首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Mechanical forces influence the induction, growth and maintenance of the vertebrate skeleton. Using the zebrafish, Danio rerio, we explore the hypothesis that mechanical forces can ultimately lead to the generation of skeletal evolutionary novelties by modifications of the mechano‐responsive molecular pathways. Locomotion and feeding in zebrafish larvae begin early in ontogeny and it is likely that forces incurred during these behaviours affect subsequent skeletal development. We provide two case studies in which our hypothesis is being tested: the kinethmoid and intermuscular bones. The kinethmoid is a synapomorphy for the order Cypriniformes and is intricately linked to the bones of the protrusible upper jaw. It undergoes chondrogenesis within a ligament well after muscular forces are present within the head. Subsequent ossification of the kinethmoid occurs at sites of ligamentous attachment, leading us to believe that mechanical forces are involved. Unlike the kinethmoid, which has evolved only once, intermuscular bones have evolved several times during teleostean evolution. Intermuscular bones are embedded within the myosepta, the collagenous sheets between axial muscles. The effect of mechanical forces on the development of these intermuscular bones is experimentally tested by increasing the viscosity of the water in which larval zebrafish are raised. Since locomotion in high viscosity requires greater muscular forces, we can directly test the influence of mechanical forces on the development of intermuscular bones. Using developmental techniques paired with outgroup comparison for the kinethmoid, and direct experimentation for intermuscular bones, our case studies provide complementary insights into the effects of mechanical forces on the evolution of skeletal novelties in fishes.  相似文献   

2.
Mechanical loading of muscles on bones at their sites of attachment can regulate skeletal morphology. The present study examined the effects of muscle degeneration on craniofacial growth, using two strains of muscular dystrophic mice, Mus musculus, differing in pathological severity. We collected radiographic and weight data longitudinally and digitized radiographs to obtain distances between anatomical landmarks in different functional regions of the skull. We then quantified heterochronic and allometric differences among genotypes and between sexes. Because growth is nonlinear with respect to time, we first used the Gompertz model to obtain heterochronic growth parameters, which were then tested with ANOVA. Ontogenetic allometric analyses examined the scaling relationships between various measurements with linear regressions. For most measurements the severely dystrophic mice are significantly smaller in final size than both the control and the mildly dystrophic mice, which are statistically indistinguishable. Measures of total growth and the neurocranium exhibit more differences among groups in heterochronic parameters of early ontogeny because growth in these regions is controlled primarily by brain expansion that ceases early in development. In contrast, the face and mandible exhibit more differences in later growth parameters possibly because of the increased influence of muscles on these regions as growth progresses. The severely dystrophic mice have flatter, more elongate skulls and mandibles than those of the other two genotypes, concurrent with an absence of muscular forces to stimulate growth in a superior-inferior direction. J. Morphol. 235:1–16, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

3.
The vertebrate skeleton consists of over 200 individual bones, each with its own unique shape, size and function. We study the role of intrauterine muscle-induced mechanical loads in determining the three-dimensional morphology of developing bones. Analysis of the force-generating capacity of intrauterine muscles in mice revealed that developing bones are subjected to significant and progressively increasing mechanical challenges. To evaluate the effect of intrauterine loads on bone morphogenesis and the contribution of the emerging shape to the ability of bones to withstand these loads, we monitored structural and mineral changes during development. Using daily micro-CT scans of appendicular long bones we identify a developmental program, which we term preferential bone growth, that determines the specific circumferential shape of each bone by employing asymmetric mineral deposition and transient cortical thickening. Finite element analysis demonstrates that the resulting bone structure has optimal load-bearing capacity. To test the hypothesis that muscle forces regulate preferential bone growth in utero, we examine this process in a mouse strain (mdg) that lacks muscle contractions. In the absence of mechanical loads, the stereotypical circumferential outline of each bone is lost, leading to the development of mechanically inferior bones. This study identifies muscle force regulation of preferential bone growth as the module that shapes the circumferential outline of bones and, consequently, optimizes their load-bearing capacity during development. Our findings invoke a common mechanism that permits the formation of different circumferential outlines in different bones.  相似文献   

