首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
3.
Population structure is a potential problem when testing for adaptive phenotypic differences among populations. The observed phenotypic differences among populations can simply be due to genetic drift, and if the genetic distance between them is not considered, the differentiation may be falsely interpreted as adaptive. Conversely, adaptive and demographic processes might have been tightly associated and correcting for the population structure may lead to false negatives. Here, we evaluated this problem in the cosmopolitan weed Capsella bursa‐pastoris. We used RNA‐Seq to analyse gene expression differences among 24 accessions, which belonged to a much larger group that had been previously characterized for flowering time and circadian rhythm and were genotyped using genotyping‐by‐sequencing (GBS) technique. We found that clustering of accessions for gene expression retrieved the same three clusters that were obtained with GBS data previously, namely Europe, the Middle East and Asia. Moreover, the three groups were also differentiated for both flowering time and circadian rhythm variation. Correction for population genetic structure when analysing differential gene expression analysis removed all differences among the three groups. This may suggest that most differences are neutral and simply reflect population history. However, geographical variation in flowering time and circadian rhythm indicated that the distribution of adaptive traits might be confounded by population structure. To bypass this confounding effect, we compared gene expression differentiation between flowering ecotypes within the genetic groups. Among the differentially expressed genes, FLOWERING LOCUS C was the strongest candidate for local adaptation in regulation of flowering time.  相似文献   

4.
5.
6.
7.
8.
Poleward range expansions are commonly attributed to global change, but could alternatively be driven by rapid evolutionary adaptation. A well‐documented example of a range expansion during the past decades is provided by the European wasp spider Argiope bruennichi. Using ecological niche modeling, thermal tolerance experiments and a genome‐wide analysis of gene expression divergence, we show that invasive populations have adapted to novel climatic conditions in the course of their expansion. Their climatic niche shift is mirrored in an increased cold tolerance and a population‐specific and functionally differentiated gene expression response. We generated an Argiope reference genome sequence and used population genome resequencing to assess genomic changes associated with the new climatic adaptations. We find clear genetic differentiation and a significant admixture with alleles from East Asian populations in the invasive Northern European populations. Population genetic modeling suggests that at least some of these introgressing alleles have contributed to the new adaptations during the expansion. Our results thus confirm the notion that range expansions are not a simple consequence of climate change, but are accompanied by fast genetic changes and adaptations that may be fuelled through admixture between long separated lineages.  相似文献   

9.
One of the main questions in evolutionary and conservation biology is how geographical and environmental features of the landscape shape neutral and adaptive genetic variation in natural populations. The identification of genomic polymorphisms that account for adaptive variation can aid in finding candidate loci for local adaptation. Consequently, a comparison of spatial patterns in neutral markers and loci under selection may help disentangle the effects of gene flow, genetic drift and selection at the landscape scale. Many amphibians breed in wetlands, which differ in environmental conditions and in the degree of isolation, enhancing the potential for local adaptation. We used microsatellite markers to measure genetic differentiation among 17 local populations of Rana arvalis breeding in a network of wetlands. We found that locus RC08604 deviated from neutral expectations, suggesting that it is a good candidate for directional selection. We used a genetic network analysis to show that the allele distribution in this locus is correlated with habitat characteristics, whereas this was not the case at neutral markers that displayed a different allele distribution and population network in the study area. The graph approach illustrated the genomic heterogeneity (neutral loci vs. the candidate locus for directional selection) of gene exchange and genetic divergence among populations under directional selection. Limited gene flow between wetlands was only observed at the candidate genomic region under directional selection. RC08604 is partially located inside an up‐regulated thyroid‐hormone receptor (TRβ) gene coordinating the expression of other genes during metamorphosis and appears to be linked with variation in larval life‐history traits found among R. arvalis populations. We suggest that directional selection on genes coding larval life‐history traits is strong enough to maintain the divergence in these genomic regions, reducing the effective recombination of locally adapted alleles but not in other regions of the genome. Integrating this knowledge into conservation plans at the landscape scale will improve the design of management strategies to preserve adaptive genetic diversity in wetland networks.  相似文献   

