首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
Conservation of shorebirds throughout their breeding and migratory ranges has become a priority as shorebird populations decline globally. Along the North Atlantic Coast, management efforts have particularly focused on preserving nesting habitat for piping plovers (Charadrius melodus), which are protected under the Endangered Species Act. It is unclear whether these conservation measures suffice to protect foraging habitat for piping plovers and other shorebirds on stopover during migration along the Atlantic Flyway. To evaluate the extent to which conservation of piping plover nesting areas extends to all habitats used by plovers, and to determine whether these protections also benefited non-breeding migratory shorebirds in the region, we conducted weekly shorebird surveys, recording the number and locations of piping plovers and other species, during northward and southward migration on Fire Island and Westhampton Island, New York, USA, from 2014–2016. We used canonical correspondence analysis (CCA) to assess the degree of spatiotemporal overlap between breeding plovers, foraging plovers, and other migratory shorebirds that temporarily stage at the site. The spatiotemporal distribution of migratory shorebirds matched more closely with piping plovers seen during foraging than piping plovers observed tending nests and engaging in other breeding activities. Migratory shorebirds and foraging piping plovers were more abundant and frequent in wet intertidal zones outside of fenced-off nesting areas, which were not protected under current management regimes. Therefore, additional protection of piping plover foraging habitat could benefit plovers and migratory shorebirds that use similar feeding grounds during stopover on northward and southward migration. © 2020 The Wildlife Society.  相似文献   

2.
Dense flocks of migratory shorebirds from diverse species often concentrate in the intertidal areas for stopover. Trophic structure, food partition, prey availability and selectivity, predation risk, and abiotic factors are often used to explain the differences in habitat use of coexisting shorebirds. We sampled the macrobenthos and surveyed the distribution of shorebird populations to study the effects of foraging strategies on the habitat use of shorebirds at Chongming Dongtan, an important stopover site for shorebirds on the East Asian–Australasian Flyway. Results show that the relative abundance of epifaunal macrobenthos in salt marshes was much higher than that in the bare flats, whereas the relative abundance of infaunal macrobenthos in salt marshes was much lower than that in bare flats. The relative abundance of two life forms of macrobenthos was similar in the transitional zones between the salt marshes and the bare flats. Shorebirds with different foraging strategies exhibited different habitat uses. Pause-travel shorebirds mainly utilized the salt-marsh fringes, while tactile continuous shorebirds relied heavily on the bare flats. There was no significant difference in habitat use for visual continuous shorebirds. The density of tactile continuous shorebirds was positively correlated with bivalve density, and that of visual continuous shorebirds positively with crustacean density. Meanwhile, the relative abundance of pause-travel foraging shorebirds was positively correlated with the relative abundance of epifaunal, but negatively with infaunal macrobenthos. In contrast, the relative abundance of tactile foraging shorebirds had a positive correlation with infaunal but a negative one with epifaunal life form. Therefore, foraging strategies may play important roles in shorebirds’ habitat use in intertidal areas.  相似文献   

3.
Managed wetlands provide critical foraging and roosting habitats for shorebirds during migration; therefore, ensuring their availability is a priority action in shorebird conservation plans. Contemporary shorebird conservation plans rely on a number of assumptions about shorebird prey resources and migratory behavior to determine stopover habitat requirements. For example, the US Shorebird Conservation Plan for the Southeast-Caribbean region assumes that average benthic invertebrate biomass in foraging habitats is 2.4 g dry mass m?2 and that the dominant prey item of shorebirds in the region is Chironomid larvae. For effective conservation and management, it is important to test working assumptions and update predictive models that are used to estimate habitat requirements. We surveyed migratory shorebirds and sampled the benthic invertebrate community in coastal managed wetlands of South Carolina. We sampled invertebrates at three points in time representing early, middle, and late stages of spring migration, and concurrently surveyed shorebird stopover populations at approximately 7-day intervals throughout migration. We used analysis of variance by ranks to test for temporal variation in invertebrate biomass and density, and we used a model based approach (linear mixed model and Monte Carlo simulation) to estimate mean biomass and density. There was little evidence of a temporal variation in biomass or density during the course of spring shorebird migration, suggesting that shorebirds did not deplete invertebrate prey resources at our site. Estimated biomass was 1.47 g dry mass m?2 (95 % credible interval 0.13–3.55), approximately 39 % lower than values used in the regional shorebird conservation plan. An additional 4728 ha (a 63 % increase) would be required if habitat objectives were derived from biomass levels observed in our study. Polychaetes, especially Laeonereis culveri (2569 individuals m?2), were the most abundant prey in foraging habitats at our site. Polychaetes have lower caloric content than levels assumed in the regional plan; when lower caloric content and lower biomass levels are used to determine habitat objectives, an additional 6395 ha would be required (86 % increase). Shorebird conservation and management plans would benefit from considering the uncertainty in parameters used to derive habitat objectives, especially biomass and caloric content of prey resources. Iterative testing of models that are specific to the planning region will provide rapid advances for management and conservation of migratory shorebirds and coastal managed wetlands.  相似文献   

