首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
In mass spectrometry (MS)-based bottom-up proteomics, protease digestion plays an essential role in profiling both proteome sequences and post-translational modifications (PTMs). Trypsin is the gold standard in digesting intact proteins into small-size peptides, which are more suitable for high-performance liquid chromatography (HPLC) separation and tandem MS (MS/MS) characterization. However, protein sequences lacking Lys and Arg cannot be cleaved by trypsin and may be missed in conventional proteomic analysis. Proteases with cleavage sites complementary to trypsin are widely applied in proteomic analysis to greatly improve the coverage of proteome sequences and PTM sites. In this review, we survey the common and newly emerging proteases used in proteomics analysis mainly in the last 5 years, focusing on their unique cleavage features and specific proteomics applications such as missing protein characterization, new PTM discovery, and de novo sequencing. In addition, we summarize the applications of proteases in structural proteomics and protein function analysis in recent years. Finally, we discuss the future development directions of new proteases and applications in proteomics.  相似文献   

2.
The formation of local structure, in short peptides has been probed by examining cleavage patterns and rates of proteolysis of designed sequences with a high tendency to form beta-hairpin structures. Three model sequences which bear fluorescence donor and acceptor groups have been investigated: [see text]. Fluorescence resonance energy transfer (FRET) provides a convenient probe for peptide cleavage. MALDI mass spectrometry has been used to probe sites of cleavage and CD spectroscopy to access the overall backbone conformation using analog sequences, which lack strongly absorbing donor and acceptor groups. The proteases trypsin, subtilisin, collagenase, elastase, proteinase K and thermolysin were used for proteolysis and the rates of cleavage determined. Peptide 3 is the most susceptible to cleavage by all the enzymes except thermolysin, which cleaves all three peptides at comparable rates. Peptides 1 and 2 are completely resistant to the action of trypsin, suggesting that beta-turn formation acts as a deterrent to proteolytic cleavage.  相似文献   

3.
Proteolytic activation is a unique feature of the epithelial sodium channel (ENaC). However, the underlying molecular mechanisms and the physiologically relevant proteases remain to be identified. The serine protease trypsin I can activate ENaC in vitro but is unlikely to be the physiologically relevant activating protease in ENaC-expressing tissues in vivo. Herein, we investigated whether human trypsin IV, a form of trypsin that is co-expressed in several extrapancreatic epithelial cells with ENaC, can activate human ENaC. In Xenopus laevis oocytes, we monitored proteolytic activation of ENaC currents and the appearance of γENaC cleavage products at the cell surface. We demonstrated that trypsin IV and trypsin I can stimulate ENaC heterologously expressed in oocytes. ENaC cleavage and activation by trypsin IV but not by trypsin I required a critical cleavage site (Lys-189) in the extracellular domain of the γ-subunit. In contrast, channel activation by trypsin I was prevented by mutating three putative cleavage sites (Lys-168, Lys-170, and Arg-172) in addition to mutating previously described prostasin (RKRK178), plasmin (Lys-189), and neutrophil elastase (Val-182 and Val-193) sites. Moreover, we found that trypsin IV is expressed in human renal epithelial cells and can increase ENaC-mediated sodium transport in cultured human airway epithelial cells. Thus, trypsin IV may regulate ENaC function in epithelial tissues. Our results show, for the first time, that trypsin IV can stimulate ENaC and that trypsin IV and trypsin I activate ENaC by cleavage at distinct sites. The presence of distinct cleavage sites may be important for ENaC regulation by tissue-specific proteases.  相似文献   

4.
Cleavage mechanism of the H5N1 hemagglutinin by trypsin and furin   总被引:1,自引:0,他引:1  
Guo XL  Li L  Wei DQ  Zhu YS  Chou KC 《Amino acids》2008,35(2):375-382
The cleavage property of hemagglutinin (HA) by different proteases was the prime determinant for influenza A virus pathogenicity. In order to understand the cleavage mechanism, molecular modeling tools were utilized to study the coupled model systems of the proteases, i.e., trypsin and furin and peptides of the cleavage sites specific to H5N1 and H1 HAs, which constitute models of HA precursor in complex with cleavage proteases. The peptide segments 'RERRRKKR downward arrow G' and 'SIQSR downward arrow G' from the high pathogenic H5N1 H5 and the low pathogenic H1N1 H1 cleavage sites were docking to the trypsin and furin active pockets, respectively. It was observed through the docking studies that trypsin was able to recognize and cleave both the high pathogenic and low pathogenic hemagglutinin, while furin could only cleave the high pathogenic hemagglutinin. An analysis of binding energies indicated that furin got most of its selectivity due to the interactions with P(1), P(4), and P(6), while having less interaction with P(2) and little interactions with P(3), P(5), P(7), and P(8). Some mutations of H5N1 H5 cleavage sequence fitted less well into furin and would reduce high pathogenicity of the virus. These findings hint that we should focus at the subsites P(1), P(4), and P(6) for developing drugs against H5N1 viruses.  相似文献   

