首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Environmental predictability is predicted to shape the evolution of life histories. Two key types of environmental predictability, seasonality and environmental colour, may influence life‐history evolution independently but formal considerations of both and how they relate to life history are exceedingly rare. Here, in a global biogeographical analysis of over 800 marine invertebrates, we explore the relationships between both forms of environmental predictability and three fundamental life‐history traits: location of larval development (aplanktonic vs. planktonic), larval developmental mode (feeding vs. non‐feeding) and offspring size. We found that both dispersal potential and offspring size related to environmental predictability, but the relationships depended on both the environmental factor as well as the type of predictability. Environments that were more seasonal in food availability had a higher prevalence of species with a planktonic larval stage. Future studies should consider both types of environmental predictability as each can strongly affect life‐history evolution.  相似文献   

2.
A comparison was made of the evolutionary patterns among larviparous and oviparous species of the family Ostreidae. The data reveal that larviparous species have experienced a wider range of environmental variables, life history traits, and levels of genetic variation than have oviparous species. Non-parametric correlation coefficients were obtained among fifteen variables (i.e., two genetic, four environmental and nine life-history variables). Among the life-history variables, mode of larval development, fecundity, egg size, initial size of the planktonic larva and planktonic larval period were found to covary significantly with the genetic variables. In a comparison of environmental and life-history variables, the mode of larval development and habitat water depth were found to covary. The implications of these results are discussed with reference to the evolution of the family Ostreidae.  相似文献   

3.
Experimental studies have demonstrated that for many marineinvertebrate species, variability in larval condition or qualityat settlement may have important effects on post-settlement,early juvenile performance. Relatively few studies, however,explicitly examine natural variability in larval condition atsettlement. This study examines natural variability in larvalattributes (size and lipid index) at settlement for terminal-stagelarvae of intertidal mussels (Mytilus sp.) and barnacles (Pollicipespolymerus and Chthamalus dalli) from southern California. Despitesignificant differences among cohorts in larval attributes,for all 3 species a greater percentage of the variance in larvallength (80–100%) and lipids (58–83%) occurred amongindividuals within a cohort, rather than among cohorts. Forall 3 species, coefficients of variation within a cohort forlength were much smaller (3–8%) than those for lipid index(30–93%), suggesting that lipid storage is a much moreplastic attribute than size for larvae. For mussels, settlementintensity and larval attributes were decoupled, such that averagelarval condition of a cohort was not related to the number oflarvae that settled. At the cohort level, Mytilus and Pollicipessettling together across 3 dates showed similar trends of decreasinglipid index over time, suggesting that environmental conditionsmay influence co-occurring planktonic larvae similarly acrossspecies. This work highlights the need for further experimentsin the field on the effects of larval history on recruitmentsuccess in natural populations, and further studies to determinewhat factors influence larval attributes for planktonic larvaein the field.  相似文献   

4.
The barnacles (Crustacea, Cirripedia) consist of three well-defined orders: the conventional filter-feeding barnacles (Thoracica), the burrowing barnacles (Acrothoracica), and the parasitic barnacles (Rhizocephala). Thoracica and Acrothoracica feed by catching food particles from the surrounding seawater using their thoracic appendages while members of Rhizocephala are exclusively parasitic. The parasite consists of a sac-shaped, external reproductive organ situated on the abdomen of its crustacean host and a nutrient-absorbing root system embedded into the heamolymph of the host. In order to resolve the phylogenetic relationship of the order Rhizocephala and elucidate the evolution of the different life history strategies found within the Rhizocephala, we have performed the first comprehensive phylogenetic analysis of the group. Our results indicate that Rhizocephala is monophyletic with a filter-feeding barnacle-like ancestor. The host-infective stage, the kentrogon larva, inserted in the lifecycle of the rhizocephalan suborder, Kentrogonida, is shown to be ancestral and most likely a homologue of the juvenile stage of a conventional thoracican barnacle. The mode of host inoculation found in the suborder Akentrogonida, where the last pelagic larval stage directly injects the parasitic material into the heamolymph of the host is derived, and has evolved only once within the Rhizocephala. Lastly, our results show that the ancestral host for extant rhizocephalans appears to be the anomuran crustaceans (Anomura), which includes hermit crabs and squat lobsters.  相似文献   

