首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The Mytilus complex of marine mussel species forms a mosaic of hybrid zones, found across temperate regions of the globe. This allows us to study ‘replicated’ instances of secondary contact between closely related species. Previous work on this complex has shown that local introgression is both widespread and highly heterogeneous, and has identified SNPs that are outliers of differentiation between lineages. Here, we developed an ancestry‐informative panel of such SNPs. We then compared their frequencies in newly sampled populations, including samples from within the hybrid zones, and parental populations at different distances from the contact. Results show that close to the hybrid zones, some outlier loci are near to fixation for the heterospecific allele, suggesting enhanced local introgression, or the local sweep of a shared ancestral allele. Conversely, genomic cline analyses, treating local parental populations as the reference, reveal a globally high concordance among loci, albeit with a few signals of asymmetric introgression. Enhanced local introgression at specific loci is consistent with the early transfer of adaptive variants after contact, possibly including asymmetric bi‐stable variants (Dobzhansky‐Muller incompatibilities), or haplotypes loaded with fewer deleterious mutations. Having escaped one barrier, however, these variants can be trapped or delayed at the next barrier, confining the introgression locally. These results shed light on the decay of species barriers during phases of contact.  相似文献   

2.
Identifying genomic signatures of natural selection can be challenging against a background of demographic changes such as bottlenecks and population expansions. Here, we disentangle the effects of demography from selection in the House Finch (Haemorhous mexicanus) using samples collected before and after a pathogen‐induced selection event. Using ddRADseq, we genotyped over 18,000 SNPs across the genome in native pre‐epizootic western US birds, introduced birds from Hawaii and the eastern United States, post‐epizootic eastern birds, and western birds sampled across a similar time span. We found 14% and 7% reductions in nucleotide diversity, respectively, in Hawaiian and pre‐epizootic eastern birds relative to pre‐epizootic western birds, as well as elevated levels of linkage disequilibrium and other signatures of founder events. Despite finding numerous significant frequency shifts (outlier loci) between pre‐epizootic native and introduced populations, we found no signal of reduced genetic diversity, elevated linkage disequilibrium, or outlier loci as a result of the epizootic. Simulations demonstrate that the proportion of outliers associated with founder events could be explained by genetic drift. This rare view of genetic evolution across time in an invasive species provides direct evidence that demographic shifts like founder events have genetic consequences more widespread across the genome than natural selection.  相似文献   

3.
Independent or parallel evolution of similar traits is key to understanding the genetics and limitations of adaptation. Adaptation from the same genetic changes in different populations defines parallel evolution. Such genetic changes can derive from standing ancestral variation or de novo mutations and excludes instances of adaptive introgression. In this issue of Molecular Ecology, Walden et al.(2020) investigate the scale of parallel climate adaptation from standing genetic variation between two North American Arabidopsis lyrata lineages, each formed by a distinct evolutionary history during the last glacial cycle. By identifying adaptive variants correlated with three ecologically significant climatic gradients, they show that instead of the same genetic variants or even genes, parallel evolution is only observed at the level of biological processes. The evolution of independent adaptive variants to climate in two genetically close lineages is explained by their different post‐glacial demographic histories. Separate glacial refugia and strong population bottlenecks were probably sufficient to change the landscape of shared allele frequencies, hindering the possibility of parallel evolution.  相似文献   

4.
Geographic barriers can partition genetic diversity among populations and drive evolutionary divergence between populations, promoting the speciation process and affecting conservation goals. We integrated morphological and genomic data to assess the distribution of variation in the flat‐headed cusimanse (Crossarchus platycephalus), a species of least conservation concern, on either side of the River Niger in Nigeria. Ecological disturbances affect the conservation status of many other animals in this region. The two populations were differentiated in the snout and fore limbs, with greater morphological diversity in the western population. We used Restriction site Associated DNA sequencing (RAD‐seq) and identified two genotypic clusters in a STRUCTURE analysis. Individuals from the eastern population are almost entirely assigned to one cluster, whereas genotypes from the western population are a mixture of the two clusters. The population from west of the River Niger also had higher heterozygosity. The morphological and population genetic data are therefore in agreement that the population from west of the River Niger is more diverse than the eastern population, and the eastern population contains a subset of the genetic variation found in the western population. Our results demonstrate that combining morphological and genotypic measures of diversity can provide a congruent picture of the distribution of intraspecific variation. The results also suggest that future work should explore the role of the River Niger as a natural barrier to migration in Nigeria.  相似文献   