4.
The relationship between the mechanical loading undergone by a bone and its form has been widely assumed as a premise in studies aiming to reconstruct behavioral patterns from skeletal remains. Nevertheless, this relationship is complex due to the existence of many factors affecting bone structure and form, and further research combining structural and shape characteristics is needed. Using two‐block PLS, which is a test to analyze the covariance between two sets of variables, we aim to investigate the relationship between upper‐limb entheseal changes, cross‐sectional properties, and contour shape of the humeral diaphysis. Our results show that individuals with strongly marked entheseal changes have increased diaphyseal rigidities. Bending rigidities are mainly related to entheseal changes of muscles that cross the shoulder. Moreover, the entheseal changes of muscles that participate in the rotation of the arm are related to mediolaterally flatter and ventrodorsally broader humeral shapes in the mid‐proximal diaphysis. In turn, this diaphyseal shape is related to diaphyseal rigidity, especially to bending loadings. The shape of the diaphysis of the rest of the humerus does not covary either with rigidity or with entheseal changes. The results indicate that large muscular scars, such as those found in the mid‐proximal diaphyses, seem to be related to diaphyseal shape, whereas this relationship is not seen for areas with less direct influences of powerful muscles. Am J Phys Anthropol 150:609–617, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

5.
The mechanical environment of limb joints constantly changes during growth due to growth-related changes in muscle and tendon lengths, long bone dimensions, and body mass. The size and shape of limb joint surfaces must therefore also change throughout post-natal development in order to maintain normal joint function. Frost's (1979, 1999) chondral modeling theory proposed that joint congruence is maintained in mammalian limbs throughout postnatal ontogeny because cartilage growth in articular regions is regulated in part by mechanical load. This paper incorporates recent findings concerning the distribution of stress in developing articular units, the response of chondrocytes to mechanically induced deformation, and the development of articular cartilage in order to expand upon Frost's chondral modeling theory. The theory presented here assumes that muscular contraction during post-natal locomotor development produces regional fluctuating, intermittent hydrostatic pressure within the articular cartilage of limb joints. The model also predicts that peak levels of hydrostatic pressure in articular cartilage increase between birth and adulthood. Finally, the chondral modeling theory proposes that the cell-cell and cell-extracellular matrix interactions within immature articular cartilage resulting from mechanically induced changes in hydrostatic pressure regulate the metabolic activity of chondrocytes. Site-specific rates of articular cartilage growth are therefore regulated in part by the magnitude, frequency, and orientation of prevailing loading vectors. The chondral modeling response maintains a normal kinematic pathway as the magnitude and direction of joint loads change throughout ontogeny. The chondral modeling theory also explains ontogenetic scaling patterns of limb joint curvature observed in mammals. The chondral modeling response is therefore an important physiological mechanism that maintains the match between skeletal structure, function, and locomotor performance throughout mammalian ontogeny and phylogeny.  相似文献   

6.
Muscles, bones, and tendons in the adult tetrapod limb are intimately integrated, both spatially and functionally. However, muscle and bone evolution do not always occur hand in hand. We asked, how does the loss of limb bones affect limb muscle anatomy, and do these effects vary among different lineages? To answer these questions, we compared limb muscular and skeletal anatomy among gymnophthalmid lizards, which exhibit a remarkable variation in limb morphology and different grades of digit and limb reduction. We mapped the characters onto a phylogeny of the group to assess the likelihood that they were acquired independently. Our results reveal patterns of reduction of muscle and bone elements that did not always coincide and examples of both, convergent and lineage‐specific non‐pentadactyl musculoskeletal morphologies. Among lineages in which non‐pentadactyly evolved independently, the degree of convergence seems to depend on the number of digits still present. Most tetradactyl and tridactyl limbs exhibited profound differences in pattern and degree of muscle loss/reduction, and recognizable morphological convergence occurred only in extremely reduced morphologies (e.g., spike‐like appendix). We also found examples of muscles that persisted although the bones to which they plesiomorphically attach had been lost, and examples of muscles that had been lost although their normal bony attachments persisted. Our results demonstrate that muscle anatomy in reduced limbs cannot be predicted from bone anatomy alone, meaning that filling the gap between osteological and myological data is an important step toward understanding this recurrent phenomenon in the evolution of tetrapods. J. Morphol. 276:1290–1310, 2015. © 2015 Wiley Periodicals, Inc.  相似文献   