5.
Loss of larval parasitism in parasitengonine mites   总被引:1,自引:0,他引:1  
Larval Parasitengona are typically parasites, yet at least 29 species of water mites and one species of Trombidiidae forgo larval feeding and any association with a host. Species with non-feeding larvae are isolated cases within species groups or genera where the remaining species have parasitic larvae. Species without larval parasitism occur in at least 14 genera, eight families and four superfamilies of water mites; the loss of larval parasitism is presumably polyphyletic, having occurred at least 21 times. Lineages of water mites with non-feeding larvae frequently exist in parallel with almost identical populations or species that have parasitic larvae. Thus, there is tremendous potential for studies comparing the relative merits of the two life history strategies. Comparisons indicate that adults from lineages with non-parasitic larvae produce smaller numbers of larger eggs; the extra nutrition included in larger eggs permits the larvae to forgo feeding. Non-feeding larvae frequently have wider dorsal plates but reduced leg length, setal length and sclerotization when compared to parasitic larvae from sister lineages. The adults of lineages with non-feeding larvae are frequently smaller in comparison to adults of sister lineages with parasitic larvae. There is no apparent pattern in relation to habitat: lineages lacking larval parasitism occur in streams, temporary ponds and the littoral and planktonic regions of permanent lakes. © Rapid Science Ltd. 1998  相似文献   

6.
We used European geometrid moths (>630 species) as a model group to investigate how life history traits linked to larval host plant use (i.e., diet breadth and host-plant growth form) and seasonal life cycle (i.e., voltinism, overwintering stage and caterpillar phenology) are related to adult body size in holometabolous insect herbivores. To do so, we applied phylogenetic comparative methods to account for shared evolutionary history among herbivore species. We further categorized larval diet breadth based on the phylogenetic structure of utilized host plant genera. Our results indicate that species associated with woody plants are, on average, larger than herb feeders and increase in size with increasing diet breadth. Obligatorily univoltine species are larger than multivoltine species, and attain larger sizes when their larvae occur exclusively in the early season. Furthermore, the adult body size is significantly smaller in species that overwinter in the pupal stage compared to those that overwinter as eggs or caterpillars. In summary, our results indicate that the ecological niche of holometabolous insect herbivores is strongly interrelated with body size at maturity.  相似文献   

7.
A field study of prey selection in planktivorous fish larvae   总被引:3,自引:0,他引:3  
Summary The food selection of larval fish was studied from field samples collected in two areas that differ in productivity. In the area where planktonic primary and secondary production was high the fish larvae showed a tendency to specialise and they selected the largest prey species available as food; in the area of lower production fish were generalists and they fed equally on all size classes.Abundance of prey was found to be one of the decisive factors in the prey selection of planktivorous fish larvae. Large prey species (calanoids) were selected when their absolute abundance was high but when their abundance was low, small-sized cladocerans were preferred. Visibility and stage of life history were also assumed to affect the mode of selection.  相似文献   

8.
Mid‐water plankton collections commonly include bizarre and mysterious developmental stages that differ conspicuously from their adult counterparts in morphology and habitat. Unaware of the existence of planktonic larval stages, early zoologists often misidentified these unique morphologies as independent adult lineages. Many such mistakes have since been corrected by collecting larvae, raising them in the lab, and identifying the adult forms. However, challenges arise when the larva is remarkably rare in nature and relatively inaccessible due to its changing habitats over the course of ontogeny. The mid‐water marine species Cerataspis monstrosa (Gray 1828) is an armored crustacean larva whose adult identity has remained a mystery for over 180 years. Our phylogenetic analyses, based in part on recent collections from the Gulf of Mexico, provide definitive evidence that the rare, yet broadly distributed larva, C. monstrosa, is an early developmental stage of the globally distributed deepwater aristeid shrimp, Plesiopenaeus armatus. Divergence estimates and phylogenetic relationships across five genes confirm the larva and adult are the same species. Our work demonstrates the diagnostic power of molecular systematics in instances where larval rearing seldom succeeds and morphology and habitat are not indicative of identity. Larval–adult linkages not only aid in our understanding of biodiversity, they provide insights into the life history, distribution, and ecology of an organism.  相似文献   