5.
We evaluated the mtDNA divergence and relationships within Geomys pinetis to assess the status of formerly recognized Geomys taxa. Additionally, we integrated new hypothesis‐based tests in ecological niche models (ENM) to provide greater insight into causes for divergence and potential barriers to gene flow in Southeastern United States (Alabama, Florida, and Georgia). Our DNA sequence dataset confirmed and strongly supported two distinct lineages within G. pinetis occurring east and west of the ARD. Divergence date estimates showed that eastern and western lineages diverged about 1.37 Ma (1.9 Ma–830 ka). Predicted distributions from ENMs were consistent with molecular data and defined each population east and west of the ARD with little overlap. Niche identity and background similarity tests were statistically significant suggesting that ENMs from eastern and western lineages are not identical or more similar than expected based on random localities drawn from the environmental background. ENMs also support the hypothesis that the ARD represents a ribbon of unsuitable climate between more suitable areas where these populations are distributed. The estimated age of divergence between eastern and western lineages of G. pinetis suggests that the divergence was driven by climatic conditions during Pleistocene glacial–interglacial cycles. The ARD at the contact zone of eastern and western lineages of G. pinetis forms a significant barrier promoting microgeographic isolation that helps maintain ecological and genetic divergence.  相似文献   

6.
  • Calcareous grasslands belong to the most species‐rich and endangered habitats in Europe. However, little is known about the origin of the species typically occurring in these grasslands. In this study we analysed the glacial and post‐glacial history of Sanguisorba minor, a typical plant species frequently occurring in calcareous grasslands.
  • The study comprised 38 populations throughout the whole distribution range of the species across Europe. We used molecular markers (AFLP) and applied Bayesian cluster analysis as well as spatial principal components analysis (sPCA) to identify glacial refugia and post‐glacial migration routes to Central Europe.
  • Our study revealed significant differences in the level of genetic variation and the occurrence of rare fragments within populations of S. minor and a distinct separation of eastern and western lineages. The analyses uncovered traditional southern but also cryptic northern refugia and point towards a broad fronted post‐glacial recolonisation.
  • Based on these results we postulate that incomplete lineage sorting may have contributed to the detected pattern of genetic variation and that S. minor recolonised Central Europe post‐glacially from Iberia and northern glacial refugia in France, Belgium or Germany. Our results highlight the importance of refugial areas for the conservation of intraspecific variation in calcareous grassland species.
  相似文献   

7.
Coastal plants are ideal models for studying the colonization routes of species because of the simple linear distributions of these species. Carex extensa occurs mainly in salt marshes along the Mediterranean and European coasts. Variation in cpDNA sequences, amplified fragment length polymorphisms (AFLPs) and simple sequence repeats (SSRs) of 24 populations were analysed to reconstruct its colonization history. Phylogenetic relationships indicate that C. extensa together with the South American Carex vixdentata and the southern African Carex ecklonii form a monophyletic group of halophilic species. Analyses of divergence times suggest that early lineage diversification may have occurred between the late Miocene and the late Pliocene (Messinian crisis). Phylogenetic and network analyses of cpDNA variation revealed the monophyly of the species and an ancestral haplotype contained in populations of the eastern Mediterranean. The AFLP and SSR analyses support a pattern of variation compatible with these two lineages. These analyses also show higher levels of genetic diversity and differentiation in the eastern population group, which underwent an east‐to‐west Mediterranean colonization. Quaternary climatic oscillations appear to have been responsible for the split between these two lineages. Secondary contacts may have taken place in areas near the Ligurian Sea in agreement with the gene flow detected in Corsican populations. The AFLP and SSR data accord with the ‘tabula rasa’ hypothesis in which a recent and rapid colonization of northern Europe took place from the western Mediterranean after the Last Glacial Maximum. The unbalanced west‐east vs. west‐north colonization may be as a result of ‘high density blocking’ effect.  相似文献   