4.
Worldwide declines in shorebird populations, driven largely by habitat loss and degradation, motivate environmental managers to preserve and restore the critical coastal habitats on which these birds depend. Effective habitat management requires an understanding of the factors that determine habitat use and value to shorebirds, extending from individuals to the entire community. While investigating the factors that influenced shorebird foraging distributions among neighboring intertidal sand flats, we built upon species-level understandings of individual-based, small-scale foraging decisions to develop more comprehensive guild- and community-level insights. We found that densities and community composition of foraging shorebirds varied substantially among elevations within some tidal flats and among five flats despite their proximity (all located within a 400-m stretch of natural, unmodified inlet shoreline). Non-dimensional multivariate analyses revealed that the changing composition of the shorebird community among flats and tidal elevations correlated significantly (ρs = 0.56) with the spatial structure of the benthic invertebrate prey community. Sediment grain-sizes affected shorebird community spatial patterns indirectly by influencing benthic macroinvertebrate community compositions. Furthermore, combining sediment and macroinvertebrate information produced a 27% increase in correlation (ρs = 0.71) with shorebird assemblage patterns over the correlation of the bird community with the macroinvertebrate community alone. Beyond its indirect effects acting through prey distributions, granulometry of the flats influenced shorebird foraging directly by modifying prey availability. Our study highlights the importance of habitat heterogeneity, showing that no single patch type was ideal for the entire shorebird community. Generally, shorebird density and diversity were greatest at lower elevations on flats when they became exposed; these areas are at risk from human intervention by inlet sand mining, construction of groins and jetties that divert sediments from flats, and installation of seawalls on inlet shorelines that induce erosion of flats.  相似文献   

5.
Conservation of migratory shorebirds and waterfowl presents unique challenges due to extensive historic loss of wetland habitats, and current reliance on managed landscapes for wintering and migratory passage. We developed a spatially-explicit approach to estimate potential shorebird and waterfowl densities in California by integrating mapped habitat layers and statewide bird survey data with expert-based habitat rankings. Using these density estimates as inputs, we used the Marxan site-selection program to identify priority shorebird and waterfowl areas at the ecoregional level. We identified 3.7 million ha of habitat for shorebirds and waterfowl, of which 1.4 million ha would be required to conserve 50% of wintering populations. To achieve a conservation goal of 75%, more than twice as much habitat (3.1 million ha) would be necessary. Agricultural habitats comprised a substantial portion of priority areas, especially at the 75% level, suggesting that under current management conditions, large areas of agricultural land, much of it formerly wetland, are needed to provide the habitat availability and landscape connectivity required by shorebird and waterfowl populations. These habitats were found to be largely lacking recognized conservation status in California (96% un-conserved), with only slightly higher levels of conservation for priority shorebird and waterfowl areas. Freshwater habitats, including wetlands and ponds, were also found to have low levels of conservation (67% un-conserved), although priority shorebird and waterfowl areas had somewhat higher levels of conservation than the state as a whole. Conserving migratory waterfowl and shorebirds will require a diversity of conservation strategies executed at a variety of scales. Our modeled results are complementary with other approaches and can help prioritize areas for protection, restoration and other actions. Traditional habitat protection strategies such as conservation easements and fee acquisitions may be of limited utility for protecting and managing significant areas of agricultural lands. Instead, conservation strategies focused on incentive-based programs to support wildlife friendly management practices in agricultural settings may have greater utility and conservation effectiveness.  相似文献   