7.
While there are a growing number of increasingly complex methodologies available to model geometry and material properties of bones, these models still cannot accurately describe physical behaviour of the skeletal system unless the boundary conditions, especially muscular loading, are correct. Available in vivo measurements of muscle forces are mostly highly invasive and offer no practical way to validate the outcome of any computational model that predicts muscle forces. However, muscle forces can be verified indirectly using the fundamental property of living tissue to functional adaptation and finite element (FE) analysis. Even though the mechanisms of the functional adaptation are not fully understood, its result is clearly seen in the shape and inner structure of bones. The FE method provides a precise tool for analysis of the stress/strain distribution in the bone under given loading conditions. The present work sets principles for the determination of the muscle forces on the basis of the widely accepted view that biological systems are optimized light-weight structures with minimised amount of unloaded/underloaded material and hence evenly distributed loading throughout the structure. Bending loading of bones is avoided/compensated in bones under physiological loading. Thus, bending minimisation provides the basis for the determination of the musculoskeletal system loading. As a result of our approach, the muscle forces for a human femur during normal gait and sitting down (peak hip joint force) are obtained such that the bone is loaded predominantly in compression and the stress distribution in proximal and diaphyseal femur corresponds to the material distribution in bone.  相似文献   

8.
To evaluate factors intrinsic to the regulation of craniofacial bone growth, we have developed a new experimental model in which the whole head of an infant rat is transplanted to the body of an isohistogenic rat by means of microvascular anastomosis. In our model, the transplanted head has neither scars nor any moving soft tissue that could modify growth around facial bones. Using this model, we evaluated the growth pattern of the craniofacial complex by means of serial roentgenographic cephalometrics. Ten transplantations were performed using 10-day-old rats as donors and 8-week-old rats as recipients. Cephalograms were taken from the lateral direction at 10, 20, 30, and 40 days after transplantation. Several reference points were selected to analyze the growth pattern. In the present study, we conclude that the size and form of the bony complex are mainly determined genetically. There is craniofacial skeletal growth in the absence of muscle function and brain growth. Further, both the nasal cartilage and the sutures appear to be autonomous growth centers having intrinsic growth potential. Genetic or epigenetic information plays an important role at the skeletal level, but it also affects the muscles through the medium of the muscular tonus responsible for posture and other related phenomena.  相似文献   

9.
A range of clinical conditions in which fetal movement is reduced or prevented can have a severe effect on skeletal development. Animal models have been instrumental to our understanding of the interplay between mechanical forces and skeletal development, particularly the mouse and the chick model systems. In the chick, the most commonly used means of altering the mechanical environment is by pharmaceutical agents which induce paralysis, whereas genetically modified mice with nonfunctional or absent skeletal muscle offer a valuable tool for examining the interplay between muscle forces and skeletogenesis in mammals. This article reviews the body of research on animal models of bone or joint formation in vivo in the presence of an altered or abnormal mechanical environment. In both immobilized chicks and “muscleless limb” mice, a range of effects are seen, such as shorter rudiments with less bone formation, changes in rudiment and joint shape, and abnormal joint cavitation. However, although all bones and synovial joints are affected in immobilized chicks, some rudiments and joints are unaffected in muscleless mice. We propose that extrinsic mechanical forces from movements of the mother or littermates impact on skeletogenesis in mammals, whereas the chick embryo is reliant on intrinsic movement for mechanical stimulation. The insights gained from animal models into the mechanobiology of embryonic skeletal development could provide valuable cues to prospective tissue engineers of cartilage and bone and contribute to new or improved treatments to minimize the impact on skeletal development of reduced movement in utero. Birth Defects Research (Part C) 90:203–213, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

