansion. The lack of population subdivision and the negative values of Tajimas D for this outbreeding parasitic nematode render background selection less likely than demographic expansion. Comparison of D statistics based on different site types using neutral coalescent simulations supported this interpretation. Although this statistic was more negative for nonsynonymous sites than for synonymous sites, most comparisons of the D statistic were not significantly different between mutation classes. A few significant site comparisons were also consistent with demographic expansion, because the observed test statistic (DneutralDselected) were low relative to the neutral expectations. Finally, previous mitochondrial studies also identified a demographic expansion of this parasitic nematode species, which lends further support to a scenario involving both demographic and purifying forces in the ligand-binding domain of H. placei.  相似文献   

5.
It is generally accepted that the spatial distribution of neutral genetic diversity within a species’ native range mostly depends on effective population size, demographic history, and geographic position. However, it is unclear how genetic diversity at adaptive loci correlates with geographic peripherality or with habitat suitability within the ecological niche. Using exome‐wide genomic data and distribution maps of the Alpine range, we first tested whether geographic peripherality correlates with four measures of population genetic diversity at > 17,000 SNP loci in 24 Alpine populations (480 individuals) of Swiss stone pine (Pinus cembra) from Switzerland. To distinguish between neutral and adaptive SNP sets, we used four approaches (two gene diversity estimates, FST outlier test, and environmental association analysis) that search for signatures of selection. Second, we established ecological niche models for P. cembra in the study range and investigated how habitat suitability correlates with genetic diversity at neutral and adaptive loci. All estimates of neutral genetic diversity decreased with geographic peripherality, but were uncorrelated with habitat suitability. However, heterozygosity (He) at adaptive loci based on Tajima's D declined significantly with increasingly suitable conditions. No other diversity estimates at adaptive loci were correlated with habitat suitability. Our findings suggest that populations at the edge of a species' geographic distribution harbour limited neutral genetic diversity due to demographic properties. Moreover, we argue that populations from suitable habitats went through strong selection processes, are thus well adapted to local conditions, and therefore exhibit reduced genetic diversity at adaptive loci compared to populations at niche margins.  相似文献   

6.
Haudry A  Zha HG  Stift M  Mable BK 《Molecular ecology》2012,21(5):1130-1142
A breakdown of self‐incompatibility (SI) followed by a shift to selfing is commonly observed in the evolution of flowering plants. Both are expected to reduce the levels of heterozygosity and genetic diversity. However, breakdown of SI should most strongly affect the region of the SI locus (S‐locus) because of the relaxation of balancing selection that operates on a functional S‐locus, and a potential selective sweep. In contrast, a transition to selfing should affect the whole genome. We set out to disentangle the effects of breakdown of SI and transition to selfing on the level and distribution of genetic diversity in North American populations of Arabidopsis lyrata. Specifically, we compared sequence diversity of loci linked and unlinked to the S‐locus for populations ranging from complete selfing to fully outcrossing. Regardless of linkage to the S‐locus, heterozygosity and genetic diversity increased with population outcrossing rate. High heterozygosity of self‐compatible individuals in outcrossing populations suggests that SI is not the only factor preventing the evolution of self‐fertilization in those populations. There was a strong loss of diversity in selfing populations, which was more pronounced at the S‐locus. In addition, selfing populations showed an accumulation of derived mutations at the S‐locus. Our results provide evidence that beyond the genome‐wide consequences of the population bottleneck associated with the shift to selfing, the S‐locus of A. lyrata shows a specific signal either reflecting the relaxation of balancing selection or positive selection.  相似文献   