6.
盐地碱蓬(Suaeda salsa)盐沼湿地是黄渤海地区河口区域的重要湿地类型, 是水鸟迁徙停歇期的重要栖息地。本研究以辽河口国家级自然保护区为研究地点, 通过对盐地碱蓬盐沼湿地和相邻泥质滩涂两个固定样区连续三年的水鸟组成调查和行为观察, 分析盐地碱蓬盐沼湿地在鸻鹬类多样性维持和栖息地利用中的作用。共记录到鸻鹬类水鸟28种6,348只次, 其中盐地碱蓬湿地记录到4科13种, 泥质滩涂记录到4科27种, 泥质滩涂的物种多样性显著高于盐地碱蓬盐沼湿地。此外, 盐地碱蓬盐沼湿地与相邻的泥质滩涂的鸻鹬类鸟类群落组成存在较大差异, 盐地碱蓬盐沼湿地的鸟类群落组成以体型较大的大杓鹬(Numenius madagascariensis)、白腰杓鹬(N. arquata)、灰鸻(Pluvialis squatarola)等为主, 而泥质滩涂以环颈鸻(Charadrius alexandrinus)、黑腹滨鹬(Calidris alpina)等小型鸻鹬类为主, 这说明两种生境在鸟类多样性维持中具有不同的功能。行为分析发现, 泥质滩涂中栖息鸟类的主要行为为取食(58.71%-93.26%), 而盐地碱蓬盐沼湿地鸟类的行为既包括较大比例的取食, 也包括休息, 特别是在春季迁徙期。这进一步说明, 两种生境在水鸟的栖息地利用中具有一定的生态功能差异。尽管盐地碱蓬盐沼湿地记录到的鸟类物种数和数量均低于泥质滩涂, 但是, 两种生境中存在较大比例的共同分布物种, 这说明其生态功能具有较强的生态互补性, 二者作为一种独特的湿地景观组合, 在鸻鹬类迁徙停歇期的栖息地利用和物种多样性维持中发挥着不可替代的作用。  相似文献   

7.
Coastal pastures are common agroecosystems adjacent to estuarine areas that can provide valuable habitat for wildlife, particularly for migratory shorebirds. Disentangling the factors that influence coastal pasture use by wintering shorebirds will provide new insights into its role for buffering human disturbances and habitat loss in intertidal areas. We examined whether numbers of two shorebirds (Eurasian curlew and Black-tailed godwit) foraging actively on coastal pastures was affected by weather conditions, tidal stage (low/high tide) and number of harvesters at intertidal areas throughout winter. Both species frequently used coastal pastures and most individuals foraged actively there. The average percentage of the total wintering population of curlews and godwits foraging on coastal pastures was 27.4 and 7.8 %, respectively, and was significantly higher during high tide compared to low tide. The number of harvesters on mudflats also had a positive significant effect in explaining the presence of curlews, and to a lesser extent for godwits, on coastal pastures, and accumulated rainfall had a positive effect for both species too. These supratidal areas were consistently used as alternative foraging grounds during low tide by curlews, as well as supplementary foraging areas during high tide by wintering populations of both large shorebirds. By supplementary foraging, wintering curlews, and probably godwits, seemed to compensate for a negative effect of the presence of harvesters on their foraging activity. We recommend managing of those coastal agricultural fields adjacent to intertidal foraging grounds in order to increase the availability of supratidal foraging habitats for declining shorebird populations. These habitats may thus have a beneficial role in sustaining populations of wintering shorebirds, but further studies are needed to estimate if birds can compensate for any shortfall in daily energy budget by supplementary foraging on coastal pastures, thus providing insights into whether they are involved in large-scale population regulation of migratory birds.  相似文献   