10.
Adult Holtzman rats were submitted during suckling period to a food restriction with or without protein or carbohydrate restoration. Twenty-one-day-old weanling pups were compared with controls of 9, 13, 17, and 21 days of age. Lateral craniofacial roentgenographies were taken. The length in midsagittal plane of each bone and its angle with respect to the vestibular line were measured in males. In females, the brain and the left masseter muscle were weighed, and the muscle/brain ratios (neuromuscular index) were calculated. Food restriction altered skull size and shape. Size changes were due to arrested lengths in all studied skull bones. Shape variation was evident by orthocephalization changes, reflected in angulation changes of bones belonging to the frontoethmofacial (frontal, nasal, and maxillary bones) and to the occipitointerparietal (interparietal bone) complexes. Partial restorations by both protein or carbohydrate supplementation were found. Nutritional stresses during lactation affected orthocephalization through an altered growth ratio between two soft tissues functionally associated to the craniofacial complex: brain and masticatory muscles.  相似文献   

11.
Head muscle development has been studied less intensively than myogenesis in the trunk, although this situation is gradually changing, as embryological and genetic insights accumulate. This review focuses on novel studies of the origins, composition and evolution of distinct craniofacial muscles. Cellular and molecular parallels are drawn between cardiac and branchiomeric muscle developmental programs, both of which utilize multiple lineages with distinct developmental histories, and argue for the tissues' common evolutionary origin. In addition, there is increasing evidence that the specification of skeletal muscles in the head appears to be distinct from that operating in the trunk: considerable variation among the different craniofacial muscle groups is seen, in a manner resembling myogenic specification in lower organisms.  相似文献   

12.
The origins of and potential constraints on the evolution of phenotypic diversity remain one of the central questions in evolutionary biology. The vertebrate skeleton is governed by historical, developmental, architectural, and functional constraints that all play a role in establishing its final form. Whereas the factors underlying shape variation in single bones are fairly well understood, this is less so the case for complex assemblages of bones as observed in the cranium or mandible. It is often suggested that the final phenotype must reflect the mechanical constraints imposed by the loading of the skeleton as bones remodel to withstand loading. Yet, in the cranium, in contrast to the mandible, the final phenotype is likely constrained by demands other than loading including the protection of sensory systems and the brain. Architectural design constraints may further limit the final form of complex units like the vertebrate cranium. Here we use geometric morphometric approaches to quantify the shape of the cranium and mandible in a lizard and test whether the observed shape co-varies with both the muscles attaching to these structures as well as functional traits such as bite force. Our results show that co-variation between the cranium and mandible is significant and likely driven by the muscles that link the two systems. Moreover, our results show that the patterns of co-variation are stronger between the mandible and ventral side of the cranium. Muscular cross sectional areas, bite force, and the ventral side of the cranium, also co-vary more than the dorsal side of the cranium does with muscle properties and function. Finally, our results show sex-specific patterns of co-variation with males showing a stronger degree of integration between the cranium, mandible, muscles and bite force suggesting that constraints on bite force drive the evolution of cranial shape to a greater extent in males compared to females.  相似文献   

13.
In this report we employed double-knock-out mouse embryos and fetuses (designated as Myf5-/-: MyoD-/- that completely lacked striated musculature to study bone development in the absence of mechanical stimuli from the musculature and to distinguish between the effects that static loading and weight-bearing exhibit on embryonic development of skeletal system. We concentrated on development of the mandibles (= dentary) and clavicles because their formation is characterized by intramembranous and endochondral ossification via formation of secondary cartilage that is dependent on mechanical stimuli from the adjacent musculature. We employed morphometry and morphology at different embryonic stages and compared bone development in double-mutant and control embryos and fetuses. Our findings can be summarized as follows: a) the examined mutant bones had significantly altered shape and size that we described morphometrically, b) the effects of muscle absence varied depending on the bone (clavicles being more dependent than mandibles) and even within the same bone (e.g., the mandible), and c) we further supported the notion that, from the evolutionary point of view, mammalian clavicles arise under different influences from those that initiate the furcula (wishbone) in birds. Together, our data show that the development of secondary cartilage, and in turn the development of the final shape and size of the bones, is strongly influenced by mechanical cues from the skeletal musculature.  相似文献   