7.
Kai Zeng  Pádraic Corcoran 《Genetics》2015,201(4):1539-1554
It is well known that most new mutations that affect fitness exert deleterious effects and that natural populations are often composed of subpopulations (demes) connected by gene flow. To gain a better understanding of the joint effects of purifying selection and population structure, we focus on a scenario where an ancestral population splits into multiple demes and study neutral diversity patterns in regions linked to selected sites. In the background selection regime of strong selection, we first derive analytic equations for pairwise coalescent times and FST as a function of time after the ancestral population splits into two demes and then construct a flexible coalescent simulator that can generate samples under complex models such as those involving multiple demes or nonconservative migration. We have carried out extensive forward simulations to show that the new methods can accurately predict diversity patterns both in the nonequilibrium phase following the split of the ancestral population and in the equilibrium between mutation, migration, drift, and selection. In the interference selection regime of many tightly linked selected sites, forward simulations provide evidence that neutral diversity patterns obtained from both the nonequilibrium and equilibrium phases may be virtually indistinguishable for models that have identical variance in fitness, but are nonetheless different with respect to the number of selected sites and the strength of purifying selection. This equivalence in neutral diversity patterns suggests that data collected from subdivided populations may have limited power for differentiating among the selective pressures to which closely linked selected sites are subject.  相似文献   

8.
Many endangered species suffer from the loss of genetic diversity, but some populations may be able to thrive even if genetically depleted. To investigate the underlying genetic processes of population bottlenecks, we apply an innovative approach for assessing genetic diversity in the last known population of the endangered Pale‐headed Brushfinch (Atlapetes pallidiceps) in Ecuador. First, we measure genetic diversity at eleven neutral microsatellite loci and adaptive SNP variation in five Toll‐like receptor (TLR) immune system genes. Bottleneck tests confirm genetic drift as the main force shaping genetic diversity in this species and indicate a 99 % reduction in population size dating back several hundred years. Second, we compare contemporary microsatellite diversity with historic museum samples of A. pallidiceps, finding no change in genetic diversity. Third, we compare genetic diversity in the Pale‐headed Brushfinch with two co‐occurring‐related brushfinch species (Atlapetes latinuchus, Buarremon torquatus), finding a reduction of up to 91% diversity in the immune system genes but not in microsatellites. High TLR diversity is linked to decreased survival probabilities in A. pallidiceps. Low TLR diversity is thus probably an adaptation to the specific selection regime within its currently very restricted distribution (approximately 200 ha), but could severely restrict the adaptive potential of the species in the long run. Our study illustrates the importance of investigating both neutral and adaptive markers to assess the effect of population bottlenecks and for recommending specific management plans in endangered species.  相似文献   

9.
A robust signal of population structure often provides the first glimpse into the evolutionary history of a species and its populations. In this issue of Molecular Ecology, new work from Louis Bernatchez's group (Benestan et al., 2017 ) starts with an investigation of apparent structure in two marine species and concludes with an identification of sex‐linked genes, and in the process provides a model for robust analysis. Structure is the genetic signal left by natural selection as well as by neutral processes like migration and gene flow. Neutral areas of the genome can reveal the geographical relationships and related gene flow between populations over time and space, while selection can resist the natural genomic turnover created by recombination and generate adaptive structure between populations that can be detected. However, artefacts in a data set can easily hide the true signal of structure; mutation, whether it is a true appearance of a recent, minor allele, or more commonly, an error in SNP calling or molecular library construction, can easily conceal patterns of population structure (e.g., geographical structure in mackerel, Rodriguez‐Ezpeleta et al. ( 2016 )). A demographic structure that results from the most “forceful” evolutionary processes can overwhelm another signal generated by other, unrelated phenotypes. For example, the structure among diverged freshwater and marine threespine stickleback populations results from such strong selection and linkage disequilibrium across the genome that it impairs the ability to disentangle the genetic basis of particular evolved morphological traits (e.g., opercle development, Alligood ( 2017 )). Finally, there might be conflicting inferences for what underlies structure patterns. Structure may be created by differential patterns of meiotic recombination, and genetic maps are a reliable means for identifying genomic regions that resist recombination. But, without additional information (Anderson et al., 2012 ), it can be difficult to distinguish the recombination‐suppressing effect of a segregating genomic inversion (Small et al., 2016 ) from that of sex‐linked selection.  相似文献   