8.
Populations of many shorebird species appear to be declining in North America, and food resources at stopover habitats may limit migratory bird populations. We investigated body condition of, and foraging habitat and diet selection by 4 species of shorebirds in the central Illinois River valley during fall migrations 2007 and 2008 (Killdeer [Charadrius vociferus], Least Sandpiper [Calidris minutilla], Pectoral Sandpiper [Calidris melanotos], and Lesser Yellowlegs [Tringa flavipes]). All species except Killdeer were in good to excellent condition, based on size-corrected body mass and fat scores. Shorebird diets were dominated by invertebrate taxa from Orders Diptera and Coleoptera. Additionally, Isopoda, Hemiptera, Hirudinea, Nematoda, and Cyprinodontiformes contribution to diets varied by shorebird species and year. We evaluated diet and foraging habitat selection by comparing aggregate percent dry mass of food items in shorebird diets and core samples from foraging substrates. Invertebrate abundances at shorebird collection sites and random sites were generally similar, indicating that birds did not select foraging patches within wetlands based on invertebrate abundance. Conversely, we found considerable evidence for selection of some diet items within particular foraging sites, and consistent avoidance of Oligochaeta. We suspect the diet selectivity we observed was a function of overall invertebrate biomass (51.2±4.4 [SE] kg/ha; dry mass) at our study sites, which was greater than estimates reported in most other food selection studies. Diet selectivity in shorebirds may follow tenants of optimal foraging theory; that is, at low food abundances shorebirds forage opportunistically, with the likelihood of selectivity increasing as food availability increases. Nonetheless, relationships between the abundance, availability, and consumption of Oligochaetes for and by waterbirds should be the focus of future research, because estimates of foraging carrying capacity would need to be revised downward if Oligochaetes are truly avoided or unavailable for consumption.  相似文献   

9.
One of the main conservation priorities in many geographical regions for intertidal estuaries is to protect and maintain internationally important numbers of migratory shorebirds (Charadrii). Traditional harvesting practices at low tide cause alterations to the surface of the intertidal habitat by trampling and digging the substrate to obtain benthic resources, which may have negative effects on shorebirds. Here, we conducted a BACI (Before-After Control-Impact) experiment to monitor changes in foraging ecology of Eurasian curlews Numenius arquata, before and after an experimental disturbance of the intertidal mud in a key stopover area for migratory shorebirds. Mean density of curlews, foraging activity, feeding rate, percentage of crabs in the diet, size of crabs, and foraging speed differed neither between treatment and control plots, nor between before and after mud disturbance. The feeding technique was similar between treatment and control plots, but differed significantly between periods. These findings suggest that mud disturbance by harvesters working by hand did not affect curlew fitness by altering the energy deposition necessary for long-distance migration. Although conclusions must be extrapolated with caution to other sites and/or species, the Santoña Marshes Natural Park may provide a potentially good example of compatibility between shorebird conservation and traditional low tide harvesting practices.  相似文献   

10.
ABSTRACT Off-road vehicle (ORV) traffic is one of several forms of disturbance thought to affect shorebirds at migration stopover sites. Attempts to measure disturbance effects on shorebird habitat use and behavior at stopover sites are difficult because ORV disturbance is frequently confounded with habitat and environmental factors. We used a before-after-control-impact experimental design to isolate effects of vehicle disturbance from shorebird responses to environmental and habitat factors. We manipulated disturbance levels within beach closures along South Core Banks, North Carolina, USA, and measured changes in shorebird abundance and location, as well as the activity of one focal species, the sanderling (Calidris alba), within paired control and impact plots. We applied a discrete treatment level of one flee-response-inducing event every 10 minutes on impact plots. We found that disturbance reduced total shorebird and black-bellied plover (Pluvialis squatarola) abundance and reduced relative use of microhabitat zones above the swash zone (wet sand and dry sand) by sanderlings, black-bellied plovers, willets (Tringa semipalmata), and total shorebirds. Sanderlings and total shorebirds increased use of the swash zone in response to vehicle disturbance. Disturbance reduced use of study plots by sanderlings for resting and increased sanderling activity, but we did not detect an effect of vehicle disturbance on sanderling foraging activity. We provide the first estimates of how a discrete level of disturbance affects shorebird distributions among ocean beach microhabitats. Our findings provide a standard to which managers can compare frequency and intensity of disturbance events at other shorebird stopover and roosting sites and indicate that limiting disturbance will contribute to use of a site by migratory shorebirds.  相似文献   