9.
Life history diversity and evolution in the Asterinidae   总被引:3,自引:1,他引:2  
Asterinid sea stars have the greatest range of life historiesknown for the Asteroidea. Larval form in these sea stars hasbeen modified in association with selection for planktonic,benthic, or intergonadal developmental habitats. Life historydata are available for 31 species and molecular data for 28of these. These data were used to assess life history evolutionand relationships among asterinid clades. Lecithotrophy is prevalentin Asterinidae, with at least 6 independent origins of thisdevelopmental mode. Morphological differences in the attachmentcomplex of brachiolaria larvae were evident among species withplanktonic lecithotrophy. Some features are clade specific whileothers are variable within clades. Benthic brachiolariae aresimilar in Aquilonastra and Parvulastra with tripod-shaped larvae,while the bilobed sole-shaped larvae of Asterina species appearunique to this genus. Multiple transitions and pathways havebeen involved in the evolution of lecithotropy in the Asterinidae.Although several genera have a species with a planktonic feedinglarva in a basal phylogenetic position, relative to specieswith planktonic or benthic lecithotrophy, there is little evidencefor the expected life history transformation series from planktonicfeeding, to planktonic non-feeding, to benthic non-feeding development.Intragonadal development, a life history pattern unique to theAsterinidae, arose three times through ancestors with benthicor pelagic lecithotrophy. Evolution of lecithotrophy appearsmore prevalent in the Asterinidae than other asteroid families.As diverse modes of development are discerned in cryptic speciescomplexes, new insights into life history evolution in the Asterinidaeare being generated.  相似文献   

10.
Variation in age and size at life‐history transitions is a reflection of the diversifying influence of biotic or abiotic environmental change. Examples abound, but it is not well understood how such environmental changes influence the age structure of a population. I experimentally investigated the effects of water temperature and food type on age and body size at metamorphosis in larvae of the salamander Hynobius retardatus. In individuals grown at a cold temperature (15 °C) or given Chironomidae as prey, the time to metamorphosis was significantly prolonged, and body size at metamorphosis was significantly enlarged, compared with individuals grown at a warmer temperature (20 °C) or fed larvae. I also examined whether larval density (a possible indicator of cannibalism in natural habitats) generated variation in the age structure of natural populations in Hokkaido, Japan, where the climate is subarctic. Natural ponds in Hokkaido may contain larvae that have overwintered for 1 or 2 years, as well as larvae of the current year, and I found that the number of age classes was related to larval density. Although cool water temperatures prolong the larval period and induce later metamorphosis, in natural ponds diet‐based enhancement of development translated into a shorter larval duration and earlier metamorphosis. Geographic variation in the frequency of cannibalism resulted in population differences in metamorphic timing in H. retardatus larvae. It is important to understand how environmental effects are ultimately transduced through individual organisms into population‐level phenomena, with the population response arising as the summation of individual responses. Without a thorough comprehension of the mechanisms through which population and individual responses to environmental conditions are mediated, we cannot interpret the relationship between population‐level and individual‐level phenomena. © 2010 The Linnean Society of London, Biological Journal of the Linnean Society, 2011, 102 , 100–114.  相似文献   

11.
12.
The possibility of deriving a prediction about the effect of seasonal variations in the duration of the planktonic larval phase on the dispersal of larval Dover sole was investigated. During six cruises, from February to May 1992, the distribution of sole larvae was studied along a 100-km transect, from the offshore spawning grounds to the coastal nurseries of the Bay of Biscay (France). Samples ( n = 189) were collected with a suprabenthic sampler, and vertical profiles of water temperature and salinity were recorded simultaneously. Counts of otolith increments of larval stage 4b (onset of metamorphosis) were used to estimate the duration of the planktonic life. Duration of the larval phase decreases by about 15 days (37%) with water temperature increase (between 8° in February and 11.2° C in May). Sole larvae occur from the coastal area to 100 km offshore. Within the same cruise, no difference in the duration of the planktonic life was observed between the larvae caught in the onshore and the offshore area. In spite of seasonal differences in abundance, the extent and the shape of the larval distributions during the period of study suggest that the seasonal variations in the duration of the planktonic life did not affect the larval distribution.  相似文献   