8.
Extant variation in temperate and boreal plant species has been influenced by both demographic histories associated with Pleistocene glacial cycles and adaptation to local climate. We used sequence capture to investigate the role of these neutral and adaptive processes in shaping diversity in black cottonwood (Populus trichocarpa). Nucleotide diversity and Tajima's D were lowest at replacement sites and highest at intergenic sites, while LD showed the opposite pattern. With samples grouped into three populations arrayed latitudinally, effective population size was highest in the north, followed by south and centre, and LD was highest in the south followed by the north and centre, suggesting a possible northern glacial refuge. FST outlier analysis revealed that promoter, 5′‐UTR and intronic sites were enriched for outliers compared with coding regions, while no outliers were found among intergenic sites. Codon usage bias was evident, and genes with synonymous outliers had 30% higher average expression compared with genes containing replacement outliers. These results suggest divergent selection related to regulation of gene expression is important to local adaptation in P. trichocarpa. Finally, within‐population selective sweeps were much more pronounced in the central population than in putative northern and southern refugia, which may reflect the different demographic histories of the populations and concomitant effects on signatures of genetic hitchhiking from standing variation.  相似文献   

9.
Populations arrayed along broad latitudinal gradients often show patterns of clinal variation in phenotype and genotype. Such population differentiation can be generated and maintained by both historical demographic events and local adaptation. These evolutionary forces are not mutually exclusive and can in some cases produce nearly identical patterns of genetic differentiation among populations. Here, we investigate the evolutionary forces that generated and maintain clinal variation genome‐wide among populations of Drosophila melanogaster sampled in North America and Australia. We contrast patterns of clinal variation in these continents with patterns of differentiation among ancestral European and African populations. Using established and novel methods we derive here, we show that recently derived North America and Australia populations were likely founded by both European and African lineages and that this hybridization event likely contributed to genome‐wide patterns of parallel clinal variation between continents. The pervasive effects of admixture mean that differentiation at only several hundred loci can be attributed to the operation of spatially varying selection using an FST outlier approach. Our results provide novel insight into the well‐studied system of clinal differentiation in D. melanogaster and provide a context for future studies seeking to identify loci contributing to local adaptation in a wide variety of organisms, including other invasive species as well as temperate endemics.  相似文献   

10.
Adaptation to local climatic conditions is commonly found within species, but whether it involves the same intraspecific genomic variants is unknown. We studied this question in North American Arabidopsis lyrata, whose current distribution is shaped by post‐glacial range expansion from two refugia, resulting in two distinct genetic clusters covering comparable climatic gradients. Using pooled whole‐genome sequence data of 41 outcrossing populations, we identified loci associated with three niche‐determining climatic variables in the two clusters and compared these outliers. Little evidence was found for parallelism in climate adaptation for single nucleotide polymorphisms (SNPs) and for genes with an accumulation of outlier SNPs. Significantly increased selection coefficients supported them as candidates of climate adaptation. However, the fraction of gene ontology (GO) terms shared between clusters was higher compared to outlier SNPs and outlier genes, suggesting that selection acts on similar pathways but not necessarily the same genes. Enriched GO terms involved responses to abiotic and biotic stress, circadian rhythm and development, with flower development and reproduction being among the most frequently detected. In line with GO enrichment, regulators of flowering time were detected as outlier genes. Our results suggest that while adaptation to environmental gradients on the genomic level are lineage‐specific in A. lyrata, similar biological processes seem to be involved. Differential loss of standing genetic variation, probably driven by genetic drift, can in part account for the lack of parallel evolution on the genomic level.  相似文献   

11.
Investigating the extent (or the existence) of local adaptation is crucial to understanding how populations adapt. When experiments or fitness measurements are difficult or impossible to perform in natural populations, genomic techniques allow us to investigate local adaptation through the comparison of allele frequencies and outlier loci along environmental clines. The thick‐billed murre (Uria lomvia) is a highly philopatric colonial arctic seabird that occupies a significant environmental gradient, shows marked phenotypic differences among colonies, and has large effective population sizes. To test whether thick‐billed murres from five colonies along the eastern Canadian Arctic coast show genomic signatures of local adaptation to their breeding grounds, we analyzed geographic variation in genome‐wide markers mapped to a newly assembled thick‐billed murre reference genome. We used outlier analyses to detect loci putatively under selection, and clustering analyses to investigate patterns of differentiation based on 2220 genomewide single nucleotide polymorphisms (SNPs) and 137 outlier SNPs. We found no evidence of population structure among colonies using all loci but found population structure based on outliers only, where birds from the two northernmost colonies (Minarets and Prince Leopold) grouped with birds from the southernmost colony (Gannet), and birds from Coats and Akpatok were distinct from all other colonies. Although results from our analyses did not support local adaptation along the latitudinal cline of breeding colonies, outlier loci grouped birds from different colonies according to their non‐breeding distributions, suggesting that outliers may be informative about adaptation and/or demographic connectivity associated with their migration patterns or nonbreeding grounds.  相似文献   