5.
Alginate is believed to be a major virulence factor in the pathogenicity of Pseudomonas aeruginosa in the lungs of patients suffering from cystic fibrosis. Guanosine diphospho-D-mannose dehydrogenase (GDPmannose dehydrogenase, EC 1.1.1.132) is a key enzyme in the alginate biosynthetic pathway which catalyzes the oxidation of guanosine diphospho-D-mannose (GDP-D-mannose) to GDP-D-mannuronic acid. In this paper, we report the structural analysis of GMD by limited proteolysis using three different proteases, trypsin, submaxillary Arg-C protease, and chymotrypsin. Treatment of GMD with these proteases indicated that the amino-terminal part of this enzyme may fold into a structural domain with an apparent molecular mass of 25-26 kDa. Multiple proteolytic cleavage sites existed at the carboxyl-terminal end of this domain, indicating that this segment may represent an exposed region of the protein. Initial proteolysis also generated a carboxyl-terminal fragment with an apparent molecular mass of 16-17 kDa which was further digested into smaller fragments by trypsin and chymotrypsin. The proteolytic cleavage sites were localized by partial amino-terminal sequencing of the peptide fragments. Arg-295 was identified as the initial cleavage site for trypsin and Tyr-278 for chymotrypsin. Catalytic activity of GMD was totally abolished by the initial cleavage. However, binding of the substrate, GDP-D-mannose, increased stability toward proteolysis and inhibited the loss of enzyme activity. GMP and GDP (guanosine 5'-mono- and diphosphates) also blocked the initial cleavage, but NAD and mannose showed no effect. These results suggest that binding of the guanosine moiety at the catalytic site of GMD may induce a conformational change that reduces the accessibility of the cleavage sites to proteases. Binding of [14C]GDP-D-mannose to the amino-terminal domain was not affected by the removal of the carboxyl-terminal 16-kDa fragment. Furthermore, photoaffinity labeling of GMD with [32P]arylazido-beta-alanine-NAD followed by proteolysis demonstrated that the radioactive NAD was covalently linked to the amino-terminal domain. These observations imply that the amino-terminal domain (25-26 kDa) contains both the substrate and cofactor binding sites. However, the carboxyl-terminal fragment (16-17 kDa) may possess amino acid residues essential for catalysis. Thus, proteolysis had little effect on substrate binding, but totally eliminated catalysis. These biochemical data are in complete agreement with amino acid sequence analysis for the existence of substrate and cofactor sites of GMD. A linear peptide map of GMD was constructed for future structure/functional studies.  相似文献   

6.
Although trypsin remains the most commonly used protease in MS, other proteases may be employed for increasing peptide coverage or generating overlapping peptides. Knowledge of the accurate specificity rules of these proteases is helpful for database search tools to detect peptides, and becomes crucial when label‐free MS is used to discover in vivo proteolytic cleavages. Since in vivo cleavages are inferred by subtracting digestion‐induced cleavages from all observed cleavages, it is important to ensure that the specificity rule used to identify digestion‐induced cleavages are broad enough to capture even minor cleavages produced in digestion, to avoid erroneously identifying them as in vivo cleavages. In this study, we describe MS‐Proteolysis, a software tool for identifying putative sites of in vivo proteolytic cleavage using label‐free MS. The tool is used in conjunction with digestion by trypsin and three other proteases, whose specificity rules are revised and extended before inferring proteolytic cleavages. Finally, we show that comparative analysis of multiple proteases can be used to detect putative in vivo proteolytic sites on a proteome‐wide scale.  相似文献   