10.
During range expansion, edge populations are expected to face increased genetic drift, which in turn can alter and potentially compromise adaptive dynamics, preventing the removal of deleterious mutations and slowing down adaptation. Here, we contrast populations of the European subspecies Arabidopsis lyrata ssp. petraea, which expanded its Northern range after the last glaciation. We document a sharp decline in effective population size in the range-edge population and observe that nonsynonymous variants segregate at higher frequencies. We detect a 4.9% excess of derived nonsynonymous variants per individual in the range-edge population, suggesting an increase of the genomic burden of deleterious mutations. Inference of the fitness effects of mutations and modeling of allele frequencies under the explicit demographic history of each population predicts a depletion of rare deleterious variants in the range-edge population, but an enrichment for fixed ones, consistent with the bottleneck effect. However, the demographic history of the range-edge population predicts a small net decrease in per-individual fitness. Consistent with this prediction, the range-edge population is not impaired in its growth and survival measured in a common garden experiment. We further observe that the allelic diversity at the self-incompatibility locus, which ensures strict outcrossing and evolves under negative frequency-dependent selection, has remained unchanged. Genomic footprints indicative of selective sweeps are broader in the Northern population but not less frequent. We conclude that the outcrossing species A. lyrata ssp. petraea shows a strong resilience to the effect of range expansion.  相似文献   

11.
Current procedures for inferring population history generally assume complete neutrality—that is, they neglect both direct selection and the effects of selection on linked sites. We here examine how the presence of direct purifying selection and background selection may bias demographic inference by evaluating two commonly-used methods (MSMC and fastsimcoal2), specifically studying how the underlying shape of the distribution of fitness effects and the fraction of directly selected sites interact with demographic parameter estimation. The results show that, even after masking functional genomic regions, background selection may cause the mis-inference of population growth under models of both constant population size and decline. This effect is amplified as the strength of purifying selection and the density of directly selected sites increases, as indicated by the distortion of the site frequency spectrum and levels of nucleotide diversity at linked neutral sites. We also show how simulated changes in background selection effects caused by population size changes can be predicted analytically. We propose a potential method for correcting for the mis-inference of population growth caused by selection. By treating the distribution of fitness effect as a nuisance parameter and averaging across all potential realizations, we demonstrate that even directly selected sites can be used to infer demographic histories with reasonable accuracy.  相似文献   

12.
13.
We surveyed nucleotide diversity at two candidate genes LeNCED1 and pLC30‐15, involved in an ABA (abscisic acid) signalling pathway, in two closely related tomato species Solanum peruvianum and Solanum chilense. Our six population samples (three for each species) cover a range of mesic to very dry habitats. The ABA pathway plays an important role in the plants’ response to drought stress. LeNCED1 is an upstream gene involved in ABA biosynthesis, and pLC30‐15 is a dehydrin gene positioned downstream in the pathway. The two genes show very different patterns of nucleotide variation. LeNCED1 exhibits very low nucleotide diversity relative to the eight neutral reference loci that were previously surveyed in these populations. This suggests that strong purifying selection has been acting on this gene. In contrast, pLC30‐15 exhibits higher levels of nucleotide diversity and, in particular in S. chilense, higher genetic differentiation between populations than the reference loci, which is indicative of local adaptation. In the more drought‐tolerant species S. chilense, one population (from Quicacha) shows a significant haplotype structure, which appears to be the result of positive (diversifying) selection.  相似文献   

14.
The Arctic and the Antarctic Peninsula are currently experiencing some of the most rapid rates of ocean warming on the planet. This raises the question of how the initial adaptation to extreme cold temperatures was put in place and whether or not directional selection has led to the loss of genetic variation at key adaptive systems, and thus polar species’ (re)adaptability to higher temperatures. In the Southern Ocean, krill represents the most abundant fauna and is a critical member at the base of the Antarctic food web. To better understand the role of selection in shaping current patterns of polymorphisms, we examined genetic diversity of the cox‐1 and hsp70 genes by comparing two closely related species of Euphausiid that differ in ecology. Results on mtcox‐1 agreed with previous studies, indicating high and similar effective population sizes. However, a coalescent‐based approach on hsp70 genes highlighted the role of positive selection and past demographic changes in their recent evolution. Firstly, some form of balancing selection was acting on the inducible isoform C, which reflected the maintenance of an ancestral adaptive polymorphism in both species. Secondly, E. crystallorophias seems to have lost most of its hsp70 diversity because of a population crash and/or directional selection to cold. Nonsynonymous diversities were always greater in E. superba, suggesting that it might have evolved under more heterogeneous conditions. This can be linked to species’ ecology with E. superba living in more variable pelagic conditions, while E. crystallorophias is strictly associated with continental shelves and sea ice.  相似文献   