12.
Necturus beyeri (Caudata: Proteidae), as conceived by some, contains paedomorphic salamanders distributed from the Ochlockonee drainage of Florida to the Angelina drainage of Texas. Because these salamanders differ in color pattern and karyotype across their geographic range, we performed a phylogeographic analysis that included representatives from all major drainages as well as of all congeners. The mitochondrially encoded ND2 gene was used to infer phylogenetic relationships using Bayesian inference. Morphometrics of head shape were analyzed and included as an independent data set. Our work suggests that Necturus comprises 11 lineages. A basal split within the genus separates an ancestor of two Atlantic Coastal Plain species (Necturus lewisi and Necturus punctatus) from the ancestor of nine distinct Gulf Coastal Plain lineages. One lineage is consistent with Necturus alabamensis, a species currently recognized in the Black Warrior drainage of Alabama. Two lineages comprise Necturus maculosus, as historically recognized, and six lineages comprise N. beyeri, as recognized by some, each of which occupies a unique drainage. Both of these species are demonstrated to be paraphyletic. Head morphometrics show the same patterns as the mtDNA. Overall, lineages within Necturus exhibit an east‐to‐west progression of appearance on the phylogenetic trees. This pattern corroborates biogeographic hypotheses based on previous karyological work. Within N. beyeri, this progression separates a pattern class of two eastern lineages lacking bold spotting and possessing relatively small mean body lengths from a pattern class of four western lineages possessing bold spotting and larger mean body sizes. Thus, the two eastern lineages of N. beyeri are similar in color pattern and body size to N. punctatus either through retention of the ancestral color pattern and size for the genus or through convergent selection in eastern streams of the Gulf Coastal Plain.  相似文献   

13.
Prior to 1900, coyotes (Canis latrans) were restricted to the western and central regions of North America, but by the early 2000s, coyotes became ubiquitous throughout the eastern United States. Information regarding morphological and genetic structure of coyote populations in the southeastern United States is limited, and where data exist, they are rarely compared to those from other regions of North America. We assessed geographic patterns in morphology and genetics of coyotes with special consideration of coyotes in the southeastern United States. Mean body mass of coyote populations increased along a west‐to‐east gradient, with southeastern coyotes being intermediate to western and northeastern coyotes. Similarly, principal component analysis of body mass and linear body measurements suggested that southeastern coyotes were intermediate to western and northeastern coyotes in body size but exhibited shorter tails and ears from other populations. Genetic analyses indicated that southeastern coyotes represented a distinct genetic cluster that differentiated strongly from western and northeastern coyotes. We postulate that southeastern coyotes experienced lower immigration from western populations than did northeastern coyotes, and over time, genetically diverged from both western and northeastern populations. Coyotes colonizing eastern North America experienced different selective pressures than did stable populations in the core range, and we offer that the larger body size of eastern coyotes reflects an adaptation that improved dispersal capabilities of individuals in the expanding range.  相似文献   

14.
Studying recent adaptive radiations in isolated insular systems avoids complicating causal events and thus may offer clearer insight into mechanisms generating biological diversity. Here, we investigate evolutionary relationships and genomic differentiation within the recent radiation of Alcolapia cichlid fish that exhibit extensive phenotypic diversification, and which are confined to the extreme soda lakes Magadi and Natron in East Africa. We generated an extensive RAD data set of 96 individuals from multiple sampling sites and found evidence for genetic admixture between species within Lake Natron, with the highest levels of admixture between sympatric populations of the most recently diverged species. Despite considerable environmental separation, populations within Lake Natron do not exhibit isolation by distance, indicating panmixia within the lake, although individuals within lineages clustered by population in phylogenomic analysis. Our results indicate exceptionally low genetic differentiation across the radiation despite considerable phenotypic trophic variation, supporting previous findings from smaller data sets; however, with the increased power of densely sampled SNPs, we identify genomic peaks of differentiation (FST outliers) between Alcolapia species. While evidence of ongoing gene flow and interspecies hybridization in certain populations suggests that Alcolapia species are incompletely reproductively isolated, the identification of outlier SNPs under diversifying selection indicates the radiation is undergoing adaptive divergence.  相似文献   