7.
Mating-increases trypsin in female Drosophila hemolymph   总被引:1,自引:0,他引:1  
Male-derived accessory gland proteins (Acps) are transferred to the female reproductive tract during mating and affect female reproductive maturation and behavior. Some Acps subsequently enter the female hemolymph. We hypothesized that humoral proteases are the primary effectors of Acp bioactivity by processing (activating) and/or degrading them. To test this hypothesis we examined the fate of one Acp, Drosophila melanogaster Sex Peptide (Acp70A, DrmSP), which possesses several putative serine-protease cleavage sites, in hemolymph of unmated and mated females. In D. melanogaster, DrmSP induces post-mating non-receptivity and enhances oogenesis. To determine if serine proteases regulate the duration of DrmSP activity in mated females, we performed kinetic analysis of cleavage of a synthetic N-terminal truncated DrmSP(8-36) (T-SP) with hemolymph of unmated versus mated females. We found that T-SP is cleaved more rapidly and completely in mated female hemolymph. Using LC-MS/MS analyses, we identified its primary cleavage sites, indicating that trypsin was the major endopeptidase regulating T-SP in hemolymph. This was verified in vitro by utilizing specific chromogenic serine-protease substrates and inhibitors. We propose that post-mating cleavage of DrmSP in the female hemolymph regulates the duration of the rapidly induced post-mating responses in D. melanogaster and that this is a specific example of Acp bioactivity regulated by hemolymph serine proteases.  相似文献   

8.
Proteolysis of tubulin and the substructure of the tubulin dimer   总被引:6,自引:0,他引:6  
The alpha and beta subunits of tubulin each have a single highly reactive site for a variety of proteases that divides each subunit into two unequal regions. The position of cleavage is not the same for alpha and beta, since alpha is consistently cleaved into about 38- and 14-kDa pieces, while beta is cleaved into about 34- and 21-kDa pieces. The larger fragment is amino-terminal in both subunits as shown: by size reduction of the smaller fragment by subtilisin (which cleaves at the extreme carboxyl-terminal end), but no change in size of the larger fragment; by the charge/mass ratios of the proteolytic fragments; and by sequence analysis which locates trypsin cleavage after residue 339 (alpha) and chymotrypsin cleavage after residue 281 (beta). Since this cleavage pattern of the alpha and beta subunits is found for very different proteases, we suggest that it is determined by structural features of the tubulin molecule. The two pieces of each subunit remain associated following cleavage. While both cleavage sites are exposed in the free dimer, assembly of dimers into microtubules or sheets protects the internal site against cleavage. By contrast, the carboxyl-terminal subtilisin-sensitive sites remain exposed. Based on these results we propose a model for the substructure of the tubulin dimer that accommodates internal cleavage in the dimer but not the polymer, access to the COOH termini in both forms, and the orientation of the dimer in the polymer.  相似文献   

9.
Partial proteolysis of the lambda cI repressor has been carried out systematically with trypsin, chymotrypsin, elastase, endoproteinase Glu-C, kallikrein, and thrombin. The cleavage sites have been determined by (i) comparison of fragments produced and observed in SDS-polyacrylamide gel with known fragments and plots of distance migrated versus log (molecular weight of fragment), (ii) partial Edman sequencing of the stable C-terminal fragments to identify cleavage points, and (iii) electrospray mass spectrometry of fragments produced. Most cleavage points are found to occur in the region 86-137, saving some in the N-terminal domain observed for trypsin and Glu-C. Region 86-137 can be further subdivided into three regions 86-91, 114-121, and 128-137 prone to cleavage, with intermediate regions resistant to cleavage to all six proteases. These resistant regions show that much of the region 93-131 previously called a 'linker' is actually part of the C-domain as first proposed in all models from our laboratory. Region 92-114 includes the cleavage site Ala-Gly, which must be buried in the intact repressor. The observed cleavage points in region 114-137 can be used to judge the best among three previously proposed models since they differ from each other in the structure of region 93-131. Model 1j5g is adjudged to be better than model 1lwq (which is based on 1kca, a crystal structure) as susceptible residues are more exposed in the former and lack of cleavages at six sites is better explained. Likewise, the models 1j5g and 1lwq are compared with a recent crystal structure of fragment 101-229 in 2ho0 and another low resolution crystal structure in 3bdn.  相似文献   

10.
Autoproteolytic stability is a crucial factor for the application of proteases in biotechnology. In contrast to vertebrate enzymes, trypsins from shrimp and crayfish are known to be resistant against autolysis. We show by characterisation of a novel trypsin from the gastric fluid of the marine crab Cancer pagurus that this property might be assigned to the entire class of crustaceans. The isolated and cloned crab trypsin (C.p.TryIII) exhibits all characteristic properties of crustacean trypsins. However, its overall sequence identity to other trypsins of this systematic class is comparatively low. The high resistance against autoproteolysis was determined by mass spectrometry, which revealed a low susceptibility of the N-terminal domain towards autolysis. By homology modelling of the tertiary structure, the elevated stability was attributed to the distinctly different pattern of autolytic cleavage sites, which is conserved in all known crustacean trypsin sequences.  相似文献   

