首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The avian eggshell is a composite biomaterial composed of non-calcifying eggshell membranes and the overlying calcified shell matrix. The calcified shell forms in a uterine fluid where the concentration of different protein species varies between the initial, rapid calcification and terminal phases of eggshell deposition. The role of these avian eggshell matrix proteins during shell formation is poorly understood. The properties of the individual components must be determined in order to gain insight into their function during eggshell mineralization. In this study, we have identified lysozyme as a component of the uterine fluid by microsequencing, and used western blotting, immunofluorescence and colloidal-gold immunocytochemistry to document its localization in the eggshell membranes and the shell matrix. Furthermore, Northern blotting and RT-PCR indicates that there is a gradient to the expression of lysozyme message by different regions of the oviduct, with significant albeit low levels expressed in the isthmus and uterus. Lysozyme protein is abundant in the limiting membrane that circumscribes the egg white and forms the innermost layer of the shell membranes. It is also present in the shell membranes, and in the matrix of the calcified shell. Calcite crystals grown in the presence of purified hen lysozyme exhibited altered crystal morphology. Therefore, in addition to its well-known anti-microbial properties that could add to the protective function of the eggshell during embryonic development, shell matrix lysozyme may also be a structural protein which in soluble form influences calcium carbonate deposition during calcification.  相似文献   

2.
The avian eggshell is a composite biomaterial composed of noncalcifying eggshell membranes and the overlying calcified shell matrix. The shell is deposited in a uterine fluid where the concentration of different protein species varies at different stages of its formation. The role of avian eggshell proteins during shell formation remains poorly understood, and we have sought to identify and characterize the individual components in order to gain insight into their function during elaboration of the eggshell. In this study, we have used direct sequencing, immunochemistry, expression screening, and EST data base mining to clone and characterize a 1995-bp full-length cDNA sequence corresponding to a novel chicken eggshell protein that we have named Ovocalyxin-36 (OCX-36). Ovocalyxin-36 protein was only detected in the regions of the oviduct where egg-shell formation takes place; uterine OCX-36 message was strongly up-regulated during eggshell calcification. OCX-36 localized to the calcified eggshell predominantly in the inner part of the shell, and to the shell membranes. BlastN data base searching indicates that there is no mammalian version of OCX-36; however, the protein sequence is 20-25% homologous to proteins associated with the innate immune response as follows: lipopolysaccharide-binding proteins, bactericidal permeability-increasing proteins, and Plunc family proteins. Moreover, the genomic organization of these proteins and OCX-36 appears to be highly conserved. These observations suggest that OCX-36 is a novel and specific chicken eggshell protein related to the superfamily of lipopolysaccharide-binding proteins/bactericidal permeability-increasing proteins and Plunc proteins. OCX-36 may therefore participate in natural defense mechanisms that keep the egg free of pathogens.  相似文献   

3.
The avian eggshell is an acellular bioceramic containing organic and inorganic phases that are sequentially assembled during the time the egg moves along the oviduct. As it has been demonstrated in other mineralized tissues, mineralization of the eggshell is regulated by extracellular matrix proteins especially the anionic side chains of proteoglycans. Among them, osteopontin has been found in the avian eggshell and oviduct. However, its precise localization in the eggshell or in different oviduct regions during eggshell formation, nor its function have been established. By using anti-osteopontin antibody (OPN 1), we studied its immunolocalization in the isthmus, red isthmus and shell gland of the oviduct, and in the eggshell during formation. In the eggshell, osteopontin was localized in the core of the non-mineralized shell membrane fibers, in the base of the mammillae and in the outermost part of the palisade. In the oviduct, OPN 1 was localized in the ciliated epithelial but not in the tubular gland cells of the isthmus, in the ciliated epithelial cells of the red isthmus, and in the non-ciliated epithelial cells of the shell gland. The occurrence of osteopontin in each of the oviduct regions, coincided with the concomitant presence of the egg in such region. Considering the reported inhibitory function of osteopontin in other mineralized systems, together with its main occurrence in the non-mineralized parts of the eggshell and at the outermost part of the shell, suggests that this molecule could be part of the mechanism regulating the eggshell calcification.  相似文献   