15.
Identifying the genetic structure of a species and the factors that drive it is an important first step in modern population management, in part because populations evolving from separate ancestral sources may possess potentially different characteristics. This is especially true for climate‐sensitive species such as pikas, where the delimitation of distinct genetic units and the characterization of population responses to contemporary and historical environmental pressures are of particular interest. We combined a restriction site‐associated DNA sequencing (RADSeq) data set containing 4156 single nucleotide polymorphisms with ecological niche models (ENMs) of present and past habitat suitability to characterize population composition and evaluate the effects of historical range shifts, contemporary climates and landscape factors on gene flow in Collared Pikas, which are found in Alaska and adjacent regions of northwestern Canada and are the lesser‐studied of North America's two pika species. The results suggest that contemporary environmental factors contribute little to current population connectivity. Instead, genetic diversity is strongly shaped by the presence of three ancestral lineages isolated during the Pleistocene (~148 and 52 kya). Based on ENMs and genetic data, populations originating from a northern refugium experienced longer‐term stability, whereas both southern lineages underwent population expansion – contradicting the southern stability and northern expansion patterns seen in many other taxa. Current populations are comparable with respect to generally low diversity within populations and little‐to‐no recent admixture. The predominance of divergent histories structuring populations implies that if we are to understand and manage pika populations, we must specifically assess and accurately account for the forces underlying genetic similarity.  相似文献   

16.
The fruit bat, Eonycteris spelaea , occurs from India through the Philippines to the southeast limit of its distribution in the Lesser Sunda islands of Indonesia. Mitochondrial DNA (mtDNA) variation was examined in Indonesian E. spelaea island populations by amplification of the D-loop and digestion with restriction endonucleases. In addition, microgeographic variation was assessed by investigation of three cave populations within one island. A total of 24 genotypes, comprising two broad clades, was detected. The pattern of mtDNA variation reflects the colonization history of E. spelaea with estimates of haplotype and sequence diversity highest in the older western populations and lowest at the eastern periphery of the species' distribution. These findings may also be associated with an environmental cline from west to east. There is also evidence that genetic distance between populations reflects geographic relationships, especially historical connectedness, as measured by Pleistocene sea-crossing distances. At the microgeographic level, cave populations were heterogeneous and composed of diverse lineages suggesting restricted local interchange.  相似文献   

17.
Modern plant breeding can benefit from the allelic variation that exists in natural populations of crop wild relatives that evolved under natural selection in varying pedoclimatic conditions. In this study, next‐generation sequencing was used to generate 1.3 million genome‐wide single nucleotide polymorphisms (SNPs) on ex situ collections of Triticum urartu L., the wild donor of the Au subgenome of modern wheat. A set of 75 511 high‐quality SNPs were retained to describe 298 T. urartu accessions collected throughout the Fertile Crescent. Triticum urartu showed a complex pattern of genetic diversity, with two main genetic groups distributed sequentially from west to east. The incorporation of geographical information on sampling points showed that genetic diversity was correlated to the geographical distance (R2 = 0.19) separating samples from Jordan and Lebanon, from Syria and southern Turkey, and from eastern Turkey, Iran and Iraq. The wild emmer genome was used to derive the physical positions of SNPs on the seven chromosomes of the Au subgenome, allowing us to describe a relatively slow decay of linkage disequilibrium in the collection. Outlier loci were described on the basis of the geographic distribution of the T. urartu accessions, identifying a hotspot of directional selection on chromosome 4A. Bioclimatic variation was derived from grid data and related to allelic variation using a genome‐wide association approach, identifying several marker–environment associations (MEAs). Fifty‐seven MEAs were associated with altitude and temperature measures while 358 were associated with rainfall measures. The most significant MEAs and outlier loci were used to identify genomic loci with adaptive potential (some already reported in wheat), including dormancy and frost resistance loci. We advocate the application of genomics and landscape genomics on ex situ collections of crop wild relatives to efficiently identify promising alleles and genetic materials for incorporation into modern crop breeding.  相似文献   