11.
Recombinant microbial transglutaminase (rMTG) is usually expressed as a soluble zymogen (pro-rMTG) in heterologous expression systems but proteolytic activation of the inactive pro-rMTG is essential. Instead of screening proteases for activating pro-rMTG, we examined an alternative method by introducing a specific cleavage site of enterokinase between the pro-peptide and mature rMTG, generating three pro-rMTG variants (Pro-mrMTG, Pro-m-rMTG and mPro-rMTG). Pro-mrMTG and Pro-m-rMTG were activated by enterokinase without degrading mature rMTG. The activation productivity of Pro-m-rMTG by enterokinase reached 92 % after 22 h activation, while the activation productivity of Pro-rMTG activated by trypsin was 47 %. MALDI-MS analysis revealed that the pro-peptide including the cleavage site was specifically removed from Pro-m-rMTG after activation. This methodology has the potential to be applied in rMTG production by incorporating highly specific cleavage sites of other proteases.  相似文献   

12.
To link cleaved substrates in complex systems with a specific protease, the protease active site specificity is required. Proteomic identification of cleavage sites (PICS) simultaneously determines both the prime- and non-prime-side specificities of individual proteases through identification of hundreds of individual cleavage sequences from biologically relevant, proteome-derived peptide libraries. PICS also identifies subsite cooperativity. To generate PICS peptide libraries, cellular proteomes are digested with a specific protease such as trypsin. Following protease inactivation, primary amines are protected. After incubation with a test protease, each prime-side cleavage fragment has a free newly formed N-terminus, which is biotinylated for affinity isolation and identification by liquid chromatography-tandem mass spectrometry. The corresponding non-prime sequences are derived bioinformatically. The step-by-step protocol also presents a web service for PICS data analysis, as well as introducing and validating PICS peptide libraries made from Escherichia coli.  相似文献   

13.
Epithelial Na(+) channels (ENaCs) are activated by extracellular trypsin or by co-expression with channel-activating proteases, although there is no direct evidence that these proteases activate ENaC by cleaving the channel. We previously demonstrated that the alpha and gamma subunits of ENaC are cleaved during maturation near consensus sites for furin cleavage. Using site-specific mutagenesis of channel subunits, ENaC expression in furin-deficient cells, and furin-specific inhibitors, we now report that ENaC cleavage correlates with channel activity. Channel activity in furin-deficient cells was rescued by expression of furin. Our data provide the first example of a vertebrate ion channel that is a substrate for furin and whose activity is dependent on its proteolysis.  相似文献   

14.
Lipoprotein lipases from human, bovine or guinea-pig milk were purified, judged for domain relationships by characterization of sites sensitive to proteases, and structurally compared. The subunit of human lipoprotein lipase migrated slightly slower than those of bovine or guinea-pig lipoprotein lipases on sodium dodecyl sulfate/polyacrylamide gel electrophoresis. Bovine lipoprotein lipase is known to be a dimer of two non-covalently linked subunits of equal size, and the lipases from all three sources now yielded homogeneous N-terminal amino acid sequences (followed for 15-27 residues). The results indicate that the two subunits are identical. Bovine lipoprotein lipase had two additional N-terminal residues, Asp-Arg, compared to the human and guinea-pig enzymes, and the next two positions revealed residue differences, but further on homologies were extensive between all three enzymes as far as presently traced. Exposure of bovine lipoprotein lipase to trypsin led to production of three fragments (T1, T2a, and T2b), suggesting cleavage at exposed segments delineating domain borders. Time studies gave no evidence for precursor-product relationships between the fragments, and prolonged digestion did not lead to further cleavage. Fragments T2a and T2b had the same N-terminal sequence as intact lipase. Fragment T1 revealed a new sequence, and represents the C-terminal half of the molecule. Plasmin caused a similar cleavage as trypsin, whereas thrombin, factor Xa, and tissue plasminogen activator did not cleave the enzyme. Chymotrypsin cleaved off a relatively small fragment from the C-terminal of the molecule, after which exposure to trypsin still resulted in cleavage at the same sites as in intact lipase. Tryptic cleavage of guinea-pig lipoprotein lipase yielded two fragments. One had a similar size as bovine fragment T2b; the other had a similar size as bovine fragment T1 and an N-terminal sequence homologous with that of T1. Thus, trypsin recognizes the same unique site in guinea-pig lipoprotein lipase as in the bovine enzyme. This confirms the conclusion that this segment is the border between two domains in the subunit. The binding site for heparin was retained after both tryptic and chymotryptic cleavages and was identified as localized in the C-terminal part of the molecule.  相似文献   