13.
We have investigated, comparatively, the ontogenetic development of the compound eye in larvae of a mysid (Neomysis) and a euphausiid (Thysanoessa) species and found it to be close to identical in the two species. The larval eye is of apposition type with special adaptations for planktonic life. The elongated dioptric apparatus is devoid of screening pigment and instead has a proximal lens optically isolating the ommatidium. The pigmented retina is extremely compressed making the eye largely transparent and presumably suitable for a planktonic life. The presence of this specialized type of eye in the planktonic larvae of euphausiids was known before but it is intriguing to find exactly the same type in mysids, spending their entire larval life as embryos in the female marsupium. A possible explanation is offered if mysids earlier in evolution had planktonic larvae. Upon reduction of free-living larvae, the transparent type of eye may have been preserved because there is no selection pressure on the larva to change it. In late larval life, both species transform their eyes to a refracting superposition type typical for adult mysids and euphausiids. The process of transformation and the functional connection between transparent apposition and superposition is described.  相似文献   

14.
The geographic range of a species is influenced by past phylogenetic and biogeographic patterns. However, other historical interactions, including the interplay between life history and geography, are also likely involved. Therefore, the range size of a species can be explained on the basis of niche‐breadth or dispersal related hypotheses, and previous work on European butterflies suggests that both, under the respective guise of ecological specialisation and colonising ability may apply. In the present study, data from 205 species of butterflies from the Iberian peninsula were processed through multiple regression analyses to test for correlations between geographic range size, life history traits and geographic features of the species distribution types. In addition, the percentage of variance explained by the subsets of variables analyzed in the study, with and without control for phylogenetic effects was tested. Despite a complex pattern of bivariate correlations, we found that larval polyphagy was the single best correlate of range size, followed by dispersal. Models that combined both life history traits and geographic characteristics performed better than models generated independently. The combined variables explained at least 39% of the variance. Bivariate correlations between range size and body size, migratory habits or egg size primarily reflected taxonomic patterning and reciprocal correlations with larval diet breadth and adult phenology. Therefore, aspects of niche breadth i.e. potential larval diet breadth emerged as the most influential determinants of range size. However, the relationships between these types of ecological traits and biogeographic history must still be considered when associations between life history and range size are of interest.  相似文献   

15.
Previous phylogenetic attempts at resolving barnacle evolutionary relationships are few and have relied on limited taxon sampling. Here we combine DNA sequences from three nuclear genes (18S, 28S and H3) and 44 morphological characters collected from 76 thoracican (ingroup) and 15 rhizocephalan (outgroup) species representing almost all the Thoracica families to assess the tempo and mode of barnacle evolution. Using phylogenetic methods of maximum parsimony, maximum likelihood, and Bayesian inference and 14 fossil calibrations, we found that: (1) Iblomorpha form a monophyletic group; (2) pedunculated barnacles without shell plates (Heteralepadomorpha) are not ancestral, but have evolved, at least twice, from plated forms; (3) the ontogenetic pattern with 5-->6-->8-->12+ plates does not reflect Thoracica shell evolution; (4) the traditional asymmetric barnacles (Verrucidae) and the Balanomorpha are each monophyletic and together they form a monophyletic group; (5) asymmetry and loss of a peduncle have evolved twice in the Thoracica, resulting in neither the Verrucomorpha nor the Sessilia forming monophyletic groups in their present definitions; (6) the Scalpellomorpha are not monophyletic; (7) the Thoracica suborders evolved since the Early Carboniferous (340mya) with the final radiation of the Sessilia in the Upper Jurassic (147mya). These results, therefore, reject many of the underlying hypotheses about character evolution in the Cirripedia Thoracica, stimulate a variety of new thoughts on thoracican radiation, and suggest the need for a major rearrangement in thoracican classification based on estimated phylogenetic relationships.  相似文献   