4.
Congjiao Sun  Guiyun Xu  Ning Yang 《Proteomics》2013,13(23-24):3523-3536
Eggshell strength is a crucial economic trait for table egg production. During the process of eggshell formation, uncalcified eggs are bathed in uterine fluid that plays regulatory roles in eggshell calcification. In this study, a label‐free MS‐based protein quantification technology was used to detect differences in protein abundance between eggshell matrix from strong and weak eggs (shell matrix protein from strong eggshells and shell matrix protein from weak eggshells) and between the corresponding uterine fluids bathing strong and weak eggs (uterine fluid bathing strong eggs and uterine fluid bathing weak eggs) in a chicken population. Here, we reported the first global proteomic analysis of uterine fluid. A total of 577 and 466 proteins were identified in uterine fluid and eggshell matrix, respectively. Of 447 identified proteins in uterine fluid bathing strong eggs, up to 357 (80%) proteins were in common with proteins in uterine fluid bathing weak eggs. Similarly, up to 83% (328/396) of the proteins in shell matrix protein from strong eggshells were in common with the proteins in shell matrix protein from weak eggshells. The large amount of common proteins indicated that the difference in protein abundance should play essential roles in influencing eggshell strength. Ultimately, 15 proteins mainly relating to eggshell matrix specific proteins, calcium binding and transportation, protein folding and sorting, bone development or diseases, and thyroid hormone activity were considered to have closer association with the formation of strong eggshell.  相似文献   

5.
There is evidence to suggest that extracellular matrix molecules, such as proteoglycans, are involved in the regulation of mineral deposition in calcifying tissues. One mineralizing system which is characterized by extremely rapid mineralization is the hen eggshell. This eggshell consists of a pair of nonmineralized eggshell membranes subjacent to the calcified eggshell proper; the eggshell proper is organized into palisades (columns) of mineralized matrix separated by pores. Between the membranes and the shell proper are compacted foci of tissue called mammillary knobs, which are thought to be sites where mineralization is initiated. Previous work from this laboratory has shown the presence of types I, V, and X collagen in the shell membranes. To address the question of the possible role of proteoglycans and glycosaminoglycans in mineralization of the eggshell, two approaches were used. First, immunohistochemistry was performed with monoclonal antibodies to various proteoglycan and glycosaminoglycan epitopes. This analysis indicates that different glycosaminoglycans are localized to discrete regions within the eggshell. Dermatan sulfate is present within the matrix of the shell proper and, to a lesser extent, the mammillary knobs and the outer portion of the shell membranes. In contrast, keratan sulfate is found in the shell membranes and prominently in the mammillary knobs. Interestingly, different keratan sulfate antibodies immunostain distinct regions of the eggshell, which suggests that various types of keratan sulfate are distributed differently. The second approach utilized was to extract the eggshell membranes and recover anionic molecules by anion-exchange chromatography. This resulted in the extraction of material which was recognized by antibodies to keratan sulfate, but not to chondroitin sulfate. This material was very large, as evidenced by its elution in the void volume of a Sepharose CL-2B column. The large size may be due to the extensive cross-links known to occur in the eggshell. If eggshell membranes are extracted at elevated temperature, the material recovered is of much smaller size. These results indicate that molecules recognized by antibodies to glycosaminoglycans are present in the eggshell, and their localized distribution relative to the calcified matrix suggests that they may be involved in the regulation of mineral deposition.  相似文献   