14.
Postembryonic skeletal ontogeny of the pelobatid frog Scaphiopus intermontanus is described based on a developmental series of cleared-and-stained, whole-mount specimens. The focus is on laboratory-reared individuals fed a herbivorous diet as larvae. Although there is variation in the timing of ossification of individual skeletal elements relative to developmental stages based on external morphological criteria, the sequence of skeletal development generally is conservative. Compared with its close relative, S. bombifrons, ossifications that occur during prometamorphosis tend to be slightly delayed in S. intermontanus; however, cranial bones that ossify during late metamorphic climax in S. intermontanus are delayed until postmetamorphosis in S. bombifrons. The differences in timing between the two species are consistent, however, with differences observed between two developmental series of S. intermontanus raised at two different temperatures. Noteworthy features of skeletal development in S. intermontanus include: 1) presence of palatine ossifications that form from independent centers of ossification and soon fuse with the postnarial portion of the vomers to form the compound vomeropalatine bones; 2) compound sphenethmoid that may arise from four or more endochondral centers of ossification and one dorsal, dermal center of ossification; and 3) presence of transverse processes and vestigal prezygapophyses on the first postsacral vertebra. The morphology of the larval orbitohyoideus and interhyoideus muscles is compared. The record of skeletal ontogeny and muscle morphology presented herein for the herbivorous larval morph can serve as a baseline for comparisons with the ontogeny of the carnivorous larval morph of Scaphiopus. J. Morphol. 238:179–244, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

15.
Studies of twins have established that peak bone mass is about 70% heritable. The skeletal response to exercise contributes to peak bone mass, as mechanical loading increases skeletal mass during growth and development. It is possible that the skeletal responsiveness to mechanical loading is under genetic control, so that some individuals will build stronger bones with exercise. This appears to be the case in mice. Long bones in mice of the C3H/He strain are largely unresponsive to mechanical loading. Ironically, this strain of mice has very high bone density. Perhaps the genes that regulate BMD are not the same as those that regulate mechanical loading response. Studies of recombinant inbred and congenic strains derived from C3H mice will help to identify genes influencing bone size, density and responsiveness to mechanical loading.  相似文献   

16.
Hormones, muscle and bone tissues have co-existed virtually during the whole evolution of vertebrates, and it is obvious that they constitute a complex system able to cope with needs and challenges arising from a variety of physiological and locomotive needs. All body movements are produced by co-ordinated contractions of skeletal muscles, while consequent dynamic muscle work provides the fundamental source of mechanical loading to the skeleton. Mechanical competence of the skeleton is principally maintained by a mechanosensory feedback system that senses the loading-induced deformations within the bones and maintains the skeletal rigidity through structural adaptation. In contrast to the prevalent view suggesting a modulatory effect of hormones on the sensitivity of the mechanosensory system, a new conceptual scheme is proposed. In particular, it is argued that the mechanical and hormonal functions in the skeleton are fundamentally independent but can be seemingly interactive through hormonally-induced modifications in the bone structure, those basically forming a mineral reservoir for maintenance of physiological homeostasis. Whenever needed, utilization of this strategically placed reservoir would not essentially compromise the mechanical competence and locomotive capability of the skeleton. Although plausible, the present view is necessarily speculative and awaits corroborative experimental evidence.  相似文献   

17.
David  Carrier  Lisa R.  Leon 《Journal of Zoology》1990,222(3):375-389
Although the bones of rapidly growing animals are composed of weak tissue, they often must function in locomotor activity. We address the conflict between development and skeletal function by analysing the ontogeny of skeletal strength in the California gull, Larus californicus. Changes in shape and mechanical properties of the femur, tibia, tarsometatarsus, humerus, ulna and carpometacarpus were analysed in a complete post-hatching growth series. During post-hatching growth, strength and stiffness of the skeletal tissue increases six- to ten-fold. At hatching, long bones of the wing are relatively weak and they remain so throughout the major portion of the growth period. However, in the hind limb, relatively thick bones in juveniles compensate for the weak tissue such that the force required to break the bones remains constant relative to body mass. This difference between hind limb and wing parallels the development of locomotor function; young gulls begin to walk within a day or two of hatching, but they do not fly until they are fully grown. Thus, in the bones of the hind limb, the conflict between rapid growth and skeletal function is solved by negative allometry of bone thickness.
After young gulls reach adult size, the breaking strength of the wing bones increases three- to four-fold, the mass of the pectoralis muscle triples and the surface area of the wing doubles. The one aspect of wing development that is not delayed until shortly before fledging is linear growth of the bones. Bones of the wing increase in length at a rapid and relatively constant rate from the time of hatching to the attainment of adult size. Relatively early initiation of linear growth of the wing bones suggests that the rate at which bones grow in length may be the rate limiting factor in wing development.  相似文献   