11.
Habitat restoration can partially compensate for the extensive loss of coastal wetlands, but creation of functional habitat and assessment of restoration success remain challenging tasks. To evaluate wintering shorebird use of restored coastal wetlands, we quantified shorebird assemblages and behavior of selected focal species at five restored sites and paired reference sites in Mugu Lagoon, southern California, United States. The Shannon–Wiener index of species diversity (for all birds in order Charadriiformes) was higher in the restored than in the reference portion of three of the five sites, higher in the reference portion of a fourth site, and similar between reference and restored areas of the fifth site. Species diversity was lower in sites closer to man‐made structures. The four most abundant species groups across the five sites were selected for detailed analysis of site use and behavior: Willets (Catoptrophorus semipalmatus), Marbled Godwits (Limosa fedoa), Dowitchers (Limnodromus spp.), and Sandpipers (Calidris spp.) (Western, Least, and Dunlin). Each focal species group exhibited distinct site preferences, and densities in restored sites were often as high or higher than in reference sites. Willets and Dowitchers preferred habitats with more extensive tidal flats, a characteristic of restored sites. Godwits and Sandpipers preferred heterogeneous habitats with a mix of water and tidal flats. Most birds were engaged in feeding activities during the ebb tides surveyed, and there were no apparent differences in behavior between reference and restored sites. Though not all restored sites were used equally by all species, the creation of multiple restored sites with varied habitat characteristics attracted a diverse assemblage of shorebirds and may have contributed to the integrity of the regional wetland landscape.  相似文献   

12.
Abstract: Staging areas and migratory stopovers of wetland birds have the potential to function as geographic bottlenecks; entire populations within a flyway may be affected by the quality and quantity of available wetland habitat at stopover sites. Although approximately 90% of playa wetlands in the Rainwater Basin (RWB) region of south-central Nebraska, USA, have been destroyed, the area still provides essential stopover habitat for >10 million waterfowl each spring. We evaluated community patterns and species associations to assess importance of assembly rules in structuring wetland bird communities during migration and to better facilitate multispecies conservation and management strategies. We surveyed 36–40 playas twice weekly in the RWB and observed approximately 2.6 million individual migratory wetland birds representing 72 species during 3 spring migrations 2002–2004. We evaluated spatial and temporal species co-occurrence patterns of geese, dabbling ducks, diving ducks, and shorebirds using null model analysis. Goose species co-occurrence scores did not differ from random in any year of the study, suggesting that goose species frequently use the same habitats during migration. Co-occurrence patterns among dabbling ducks were not different than expected by chance in any year; however, when we evaluated co-occurrence at a weekly scale, dabbling ducks co-occurred less often than expected during weeks of peak migration (high abundance), indicating that dabbling duck species spatially segregated at high densities. Diving duck co-occurrence patterns did not differ from random in any year, suggesting that diving duck species used the same habitats during migration. Shorebird species co-occurred less often than expected in 2002 and 2004, and during weeks of high shorebird abundance, indicating that shorebird communities were distinctly structured during those times. Most association values among lesser snow geese (Chen caerulescens) and dabbling duck species were positive, indicating dabbling ducks did not avoid wetlands with snow geese, a concern for waterfowl managers. However, we frequently observed snow geese and dabbling ducks using different microhabitats within a wetland, which indicate species associations and co-occurrence patterns may have occurred at a finer spatial scale than we measured. This approach of co-occurrence analysis will allow wildlife managers charged with multispecies management at migration stopover sites to make informed conservation and management decisions based on community structure rather than historic single-species approaches.  相似文献   