10.
11.
The gradual heterogeneity of climatic factors poses varying selection pressures across geographic distances that leave signatures of clinal variation in the genome. Separating signatures of clinal adaptation from signatures of other evolutionary forces, such as demographic processes, genetic drift and adaptation, to nonclinal conditions of the immediate local environment is a major challenge. Here, we examine climate adaptation in five natural populations of the harlequin fly Chironomus riparius sampled along a climatic gradient across Europe. Our study integrates experimental data, individual genome resequencing, Pool‐Seq data and population genetic modelling. Common‐garden experiments revealed significantly different population growth rates at test temperatures corresponding to the population origin along the climate gradient, suggesting thermal adaptation on the phenotypic level. Based on a population genomic analysis, we derived empirical estimates of historical demography and migration. We used an FST outlier approach to infer positive selection across the climate gradient, in combination with an environmental association analysis. In total, we identified 162 candidate genes as genomic basis of climate adaptation. Enriched functions among these candidate genes involved the apoptotic process and molecular response to heat, as well as functions identified in studies of climate adaptation in other insects. Our results show that local climate conditions impose strong selection pressures and lead to genomic adaptation despite strong gene flow. Moreover, these results imply that selection to different climatic conditions seems to converge on a functional level, at least between different insect species.  相似文献   

12.
Bottom‐up evolutionary approaches, including geographically explicit population genomic analyses, have the power to reveal the mechanistic basis of adaptation. Here, we conduct a population genomic analysis in the model legume, Medicago truncatula, to characterize population genetic structure and identify symbiosis‐related genes showing evidence of spatially variable selection. Using RAD‐seq, we generated over 26,000 SNPs from 191 accessions from within three regions of the native range in Europe. Results from STRUCTURE analysis identify five distinct genetic clusters with divisions that separate east and west regions in the Mediterranean basin. Much of the genetic variation is maintained within sampling sites, and there is evidence for isolation by distance. Extensive linkage disequilibrium was identified, particularly within populations. We conducted genetic outlier analysis with FST‐based genome scans and a Bayesian modeling approach (PCAdapt). There were 70 core outlier loci shared between these distinct methods with one clear candidate symbiosis related gene, DMI1. This work sets that stage for functional experiments to determine the important phenotypes that selection has acted upon and complementary efforts in rhizobium populations.  相似文献   

13.
14.
15.
Changes in temperature have occurred throughout Earth's history. However, current warming trends exacerbated by human activities impose severe and rapid loss of biodiversity. Although understanding the mechanisms orchestrating organismal response to climate change is important, remarkably few studies document their role in nature. This is because only few systems enable the combined analysis of genetic and plastic responses to environmental change over long time spans. Here, we characterize genetic and plastic responses to temperature increase in the aquatic keystone grazer Daphnia magna combining a candidate gene and an outlier analysis approach. We capitalize on the short generation time of our species, facilitating experimental evolution, and the production of dormant eggs enabling the analysis of long‐term response to environmental change through a resurrection ecology approach. We quantify plasticity in the expression of 35 candidate genes in D. magna populations resurrected from a lake that experienced changes in average temperature over the past century and from experimental populations differing in thermal tolerance isolated from a selection experiment. By measuring expression in multiple genotypes from each of these populations in control and heat treatments, we assess plastic responses to extreme temperature events. By measuring evolutionary changes in gene expression between warm‐ and cold‐adapted populations, we assess evolutionary response to temperature changes. Evolutionary response to temperature increase is also assessed via an outlier analysis using EST‐linked microsatellite loci. This study provides the first insights into the role of plasticity and genetic adaptation in orchestrating adaptive responses to environmental change in D. magna.  相似文献   