15.
A central aim of evolutionary genomics is to identify the relative roles that various evolutionary forces have played in generating and shaping genetic variation within and among species. Here we use whole-genome resequencing data to characterize and compare genome-wide patterns of nucleotide polymorphism, site frequency spectrum, and population-scaled recombination rates in three species of Populus: Populus tremula, P. tremuloides, and P. trichocarpa. We find that P. tremuloides has the highest level of genome-wide variation, skewed allele frequencies, and population-scaled recombination rates, whereas P. trichocarpa harbors the lowest. Our findings highlight multiple lines of evidence suggesting that natural selection, due to both purifying and positive selection, has widely shaped patterns of nucleotide polymorphism at linked neutral sites in all three species. Differences in effective population sizes and rates of recombination largely explain the disparate magnitudes and signatures of linked selection that we observe among species. The present work provides the first phylogenetic comparative study on a genome-wide scale in forest trees. This information will also improve our ability to understand how various evolutionary forces have interacted to influence genome evolution among related species.  相似文献   

16.
The major histocompatibility complex (MHC) harbours some of the most polymorphic loci in vertebrate genomes. MHC genes are thought to be subject to some form of balancing selection, most likely pathogen‐mediated selection. Hence, MHC genes are excellent candidates for exploring adaptive processes. In this study, we investigated the genetic variation at exon 2 of the DRB class II MHC locus in 191 alpine chamois (Rupicapra rupicapra) from 10 populations in the eastern Alps of Italy. In particular, we were interested in distinguishing and estimating the relative impact of selective and demographic factors, while taking into account the confounding effect of recombination. The extremely high dn/ds ratio and the presence of trans‐species polymorphisms suggest that a strong long‐term balancing selection effect has been operating at this locus throughout the evolutionary history of this species. We analysed patterns of genetic variation within and between populations, and the mitochondrial D‐loop polymorphism patterns were analysed to provide a baseline indicator of the effects of demographic processes. These analyses showed that (i) the chamois experienced a demographic decline in the last 5000–30 000 years, most likely related to the postglacial elevation in temperature; (ii) this demographic process can explain the results of neutrality tests applied to MHC variation within populations, but cannot justify the much weaker divergence between populations implied by MHC as opposed to mitochondrial DNA; (iii) similar sets of divergent alleles are probably maintained with similar frequencies by balancing selection in different populations, and this mechanism is also operating in small isolated populations, which are strongly affected by drift.  相似文献   

17.
How the balance between selection, migration, and drift influences the evolution of local adaptation has been under intense theoretical scrutiny. Yet, empirical studies that relate estimates of local adaptation to quantification of gene flow and effective population sizes have been rare. Here, we conducted a reciprocal transplant trial, a common garden trial, and a whole‐genome‐based demography analysis to examine these effects among Arabidopsis lyrata populations from two altitudinal gradients in Norway. Demography simulations indicated that populations within the two gradients are connected by gene flow (0.1 < 4Nem < 11) and have small effective population sizes (Ne < 6000), suggesting that both migration and drift can counteract local selection. However, the three‐year field experiments showed evidence of local adaptation at the level of hierarchical multiyear fitness, attesting to the strength of differential selection. In the lowland habitat, local superiority was associated with greater fecundity, while viability accounted for fitness differences in the alpine habitat. We also demonstrate that flowering time differentiation has contributed to adaptive divergence between these locally adapted populations. Our results show that despite the estimated potential of gene flow and drift to hinder differentiation, selection among these A. lyrata populations has resulted in local adaptation.  相似文献   