13.
Here we address the question of whether the presence of the burrowing crabs Chasmagnathus granulatus affects small- and large-scale habitat use by migrant shorebirds. This crab is the dominant species in soft bare sediments and vegetated intertidal areas along the SW Atlantic estuaries (southern Brazil 28°S to the northern Argentinean Patagonia 42°S). They generate very extensive burrow beds in soft bottom intertidal areas. Our information shows that this burrowing crab affects the small-scale habitat use by shorebirds, given that shorebirds never walk through the funnel-shaped entrances of burrows. Given that crab burrow entrances occupy up to 40% of the intertidal area, there is a large decrease of available shorebird habitat in crab beds, restricting their activity to the spaces between the burrows. The southern migratory shorebird Charadrius falklandicus maximize the use of these areas by foraging closer to the burrows than the other bird species. Neotropical migrants, such as Calidris fuscicollis, Pluvialis squatarola and Tringa melanoleuca, used foraging paths that tended to maximize the distance from burrows, especially the distance to larger burrows. A field experiment showed that this was not necessarily due to a decrease in the availability of polychaetes near the crab burrows. A combination of landscape measurements and satellite images showed that crab beds covered up to 40% of the intertidal area of the Mar Chiquita coastal lagoon (37°40′S, Argentina), and nearly 100% of the intertidal area of the Bahia Blanca estuary (38°48′-39°25′S, Argentina). These two estuaries are located along the migratory flyway of Neotropical migratory shorebirds, but the Bahia Blanca estuary (area∼110,000 ha) shows a much lower shorebird diversity than Mar Chiquita (area∼4500 ha). The most common species in Bahia Blanca is the two-banded plover C. falklandicus, the species least affected by crabs at Mar Chiquita and which prefers to use high-density crab areas as foraging sites. The oystercatcher Haematopus palliatus was also most abundant in high-density crab areas, but they used these areas for resting. The abundances of preys varied during the study period and between the crab density areas, indicating that the use of these areas by birds is independent of crab density. However, burrowing crabs affect the depth distribution of polychaete and thus their availability to shorebirds. We suggest that this shorebirds-burrowing organism interaction could be generalized for other intertidal estuarine habitats.  相似文献   

14.
段后浪  于秀波 《生态学报》2023,43(15):6354-6363
中国滨海湿地是东亚-澳大利西亚迁徙路线上候鸟重要的停歇地、繁殖地和越冬地,土地利用变化所引发的滨海湿地退化导致水鸟栖息地类别和面积发生了很大转变,影响迁徙水鸟种群数量的稳定性。然而,土地利用变化在哪些区域和多大程度上影响了迁徙水鸟的栖息地分布尚不清晰。以土地围垦典型区域黄渤海滨海湿地为研究区,以受胁濒危水鸟物种勺嘴鹬、大滨鹬、大杓鹬、小青脚鹬、黑脸琵鹭、黄嘴白鹭、遗鸥、黑嘴鸥为研究对象,结合物种分布模型MaxEnt和GIS空间分析,模拟2000、2015、2020年水鸟栖息地时空分布,探索过去20年栖息地分布的时空变化,分析水鸟种群变化趋势,识别水鸟栖息地保护优先区域,提出水鸟栖息地保护管理建议。结果显示:2000—2020年,8个水鸟物种栖息地主要分布在渤海湾、莱州湾、江苏盐城沿岸、如东-东台沿岸区域。所有物种的栖息地面积均呈不同程度的下降趋势,其中7个物种栖息地下降比例超过50%,下降的区域主要分布在渤海湾、江苏盐城沿岸、东台条子泥、小洋口沿岸,滨海湿地丧失是导致水鸟栖息地面积下降的直接因素。7个物种种群数量呈下降趋势。研究所确定的水鸟保护优先区面积达240.32 km2...  相似文献   

15.
Varying environmental conditions and energetic demands can affect habitat use by predators and their prey. Anthropogenic habitats provide an opportunity to document both predation events and foraging activity by prey and therefore enable an empirical evaluation of how prey cope with trade‐offs between starvation and predation risk in environments of variable foraging opportunities and predation danger. Here, we use seven years of observational data of peregrine falcons Falco peregrinus and shorebirds at a semi‐intensive shrimp farm to determine how starvation and predation risk vary for shorebirds under a predictable variation in foraging opportunities. Attack rate (mean 0.1 attacks/hr, equating 1 attack every ten hours) was positively associated with the total foraging area available for shorebirds at the shrimp farm throughout the harvesting period, with tidal amplitude at the adjacent mudflat having a strong nonlinear (quadratic) effect. Hunt success (mean 14%) was higher during low tides and declined as the target flocks became larger. Finally, individual shorebird vigilance behaviors were more frequent when birds foraged in smaller flocks at ponds with poorer conditions. Our results provide empirical evidence of a risk threshold modulated by tidal conditions at the adjacent wetlands, where shorebirds trade‐off risk and rewards to decide to avoid or forage at the shrimp farm (a potentially dangerous habitat) depending on their need to meet daily energy requirements. We propose that semi‐intensive shrimp farms serve as ideal “arenas” for studying predator–prey dynamics of shorebirds and falcons, because harvest operations and regular tidal cycles create a mosaic of foraging patches with predictable food supply. In addition, the relatively low hunt success suggests that indirect effects associated with enhanced starvation risk are important in shorebird life‐history decisions.  相似文献   