16.
Population structure was previously believed to be very limited or absent in classical marine fishes, but recently, evidence of weakly differentiated local populations has been accumulating using noncoding microsatellite markers. However, the evolutionary significance of such minute genetic differences remains unknown. Therefore, in order to elucidate the relationship between genetic markers and adaptive divergence among populations of marine fishes, we combined cDNA microarray and microsatellite analysis in European flounders (Platichthys flesus). We demonstrate that despite extremely low levels of neutral genetic divergence, a high number of genes were significantly differentially expressed between North Sea and Baltic Sea flounders maintained in a long-term reciprocal transplantation experiment mimicking natural salinities. Several of the differentially regulated genes could be directly linked to fitness traits. These findings demonstrate that flounders, despite little neutral genetic divergence between populations, are differently adapted to local environmental conditions and imply that adaptation in gene expression could be common in other marine organisms with similar low levels of population subdivision.  相似文献   

17.
18.
Substantial genetic differentiation is frequently observed among populations of cyclically parthenogenetic zooplankton despite their high dispersal capabilities and potential for gene flow. Local adaptation has been invoked to explain population genetic differentiation despite high dispersal, but several neutral models that account for basic life history features also predict high genetic differentiation. Here, we study genetic differentiation among four populations of Daphnia pulex in east central Illinois. As with other studies of Daphnia, we demonstrate substantial population genetic differentiation despite close geographic proximity (<50 km; mean θ = 0.22). However, we explicitly tested and failed to find evidence for, the hypothesis that local adaptation to food resources occurs in these populations. Recognizing that local adaptation can occur in traits unrelated to resources, we estimated contemporary migration rates (m) and tested for admixture to evaluate the hypothesis that observed genetic differentiation is consistent with local adaptation to other untested ecological factors. Using Bayesian assignment methods, we detected migrants in three of the four study populations including substantial evidence for successful reproduction by immigrants in one pond, allowing us to reject the hypothesis that local adaptation limits gene flow for at least this population. Thus, we suggest that local adaptation does not explain genetic differentiation among these Daphnia populations and that other factors related to extinction/colonization dynamics, a long approach to equilibrium FST or substantial genetic drift due to a low number of individuals hatching from the egg bank each season may explain genetic differentiation.  相似文献   

19.
Invasive species provide excellent study systems to evaluate the ecological and evolutionary processes that contribute to the colonization of novel environments. While the ecological processes that contribute to the successful establishment of invasive plants have been studied in detail, investigation of the evolutionary processes involved in successful invasions has only recently received attention. In particular, studies investigating the genomic and gene expression differences between native and introduced populations of invasive species are just beginning and are required if we are to understand how plants become invasive. In the current issue of Molecular Ecology, Hodgins et al. ( 2013 ) tackle this unresolved question, by examining gene expression differences between native and introduced populations of annual ragweed, Ambrosia artemisiifolia. The study identifies a number of potential candidate genes based on gene expression differences that may be responsible for the success of annual ragweed in its introduced range. Furthermore, genes involved in stress response are over‐represented in the differentially expressed gene set. Future experiments could use functional studies to test whether changes in gene expression at these candidate genes do in fact underlie changes in growth characteristics and reproductive output observed in this and other invasive species.  相似文献   

20.
In many species, alternative developmental pathways lead to the production of two distinct phenotypes, promoting the evolution of morphological novelty and diversification. Offspring type in marine invertebrates influences transport time by ocean currents, which dictate dispersal potential and gene flow, and thus has sweeping evolutionary effects on the potential for local adaptation and on rates of speciation, extinction and molecular evolution. Here, we use the polychaete Streblospio benedicti to investigate the effects of dimorphic offspring type on gene flow and genetic structure in coastal populations. We use 84 single nucleotide polymorphism (SNP) markers for this species to assay populations on the East and West Coasts of the United States. Using these markers, we found that in their native East Coast distribution, populations of S. benedicti have high‐population genetic structure, but this structure is associated primarily with geographic separation rather than developmental differences. Interestingly, very little genetic differentiation is recovered between individuals of different development types when they occur in the same or nearby populations, further supporting that this is a true case of poecilogony. In addition, we were able to demonstrate that the recently introduced (~100 ya) West Coast populations probably originated from a lecithotrophic population near Delaware.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号