18.
Lemurs, the living primates most distantly related to humans, demonstrate incredible diversity in behaviour, life history patterns and adaptive traits. Although many lemur species are endangered within their native Madagascar, there is no high‐quality genome assembly from this taxon, limiting population and conservation genetic studies. One critically endangered lemur is the blue‐eyed black lemur Eulemur flavifrons. This species is fixed for blue irises, a convergent trait that evolved at least four times in primates and was subject to positive selection in humans, where 5′ regulatory variation of OCA2 explains most of the brown/blue eye colour differences. We built a de novo genome assembly for E. flavifrons, providing the most complete lemur genome to date, and a high confidence consensus sequence for close sister species E. macaco, the (brown‐eyed) black lemur. From diversity and divergence patterns across the genomes, we estimated a recent split time of the two species (160 Kya) and temporal fluctuations in effective population sizes that accord with known environmental changes. By looking for regions of unusually low diversity, we identified potential signals of directional selection in E. flavifrons at MITF, a melanocyte development gene that regulates OCA2 and has previously been associated with variation in human iris colour, as well as at several other genes involved in melanin biosynthesis in mammals. Our study thus illustrates how whole‐genome sequencing of a few individuals can illuminate the demographic and selection history of nonmodel species.  相似文献   

19.
Understanding the processes that shape neutral and adaptive genomic variation is a fundamental step to determine the demographic and evolutionary dynamics of pest species. Here, we use genomic data obtained via restriction site‐associated DNA sequencing to investigate the genetic structure of Moroccan locust (Dociostaurus maroccanus) populations from the westernmost portion of the species distribution (Iberian Peninsula and Canary Islands), infer demographic trends, and determine the role of neutral versus selective processes in shaping spatial patterns of genomic variation in this pest species of great economic importance. Our analyses showed that Iberian populations are characterized by high gene flow, whereas the highly isolated Canarian populations have experienced strong genetic drift and loss of genetic diversity. Historical demographic reconstructions revealed that all populations have passed through a substantial genetic bottleneck around the last glacial maximum (~21 ka BP) followed by a sharp demographic expansion at the onset of the Holocene, indicating increased effective population sizes during warm periods as expected from the thermophilic nature of the species. Genome scans and environmental association analyses identified several loci putatively under selection, suggesting that local adaptation processes in certain populations might not be impeded by widespread gene flow. Finally, all analyses showed few differences between outbreak and nonoutbreak populations. Integrated pest management practices should consider high population connectivity and the potential importance of local adaptation processes on population persistence.  相似文献   

20.
Both effective population size and life history may influence the efficacy of purifying selection, but it remains unclear if the environment affects the accumulation of weakly deleterious nonsynonymous polymorphisms. We hypothesize that the reduced energetic cost of osmoregulation in brackish water habitat may cause relaxation of selective constraints at mitochondrial oxidative phosphorylation (OXPHOS) genes. To test this hypothesis, we analyzed 57 complete mitochondrial genomes of Pungitius pungitius collected from brackish and freshwater habitats. Based on inter‐ and intraspecific comparisons, we estimated that 84% and 68% of the nonsynonymous polymorphisms in the freshwater and brackish water populations, respectively, are weakly or moderately deleterious. Using in silico prediction tools (MutPred, SNAP2), we subsequently identified nonsynonymous polymorphisms with potentially harmful effect. Both prediction methods indicated that the functional effects of the fixed nonsynonymous substitutions between nine‐ and three‐spined stickleback were weaker than for polymorphisms within species, indicating that harmful nonsynonymous polymorphisms within populations rarely become fixed between species. No significant differences in mean estimated functional effects were identified between freshwater and brackish water nine‐spined stickleback to support the hypothesis that reduced osmoregulatory energy demand in the brackish water environment reduces the strength of purifying selection at OXPHOS genes. Instead, elevated frequency of nonsynonymous polymorphisms in the freshwater environment (Pn/Ps = 0.549 vs. 0.283; Fisher's exact test p = .032) suggested that purifying selection is less efficient in small freshwater populations. This study shows the utility of in silico functional prediction tools in population genetic and evolutionary research in a nonmammalian vertebrate and demonstrates that mitochondrial energy production genes represent a promising system to characterize the demographic, life history and potential habitat‐dependent effects of segregating amino acid variants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号