16.
Because many natural waterbird habitats are threatened by human disturbance and sea level rise, it is vitally important to identify alternative wetlands that may supplement declining natural habitats. Coastal salinas are anthropogenic habitats used for obtaining salt by evaporation of sea water. These habitats support important numbers of waterbirds around the world, but their importance as feeding habitats is poorly understood. I evaluated salinas as feeding habitats relative to natural intertidal habitats by comparing time spent foraging, prey-size selection, and net energy intake rate of four overwintering small-sized shorebird species on intertidal mudflats and on adjacent salinas. In winter, Dunlin Calidris alpina, Curlew Sandpiper C. ferruginea and Sanderling C. alba predominantly used the mudflats, whereas Little Stint C. minuta fed mainly on the salina. In the pre-migration fattening period, all species preferred to feed on the salina, significantly increasing the time they spent feeding in the supratidal pans. Net energy intake rates (kJ min–1) were significantly higher on the salina than on the intertidal mudflats in 60% of all comparisons. On average, salina contributed 25.2 ± 24.2% (range: 4–54%) of the daily consumption in winter and 78.7 ± 16.4% (range: 63–100%) of the daily consumption in the pre-migration period. I recommend that modern active salinas maintain flooding conditions in the evaporation pans throughout winter, thus increasing the available surface for foraging waterbirds. I conclude that the conservation of salinas at coastal wetlands is a viable approach for shorebird conservation.  相似文献   

17.
Ge Z M  Wang T H  Zhou X  Shi W Y 《农业工程》2006,26(1):40-47
Coastal regions are important habitats for migratory shorebirds. The aim of the study is to understand habitat use by migratory shorebirds and to develop a conservation strategy in the sustainable use of wetlands. From March 2004 to January 2005, we conducted a seasonal shorebirds census in ten coastal habitats along the South Yangtze River mouth and North Hangzhou Bay, simultaneously examining the relative seasonal abundance of shorebirds and their spatial distribution. A total of 25 species were identified, the dominant seasonal species were Great Knot (Calidris tenuirostris), Sharp-tailed Sandpiper (Calidris alpine) and Red-necked Stint (Calidris ruficollis) in spring; Kentish Plover (Charadrius alexandrinus), Common Greenshank(Tringa nebularia) and Lesser Sand Plover (Charadrius mongolus) in summer; Kentish Plover, Red-necked Stint and Common Greenshank in autumn; Dunlin(Calidris alpine), Kentish Plover and Marsh Sandpiper (Tringa stagnatilis) in winter. These species accounted for more than 85% of the total shorebirds. The numbers of shorebirds counted was highest in spring and then in autumn, winter and summer respectively. Among the four seasons, there were few significant differences in the number of bird species between the sites outside the seawall (intertidal mudflat) and the sites inside the seawall (artificial wetland), but the average density of shorebirds was obviously different. The habitat-selection analysis of the environmental factors (outside and inside the seawall) impacting on the shorebird community was made in the 10 study sites with Canonical Correspondence Analysis. The study results indicated that: (1) Outside the seawall, the widths of the total intertidal mudflat and bare mudflat were the key factors affecting the shorebirds; the proportion of bulrush (Scirpusmariquete) covering and supertidal mudflat width had a positive correlation with the abundance of birds, while human disturbance and the proportion of both reed (Phragmites communis) and smooth cord-grass (Spartina alterniflora) covering in total surveyed areas had negative impacts on bird numbers; (2) Inside the seawall, the proportions of areas with shallow water and mudflats occupying the total surveyed area were key factors influencing the number of birds; the size of the bulrush area should have a positive impact on the appearance of shorebirds. Habitats with heavy human disturbance, dense reed and smooth cord-grass or a high water level were not conducive to be inhabited by shorebirds.  相似文献   