6.
The avian egg is a valuable model for the calcitic biomineralization process as it is the fastest calcification process occurring in nature and is a clear example of biomineralization. In this study, iTRAQ MS/MS is used to detect and study for the first time: 1) the overall duck eggshell proteome; 2) regional differences in the proteome between the inner and outer portions of the duck eggshell. The new reference protein datasets allow us to identify 179 more eggshell proteins than solely using the current release of Ensembl duck annotations. In total, 484 proteins are identified in the entire duck eggshell proteome. Twenty‐eight novel proteins of unknown function that are involved in eggshell formation are also identified. Among the identified eggshell proteins, 54 proteins show differential abundances between the inner, partially mineralized eggshell (obtained 16 h after ovulation) compared to the overall complete eggshell (normally expulsed eggshell). At least 64 of the abundant matrix proteins are common to eggshell of 4 different domesticated bird species (chicken, duck, quail, turkey) and zebra finch. This study provides a new resource for avian eggshell proteomics, and augments the inventory of eggshell matrix proteins that will lead to a deeper understanding of calcitic biomineralization.  相似文献   

7.
8.
The size and orientation of calcium carbonate crystals influence the structure and strength of the eggshells of chickens. In this study, estimates of heritability were found to be high (0.6) for crystal size and moderate (0.3) for crystal orientation. There was a strong positive correlation (0.65) for crystal size and orientation with the thickness of the shell and, in particular, with the thickness of the mammillary layer. Correlations with shell breaking strength were positive but with a high standard error. This was contrary to expectations, as in man-made materials smaller crystals would be stronger. We believe the results of this study support the hypothesis that the structural organization of shell, and in particular the mammillary layer, is influenced by crystal size and orientation, especially during the initial phase of calcification. Genetic associations for crystal measurements were observed between haplotype blocks or individual markers for a number of eggshell matrix proteins. Ovalbumin and ovotransferrin (LTF) markers for example were associated with crystal size, while ovocleidin-116 and ovocalyxin-32 (RARRES1) markers were associated with crystal orientation. The location of these proteins in the eggshell is consistent with different phases of the shell-formation process. In conclusion, the variability of crystal size, and to a lesser extent orientation, appears to have a large genetic component, and the formation of calcite crystals are intimately related to the ultrastructure of the eggshell. Moreover, this study also provides evidence that proteins in the shell influence the variability of crystal traits and, in turn, the shell's thickness profile. The crystal measurements and/or the associated genetic markers may therefore prove to be useful in selection programs to improve eggshell quality.  相似文献   

9.
The flexible shell from eggs of the tuatara (Sphenodon punctatus) is comprised of both calcareous and fibrous components. The calcareous material is organized into columns that extend deep into the fibrous shell membrane. Many of the fibers of the membrane are enclosed within the crystalline matrix of the columns. Columns widen and flatten slightly at the outer surface of the eggshell to form cap-like structures composed of a compact crystalline matrix containing no fibers. The outer surface of eggs laid prior to completion of shell formation consists of a series of nodes obscured by a densely fibrous matrix. Similar nodes also are found at the inner surface of partially shelled eggs. The nodes represent the outer and inner aspects of columns that had not completed formation prior to oviposition. Our interpretation is that a layer (or layers) of the shell membrane forms first, with nucleation of columns occurring shortly thereafter. Columns grow into the membrane a short distance and enclose fibers of the membrane, but the primary direction of column growth is toward what will become the outer aspect of the shell. Calcareous columns and the shell membrane form more or less in concert until crystal growth outstrips that of the membrane and a cap-like apex of compact crystalline material is formed. The end result is an eggshell in which the shell membrane and calcareous material form a single unit for much of the thickness of the shell.  相似文献   

10.
Eggshell formation in polyclads (Turbellaria)   总被引:1,自引:1,他引:0  
Eggshell formation in polyclads was studied by means of transmission electron microscopy and histochemistry. Shell-forming granules (SFG) in the egg, as well as secretions of shell glands (SGS), play roles in eggshell formation. As the oocytes pass through the portion of the female tract where the shell glands open, they are surronded by a two-layered envelope of SGS. This envelope prevents the dispersion of SFGs discharged after oviposition, and its inner layer participates in eggshell formation with the SFGs. In Pseudostylochus sp., most SFGs consist of five parts. Similarities in staining between the parts of the SFGs and the parts of the eggshell indicate that discrete parts of the shell are derived from specific SFG components. Hardening of the eggshell and egg-plate matrix takes place through primary tanning of a sclerotin-like protein.  相似文献   