15.
Hormone-dependent phosphorylation of the avian progesterone receptor   总被引:4,自引:0,他引:4  
Progesterone receptors are phosphoproteins, in which phosphorylation has been proposed as a control mechanism for some stages of hormone action. Progesterone administration was shown to increase phosphorylation of the receptor from both cytosol and nuclear extracts of whole cells. We have analyzed the receptor phosphopeptides generated by chemical and proteolytic cleavage to assess the number of phosphorylation sites and their approximate location in the receptor. Progesterone receptor was labeled in situ in the presence or absence of hormone in medium containing [32P] orthophosphate, isolated by immunoprecipitation, and then digested with several proteases. The resulting 32P-labeled peptides were resolved by either two-dimensional electrophoresis:chromatography or by reverse-phase high performance liquid chromatography. Multiple phosphopeptides (3-6) were detected after cleavage with trypsin, chymotrypsin, or V8 protease. Major increases in phosphorylation occurred at existing sites since after hormone treatment no new phosphopeptides were found. Individual phosphopeptides showed variable increases in phosphorylation of 1.5-5-fold. The A and B receptor forms showed identical phosphorylation patterns, indicating similar processing in vivo. The phosphopeptide pattern for receptor in nuclear extracts resembled that of cytosol receptor. Chemical cleavage was used to assess the distribution of phosphorylation sites. Cyanogen bromide produced a large 40-kDa polypeptide which contained all of the phosphorylation sites and comprised the residues 129-449. Hydroxylamine was used to cleave a unique bond, Asn-372-Gly-373, in the 40-kDa polypeptide. All of the phosphorylation sites were located on the amino-terminal side of the cleavage. Thus, all of the phosphorylation sites were localized to a specific region (Met-129 to Asn-372) of the progesterone receptor that does not include either the DNA or steroid binding domains.  相似文献   

16.
Deciphering the knowledge of HIV protease specificity and developing computational tools for detecting its cleavage sites in protein polypeptide chain are very desirable for designing efficient and specific chemical inhibitors to prevent acquired immunodeficiency syndrome. In this study, we developed a generative model based on a generalization of variable order Markov chains (VOMC) for peptide sequences and adapted the model for prediction of their cleavability by certain proteases. The new method, called variable context Markov chains (VCMC), attempts to identify the context equivalence based on the evolutionary similarities between individual amino acids. It was applied for HIV-1 protease cleavage site prediction problem and shown to outperform existing methods in terms of prediction accuracy on a common dataset. In general, the method is a promising tool for prediction of cleavage sites of all proteases and encouraged to be used for any kind of peptide classification problem as well.  相似文献   

17.
Epithelial Na Channels (ENaC) are responsible for the apical entry of Na(+) in a number of different epithelia including the renal connecting tubule and cortical collecting duct. Proteolytic cleavage of γ-ENaC by serine proteases, including trypsin, furin, elastase, and prostasin, has been shown to increase channel activity. Here, we investigate the ability of another serine protease, tissue kallikrein, to regulate ENaC. We show that excretion of tissue kallikrein, which is secreted into the lumen of the connecting tubule, is stimulated following 5 days of a high-K(+) or low-Na(+) diet in rats. Urinary proteins reconstituted in a low-Na buffer activated amiloride-sensitive currents (I(Na)) in ENaC-expressing oocytes, suggesting an endogenous urinary protease can activate ENaC. We next tested whether tissue kallikrein can directly cleave and activate ENaC. When rat ENaC-expressing oocytes were exposed to purified tissue kallikrein from rat urine (RTK), ENaC currents increased threefold in both the presence and absence of a soybean trypsin inhibitor (SBTI). RTK and trypsin both decreased the apparent molecular mass of cleaved cell-surface γ-ENaC, while immunodepleted RTK produced no shift in apparent molecular mass, demonstrating the specificity of the tissue kallikrein. A decreased effect of RTK on Xenopus ENaC, which has variations in the putative prostasin cleavage sites in γ-ENaC, suggests these sites are important in RTK activation of ENaC. Mutating the prostasin site in mouse γ-ENaC (γRKRK186QQQQ) abolished ENaC activation and cleavage by RTK while wild-type mouse ENaC was activated and cleaved similar to that of the rat. We conclude that tissue kallikrein can be a physiologically relevant regulator of ENaC activity.  相似文献   