18.
Vertebrate jaw muscle anatomy is conspicuously diverse but developmental processes that generate such variation remain relatively obscure. To identify mechanisms that produce species-specific jaw muscle pattern we conducted transplant experiments using Japanese quail and White Pekin duck, which exhibit considerably different jaw morphologies in association with their particular modes of feeding. Previous work indicates that cranial muscle formation requires interactions with adjacent skeletal and muscular connective tissues, which arise from neural crest mesenchyme. We transplanted neural crest mesenchyme from quail to duck embryos, to test if quail donor-derived skeletal and muscular connective tissues could confer species-specific identity to duck host jaw muscles. Our results show that duck host jaw muscles acquire quail-like shape and attachment sites due to the presence of quail donor neural crest-derived skeletal and muscular connective tissues. Further, we find that these species-specific transformations are preceded by spatiotemporal changes in expression of genes within skeletal and muscular connective tissues including Sox9, Runx2, Scx, and Tcf4, but not by alterations to histogenic or molecular programs underlying muscle differentiation or specification. Thus, neural crest mesenchyme plays an essential role in generating species-specific jaw muscle pattern and in promoting structural and functional integration of the musculoskeletal system during evolution.  相似文献   

19.
The Mexican tetra, Astyanax mexicanus, exists as two morphs of a single species, a sighted surface morph and a blind cavefish. In addition to eye regression, cavefish have an increased number of taste buds, maxillary teeth and have an altered craniofacial skeleton compared to the sighted morph. We investigated the effect the lens has on the development of the surrounding skeleton, by ablating the lens at different time points during ontogeny. This unique long-term study sheds light on how early embryonic manipulations on the eye can affect the shape of the adult skull more than a year later, and the developmental window during which time these effects occur. The effects of lens ablation were analyzed by whole-mount bone staining, immunohistochemisty and landmark based morphometric analyzes. Our results indicate that lens ablation has the greatest impact on the skeleton when it is ablated at one day post fertilisation (dpf) compared to at four dpf. Morphometric analyzes indicate that there is a statistically significant difference in the shape of the supraorbital bone and suborbital bones four through six. These bones expand into the eye orbit exhibiting plasticity in their shape. Interestingly, the number of caudal teeth on the lower jaw is also affected by lens ablation. In contrast, the shape of the calvariae, the length of the mandible, and the number of mandibular taste buds are unaltered by lens removal. We demonstrate the plasticity of some craniofacial elements and the stability of others in the skull. Furthermore, this study highlights interactions present between sensory systems during early development and sheds light on the cavefish phenotype.  相似文献   

20.
Development of craniofacial muscles of Monodelphis domestica (Marsupialia, Didelphidae) is described. In a period of 4–6 days all craniofacial muscles in M. domestica progress from myoblast condensation, to striated myofibers that are aligned in the direction of adult muscles and possess multiple, lateral nuclei. This process begins 1 to 2 days before birth and continues during the first few days after birth. Compared to other aspects of cranial development, muscle development in M. domestica is rapid. This rapid and more or less simultaneous emergence of craniofacial muscles differs from the previously described pattern of development of the cranial skeleton in marsupials, which displays a mosaic of acceleration and deceleration of regions and individual elements. Unlike the skeletal system, craniofacial muscles show no evidence of regional specialization during development. M. domestica resembles eutherian mammals in the relatively rapid and more or less simultaneous differentiation of all craniofacial muscles. It differs from eutherian taxa in that most stages of myogenesis occur postnatally, following the onset of function. The timing of the development of muscular and skeletal structures is compared and it is concluded that the relatively early development of muscle is not reflected by any particular acceleration of the differentiation or growth of skeletal structures. Finally, the difficulties in accounting for complex internal arrangements of muscles such as the tongue, given current models of myogenesis are summarized. © 1994 Wiley-Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号