18.
There has been considerable discussion on the origin of the red wolf and eastern wolf and their evolution independent of the gray wolf. We analyzed mitochondrial DNA (mtDNA) and a Y‐chromosome intron sequence in combination with Y‐chromosome microsatellites from wolves and coyotes within the range of extensive wolf–coyote hybridization, that is, eastern North America. The detection of divergent Y‐chromosome haplotypes in the historic range of the eastern wolf is concordant with earlier mtDNA findings, and the absence of these haplotypes in western coyotes supports the existence of the North American evolved eastern wolf (Canis lycaon). Having haplotypes observed exclusively in eastern North America as a result of insufficient sampling in the historic range of the coyote or that these lineages subsequently went extinct in western geographies is unlikely given that eastern‐specific mtDNA and Y‐chromosome haplotypes represent lineages divergent from those observed in extant western coyotes. By combining Y‐chromosome and mtDNA distributional patterns, we identified hybrid genomes of eastern wolf, coyote, gray wolf, and potentially dog origin in Canis populations of central and eastern North America. The natural contemporary eastern Canis populations represent an important example of widespread introgression resulting in hybrid genomes across the original C. lycaon range that appears to be facilitated by the eastern wolf acting as a conduit for hybridization. Applying conventional taxonomic nomenclature and species‐based conservation initiatives, particularly in human‐modified landscapes, may be counterproductive to the effective management of these hybrids and fails to consider their evolutionary potential.  相似文献   

19.
The current spatial distribution of genetic lineages across a region should reflect the complex interplay of both historical and contemporary processes. Postglacial expansion and recolonization in the distant past, in combination with more recent events with anthropogenic effects such as habitat fragmentation and overexploitation, can help shape the pattern of genetic structure observed in contemporary populations. In this study, we characterize the spatial distribution of mtDNA lineages for fisher (Martes pennanti) in north‐eastern North America. The history of fishers in this region is well understood and thus provides an opportunity to interpret patterns of genetic structure in the light of known historical (e.g. recolonization from glacial refugia) and contemporary events (e.g. reintroductions, fragmentation and natural recolonization). Our results indicate that fishers likely recolonized north‐eastern North America from a single Pleistocene refugium. Three genetically distinct remnant populations persisted through the population declines of the 1800s and served as sources for multiple reintroductions and natural recolonizations that have restored the fisher throughout north‐eastern North America. However, the spatial genetic structure of genetic lineages across the region still reflects the three remnant populations.  相似文献   

20.
Scanning genomes for loci with high levels of population differentiation has become a standard of population genetics. FST outlier loci are most often interpreted as signatures of local selection, but outliers might arise for many other reasons too often left unexplored. Here, we tried to identify further the history and genetic basis underlying strong differentiation at FST outlier loci in a marine mussel. A genome scan of genetic differentiation has been conducted between Atlantic and Mediterranean populations of Mytilus galloprovincialis. The differentiation was low overall (FST = 0.03), but seven loci (2%) were strong FST outliers. We then analysed DNA sequence polymorphism at two outlier loci. The genetic structure proved to be the consequence of differential introgression of alleles from the sister‐hybridizing species Mytilus edulis. Surprisingly, the Mediterranean population was the most introgressed at these two loci, although the contact zone between the two species is nowadays localized along the Atlantic coasts of France and the British Isles. A historical contact between M. edulis and Mediterranean M. galloprovincialis should have happened during glacial periods. It proved difficult to disentangle two hypotheses: (i) introgression was adaptive, implying edulis alleles have been favoured in Mediterranean populations, or (ii) the genetic architecture of the barrier to edulis gene flow is different between the two M. galloprovincialis backgrounds. Five of the seven outliers between M. galloprovincialis populations were also outliers between M. edulis and Atlantic M. galloprovincialis, which would support the latter hypothesis. Differential introgression across semi‐permeable barriers to gene flow is a neglected scenario to interpret outlying loci that may prove more widespread than anticipated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号