16.
Mosquito larvae face numerous biotic and abiotic challenges that affect their development and survivorship, as well as adult fitness. We conducted two experiments under semi‐natural conditions to evaluate the effects of intraspecific competition, nutrient limitation and sub‐lethal doses of malathion on individual life history traits in adult Culex pipiens (Diptera: Culicidae). In the first experiment, larvae of Cx. pipiens were reared at different intraspecific densities and exposed to sub‐lethal doses of malathion. In the second experiment, different intraspecific densities of Cx. pipiens larvae were reared under conditions of low or high larval nutrients, and subsequent adults were fed on either water or 10% sucrose solution. Malathion treatment had relatively minor effects compared with density, which had significant negative effects on development rate, survivorship to adulthood, body size (wing length) and longevity. As larval density increased, a sex ratio distortion in survivorship to adulthood emerged, in which a bias towards males was apparent. Nutrient‐rich larval environments alleviated, in part, the effects of increasing density and extended the lifespan of mosquitoes fed on water and 10% sucrose. Density‐dependent alterations in adult longevity attributable to the larval environment are complex and show contrasting results depending on interactions with other environmental factors. This study suggests that larval resource availability and competition influence Cx. pipiens population growth correlates and have lasting effects on traits that relate to a mosquito's ability to vector pathogens.  相似文献   

17.
The Thoracica includes the ordinary barnacles found along the sea shore and is the most diverse and well-studied superorder of Cirripedia. However, although the literature abounds with scenarios explaining the evolution of these barnacles, very few studies have attempted to test these hypotheses in a phylogenetic context. The few attempts at phylogenetic analyses have suffered from a lack of phylogenetic signal and small numbers of taxa. We collected DNA sequences from the nuclear 18S, 28S, and histone H3 genes and the mitochondrial 12S and 16S genes (4,871 bp total) and data for 37 adult and 53 larval morphological characters from 43 taxa representing all the extant thoracican suborders (except the monospecific Brachylepadomorpha). Four Rhizocephala (highly modified parasitic barnacles) taxa and a Rhizocephala + Acrothoracica (burrowing barnacles) hypothetical ancestor were used as the outgroup for the molecular and morphological analyses, respectively. We analyzed these data separately and combined using maximum likelihood (ML) under "hill-climbing" and genetic algorithm heuristic searches, maximum parsimony procedures, and Bayesian inference coupled with Markov chain Monte Carlo techniques under mixed and homogeneous models of nucleotide substitution. The resulting phylogenetic trees answered key questions in barnacle evolution. The four-plated Iblomorpha were shown as the most primitive thoracican, and the plateless Heteralepadomorpha were placed as the sister group of the Lepadomorpha. These relationships suggest for the first time in an invertebrate that exoskeleton biomineralization may have evolved from phosphatic to calcitic. Sessilia (nonpedunculate) barnacles were depicted as monophyletic and appear to have evolved from a stalked (pedunculate) multiplated (5+) scalpelloidlike ancestor rather than a five-plated lepadomorphan ancestor. The Balanomorpha (symmetric sessile barnacles) appear to have the following relationship: (Chthamaloidea(Coronuloidea(Tetraclitoidea, Balanoidea))). Thoracican divergence times were estimated under ML-based local clock, Bayesian, and penalized likelihood approaches using an 18S data set and three calibration points: Heteralepadomorpha = 530 million years ago (MYA), Scalpellomorpha = 340 MYA, and Verrucomorpha = 120 MYA. Estimated dates varied considerably within and between approaches depending on the calibration point. Highly parameterized local clock models that assume independent rates (r > or = 15) for confamilial or congeneric species generated the most congruent estimates among calibrations and agreed more closely with the barnacle fossil record. Reasonable estimates were also obtained under the Bayesian procedure of Kishino et al. (2001, Mol. Biol. Evol. 18:352-361) but using multiple calibrations. Most of the dates estimated under the Bayesian procedure of Aris-Brosou and Yang (2002, Syst. Biol. 51:703-714) and the penalized likelihood method using single and/or multiple calibrations were inconsistent among calibrations and did not fit the fossil record.  相似文献   