11.
For skeletal mineralization, the avian embryo mobilizes calcium from its calcitic eggshell. This occurs through dissolution of specific interior regions of the shell in a process that also weakens the shell to allow hatching. Here, we have examined eggshell ultrastructure during dissolution occurring between laying of a fertilized egg (with incubation) and hatching of the chick (Gallus gallus). We have focused on changes in shell mammillae where the majority of dissolution takes place. Using scanning electron microscopy, we describe differences in matrix–mineral structure and relationships not observed in unfertilized eggs (unresorbed eggshell). We document changes in the calcium reserve body – an essential sub-compartment of mammillae – consistent with it being an early, primary source of calcium essential for embryonic skeletal growth. Dissolution events occurring in the calcium reserve sac and in the base plate of the calcium reserve body, and similar changes in surrounding bulk mammillae structure, all correlate with advancing skeletal embryonic calcification. The changes in mammillae sub-structures can generally be characterized as mineral dissolutions revealing fine surface topographies on remaining mineral surfaces and the exposure of an extensive, intracrystalline (occluded) organic matrix network. We propose that this mineral-occluded network regulates how shell mineral is dissolved by providing dissolution channels facilitating calcium release for the embryonic skeleton.  相似文献   

12.
The eggshell of lizards is a complex structure composed of organic and inorganic molecules secreted by the oviduct, which protects the embryo by providing a barrier to the external environment and also allows the exchange of respiratory gases and water for life support. Calcium deposited on the surface of the eggshell provides an important nutrient source for the embryo. Variation in physical conditions encountered by eggs results in a tradeoff among these functions and influences eggshell structure. Evolution of prolonged uterine egg retention results in a significant change in the incubation environment, notably reduction in efficiency of gas exchange, and selection should favor a concomitant reduction in eggshell thickness. This model is supported by studies that demonstrate an inverse correlation between eggshell thickness and length of uterine egg retention. One mechanism leading to thinning of the eggshell is reduction in size of uterine shell glands. Saiphos equalis is an Australian scincid lizard with an unusual pattern of geographic variation in reproductive mode. All populations retain eggs in the uterus beyond the embryonic stage at oviposition typical for lizards, and some are viviparous. We compared structure and histochemistry of the uterus and eggshell of two populations of S. equalis, prolonged egg retention, and viviparous to test the hypotheses: 1) eggshell thickness is inversely correlated with length of egg retention and 2) eggshell thickness is positively correlated with size of shell glands. We found support for the first hypothesis but also found that eggshells of both populations are surprisingly thick compared with other lizards. Our histochemical data support prior conclusions that uterine shell glands are the source of protein fiber matrix of the eggshell, but we did not find a correlation between size of shell glands and eggshell thickness. Eggshell thickness is likely determined by density of uterine shell glands in this species. J. Morphol., 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

13.

Background

The exceptional diversity of coloration found in avian eggshells has long fascinated biologists and inspired a broad range of adaptive hypotheses to explain its evolution. Three main impediments to understanding the variability of eggshell appearance are: (1) the reliable quantification of the variation in eggshell colours; (2) its perception by birds themselves, and (3) its relation to avian phylogeny. Here we use an extensive museum collection to address these problems directly, and to test how diversity in eggshell coloration is distributed among different phylogenetic levels of the class Aves.

Methodology and Results

Spectrophotometric data on eggshell coloration were collected from a taxonomically representative sample of 251 bird species to determine the change in reflectance across different wavelengths and the taxonomic level where the variation resides. As many hypotheses for the evolution of eggshell coloration assume that egg colours provide a communication signal for an avian receiver, we also modelled reflectance spectra of shell coloration for the avian visual system. We found that a majority of species have eggs with similar background colour (long wavelengths) but that striking differences are just as likely to occur between congeners as between members of different families. The region of greatest variability in eggshell colour among closely related species coincided with the medium-wavelength sensitive region around 500 nm.