18.
All Ca2(+)-dependent cell adhesion molecules are synthesized as precursor polypeptides followed by a series of posttranslational modifications including proteolytic cleavage. The mature proteins are formed intracellularly and transported to the cell surface. For uvomorulin the precursor segment is composed of 129-amino acid residues which are cleaved off to generate the 120-kD mature protein. To elucidate the role of proteolytic processing, we constructed cDNAs encoding mutant uvomorulin that could no longer be processed by endogenous proteolytic enzymes and expressed the mutant polypeptides in L cells. Instead of the recognition sites for endogenous proteases, these mutants contained either a recognition site of serum coagulation factor Xa or a new trypsin cleavage site. The intracellular proteolytic processing of mutant polypeptides was inhibited in both cases. The unprocessed polypeptides were efficiently expressed on the cell surface and had other features in common with mature uvomorulin, such as complex formation with catenins and Ca2(+)-dependent resistance to proteolytic degradation. However, cells expressing unprocessed polypeptides showed no uvomorulin-mediated adhesive function. Treatment of the mutant proteins with the respective proteases results in cleavage of the precursor region and the activation of uvomorulin function. However, other proteases although removing the precursor segment were ineffective in activating the adhesive function. These results indicate that correct processing is required for uvomorulin function and emphasize the importance of the amino-terminal region of mature uvomorulin polypeptide in the molecular mechanism of adhesion.  相似文献   

19.
Crystal structures of two engineered thiol trypsins   总被引:3,自引:0,他引:3  
We have determined the three-dimensional structures of engineered rat trypsins which mimic the active sites of two classes of cysteine proteases. The catalytic serine was replaced with cysteine (S195C) to test the ability of sulfur to function as a nucleophile in a serine protease environment. This variant mimics the cysteine trypsin class of thiol proteases. An additional mutation of the active site aspartate to an asparagine (D102N) created the catalytic triad of the papain-type cysteine proteases. Rat trypsins S195C and D102N,S195C were solved to 2.5 and 2.0 A, respectively. The refined structures were analyzed to determine the structural basis for the 10(6)-fold loss of activity of trypsin S195C and the 10(8)-fold loss of activity of trypsin D102N,S195C, relative to rat trypsin. The active site thiols were found in a reduced state in contrast to the oxidized thiols found in previous thiol protease structures. These are the first reported structures of serine proteases with the catalytic centers of sulfhydryl proteases. Structure analysis revealed only subtle global changes in enzyme conformation. The substrate binding pocket is unaltered, and active site amino acid 102 forms hydrogen bonds to H57 and S214 as well as to the backbone amides of A56 and H57. In trypsin S195C, D102 is a hydrogen-bond acceptor for H57 which allows the other imidazole nitrogen to function as a base during catalysis. In trypsin D102N,S195C, the asparagine at position 102 is a hydrogen-bond donor to H57 which places a proton on the imidazole nitrogen proximal to the nucleophile. This tautomer of H57 is unable to act as a base in catalysis.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
The haemolytic activity of Serratia marcescens is determined by two proteins, ShlA and ShlB. ShlA integrates into the erythrocyte membrane and causes osmotic lysis through channel formation. The conformation of ShlA and its interaction with erythrocyte membranes were studied by determining the cleavage of ShlA by added trypsin. Our results suggest that the conformation of inactive ShlA (from an ShlB- strain) differs from the active ShlA, and that in a hydrophobic environment (detergent or membrane) active ShlA assumes a conformation distinct from that in buffer. Only active haemolysin adsorbed to erythrocytes. ShlA was firmly integrated into the erythrocyte membrane since it was only released under conditions which also dissolved the integral erythrocyte membrane proteins. Moreover, ShlA integrated into 'ghosts' remained there and was not haemolytic when incubated with erythrocytes. From the trypsin cleavage pattern obtained with haemolysin and C-terminally truncated, but still active, haemolysin derivatives integrated into erythrocytes, and sealed and unsealed erythrocyte 'ghosts', we conclude that ShlA is preferentially cleaved by trypsin at a few sites but only from the inside of the erythrocyte. Haemolysin in the erythrocyte membrane forms a water-filled channel and is resistant to trypsin and other proteases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号