18.
Abstract. The intertidal, sibling species Littorina scutulata and L. plena (Gastropoda, Proso‐branchia) are sympatric throughout most of their ranges along the Pacific coast of North America. Both species release disc‐shaped, planktonic egg capsules from which planktotrophic veliger larvae hatch. Here I review existing data and present new observations on these species' life history, including age at first reproduction, spawning season, maximum fecundity rates, capsule morphology, egg size and number, pre‐hatching development, larval growth at three food concentrations, potential settlement cues, planktonic period, and protoconch size. Previous classification of egg capsule morphologies used to distinguish the species is inaccurate; instead, capsules can be categorized into three types of which each species may produce two. Females of L. scutulata produced capsules with either two rims of unequal diameter or one rim, while females of L. plena produced capsules with one rim or two rims of nearly equal diameter. Females of each species spawned sporadically from early spring to early fall in Puget Sound. Larvae of L. plena hatched one day earlier than those of L. scutulata, and both species grew fastest in the laboratory at intermediate food concentrations. Larvae metamorphosed in the presence of a variety of materials collected from their adult habitat, including conspecific adults, algae, rocks, and barnacle tests. This is the first report of planktotrophic larvae in this genus metamorphosing in the laboratory. The total planktonic period of 8 larvae of L. scutulata raised in the laboratory was 37–70 days, and a single larva of L. plena metamorphosed after 62 days. Protoconch diameter of shells collected from the field was 256–436 μm and did not differ significantly between the species. Previous allozyme and mitochondrial DNA work has suggested high levels of genetic variability in both species and greater genetic population structure in L. plena, despite the long spawning season and long‐lived larvae in both species. The interspecific life history differences described here appear insufficient to produce consistent differences in gene flow patterns.  相似文献   

19.
The distributional limits of many ectothermic species are set by thermal tolerances of early‐developmental stages in the life history; embryos and larvae often are less able to buffer environmental variation than are conspecific adults. In pond‐breeding amphibians, for example, cold water may constrain viability of eggs and larvae, even if adults can find suitable thermal conditions in terrestrial niches. Invasive species provide robust model systems for exploring these questions, because we can quantify thermal challenges at the expanding range edge (from field surveys) and larval responses to thermal conditions (in the laboratory). Our studies on invasive cane toads (Rhinella marina) at the southern (cool‐climate) edge of their expanding range in Australia show that available ponds often average around 20°C during the breeding period, 10°C lower than in many areas of the toads’ native range, or in the Australian tropics. Our laboratory experiments showed that cane toad eggs and larvae cannot develop successfully at 16°C, but hatching success and larval survival rates were higher at 20°C than in warmer conditions. Lower temperatures slowed growth rates, increasing the duration of tadpole life, but also increased metamorph body mass. Water temperature also influenced metamorph body shape (high temperatures reduced relative limb length, head width, and body mass) and locomotor performance (increased speed from intermediate temperatures, longer hops from high temperatures). In combination with previous studies, our data suggest that lower water temperatures may enhance rather than reduce recruitment of cane toads, at least in areas where pond temperatures reach or exceed 20°C. That condition is fulfilled over a wide area of southern Australia, suggesting that the continuing expansion of this invasive species is unlikely to be curtailed by the impacts of relatively low water temperatures on the viability of early life‐history stages.  相似文献   

20.
Subterranean species show a distinct morphology, yet the adaptive significance of some traits, like body size and shape, is poorly understood and cannot be explained solely by distinct environmental conditions (darkness, less food). We predicted that in females some morphological changes may have co‐evolved with life history traits, and that co‐evolving life history traits provide at least part of the explanation for evolutionary changes of morphology. Using museum material we tested this prediction on the subterranean amphipod genus Niphargus. We studied six species found in springs and eight species found in cave lakes. We treated them as two ecologically distinct groups, and the major ecological differences between them were the availability of nutrients and the water currents. Cave species were found to be larger and stouter (as inferred from the shape of coxal plates, which are part of the marsupium), they had larger eggs and lower reproductive effort per brood, whereas the egg number and brood volume if corrected for the body size were not different. Using phylogenetic independent contrasts, we found a positive correlation between body shape and egg volume, a positive correlation between body size and egg volume, and a negative correlation between body size and reproductive effort per brood. We tentatively conclude that evolutions of morphology and life histories are functionally connected and that co‐evolving traits contribute to overall selective regime.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号