18.
张斌  袁晓  裴恩乐  牛俊英  衡楠楠  王天厚 《生态学报》2011,31(16):4599-4608
近年来长江口滩涂湿地高强度的促淤围垦对生物多样性保育造成了严重影响。本研究于2006至2010年在南汇东滩进行了水鸟调查,研究围垦后堤内环境的快速演替过程对水鸟的群落结构的影响。通过分析鸻鹬类、雁鸭类和鹭类三类主要水鸟类群,结果表明鸻鹬类的总数呈严重下降趋势(ANOVA, p=0.009),而雁鸭类和鹭类总数在上升(ANOVA,p=0.015;p=0.00);在种类数量方面,鸻鹬类和雁鸭类差异不显著(ANOVA,p=0.597;p=0.523),鹭类种类数变化极显著(ANOVA ,p=0.00)。同时,通过对水鸟的栖息地选择因子偏好的分析, 发现滩涂减少是鸻鹬类减少的主要因素,而大型鱼塘和芦苇增加是雁鸭类和鹭类增加的重要原因。为此我们提出相应海岸带湿地管理建议。  相似文献   

19.
Loss of natural wetlands is a global phenomenon that has been a serious threat to the wildlife. A common practice is to construct artificial wetlands to compensate for the loss of natural wetlands. To test whether artificial wetlands as habitats for waterbirds are good alternatives to natural wetlands, we compared species richness, abundance, and seasonal dynamics of waterbird communities of natural (here tidelands) and artificial wetlands (here aquacultural ponds) on Chongming Island, China. Our results indicate that habitat preference of waterbirds showed seasonal difference: most of the shorebirds were found on tidelands in spring, whereas most of the natatorial birds were recorded in aquacultural ponds in winter. Waterbirds preferred the tidelands rather than aquacultural ponds in both spring and autumn, whereas they showed no preference for either the tidelands or the ponds in summer and winter. It is concluded that natural wetlands are better habitats for waterbirds than artificial wetlands on Chongming Island, while the artificial ones are also suitable habitats for waterbirds in winter. The waterbirds might use artificial wetlands only when natural wetlands are unavailable or of poor quality. An over-emphasis that artificial wetlands are suitable habitats for waterbirds might encourage land managers to convert natural wetlands into the artificial ones, resulting in considerable loss of bird diversity. Therefore, for the purpose of bird conservation, it would be a better practice to conserve natural wetlands rather than to construct artificial ones after destruction of natural wetlands.  相似文献   

20.
Many shorebird populations are declining throughout the world, concurrent with declines and degradation of wetland habitats. Such declines necessitate a more consistent approach towards conserving habitats used by shorebird populations. Individuals of many shorebird species congregate in specific areas during their non-breeding season. Worldwide, non-breeding areas are designated as ‘important’ for shorebird conservation based primarily on the abundance of birds found in an area. However, the boundaries of any area are often defined with incomplete information regarding how shorebirds use that habitat. This paper discusses examples in Australia where improved knowledge of shorebird habitat use led to the identification of very different boundaries of important shorebird areas than those identified originally. We highlight how simple questioning of those who count shorebirds in an area, led to an improved understanding of which areas were apparently used by the same local population of non-breeding shorebirds. Subsequent analysis of available count, recapture and/or home range data of particular shorebird species is needed to verify expert opinion regarding most of these boundaries. We review how enhanced boundaries improve the ability of shorebird monitoring to detect population changes; allow management of shorebird habitats at relevant spatial scales; and lead to appropriate designations of important areas. While the kinds of approaches to boundary setting described here are not new, they are not consistently applied worldwide. We suggest additional guidelines to those produced under the Ramsar Convention in regard to designating important areas. We also call for more studies on the movements of migratory shorebirds during the non-breeding season to direct more consistent boundary setting around important non-breeding habitats used by local populations of migratory shorebirds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号