Conclusions

The majority of bird species share similar background eggshell colours, while the greatest variability among species aligns with differences along a red-brown to blue axis that most likely corresponds with variation in the presence and concentration of two tetrapyrrole pigments responsible for eggshell coloration. Additionally, our results confirm previous findings of temporal changes in museum collections, and this will be of particular concern for studies testing intraspecific hypotheses relating temporal patterns to adaptation of eggshell colour. We suggest that future studies investigating the phylogenetic association between the composition and concentration of eggshell pigments, and between the evolutionary drivers and functional impacts of eggshell colour variability will be most rewarding.  相似文献   

14.
The extracellular matrix of the mineralizing eggshell contains molecules hypothesized to be regulators of biomineralization. To study eggshell matrix molecules, a bank of monoclonal antibodies was generated that bound demineralized eggshell matrix or localized to oviduct epithelium. Immunofluorescence staining revealed several staining patterns for antibodies that recognized secretory cells: staining for a majority of columnar lining cells, staining for a minor sub-set of columnar lining cells, intensified staining within epithelial crypts, and staining of the entire tubular gland. Western blotting with the antibody Epi2 on eggshell matrix showed binding to molecules with the apparent molecular weight of eggshell matrix dermatan sulfate proteoglycan (eggshell DSPG). Immunoblots of cyanogen bromide-cleaved eggshell DSPG revealed broad band of reactivity that shifted to 25 kDa after chondroitinase digestion; indicating that the Epi2 binding site is located on a fragment which contains dermatan sulfate side chains. Immunogold labeling showed that Epi2 binds to secretory vesicles within the non-ciliated cells of the columnar epithelium, while the antibodies Tg1 and Tg2 bind to secretory vesicles of tubular gland cells. Immunogold labeling of demineralized shell matrix showed binding of Epi2, Tg1, and Tg2 to the matrix of the palisade layer, and showed little reactivity to other regions of the shell matrix. Quantification of the immunogold particles within the eggshell matrix revealed that antibodies Epi2 and Tg1 bind all calcified regions equally while antibody Tg2 has a greater affinity for the baseplate region of the calcium reserve assembly.  相似文献   

15.
Mann K  Macek B  Olsen JV 《Proteomics》2006,6(13):3801-3810
The major difference between inorganic minerals and biominerals is the presence of an organic matrix consisting of proteins, glycoproteins, proteoglycans, and polysaccharides, which is synthesized by specialized cells under genetic control before or during mineralization. The organic matrix is thought to play a major role in the assembly of the biomineral and determination of its mechanical properties. The recent elucidation of the chicken genome provided an opportunity to explore the matrix proteome of a biomineral using up-to-date MS-based technology. We identified 520 proteins in this matrix including the ten matrix proteins already known before. The identified proteins were divided into three abundance groups using the exponentially modified protein abundance index described recently which was roughly calibrated with the few known data on protein yield derived from Edman sequence analysis. A small group of 32 highly abundant proteins contained the presently known eggshell-specific proteins and all of the other known eggshell matrix constituents identified before with much less sensitive conventional methods. The present study, which is the first comprehensive proteomic study of a vertebrate biomineral, is intended as a starting point for the detailed molecular characterization of eggshell matrix proteins, their interactions in the matrix network and functional studies.  相似文献   

16.
The study of development has been greatly aided by the use of the chick embryo as an experimental model. The ease of accessibility of the embryo has allowed for experiments to map cell fates using several approaches, including chick quail chimeras and focal dye labeling. In addition, it allows for molecular perturbations of several types, including placement of protein-coated beads and introduction of plasmid DNA using in ovo electroporation. These experiments have yielded important data on the development of the central and peripheral nervous systems. For many of these studies, it is necessary to open the eggshell and reclose it without perturbing the embryo's growth. The embryo can be examined at successive developmental stages by re-opening the eggshell. While there are several excellent methods for opening chicken eggs, in this article we demonstrate one method that has been optimized for long survival times. In this method, the egg rests on its side and a small window is cut in the shell. After the experimental procedure, the shell is used to cover the egg for the duration of its development. Clear plastic tape overlying the eggshell protects the embryo and helps retain hydration during the remainder of the incubation period. This method has been used beginning at two days of incubation and has allowed survival through mature embryonic ages.  相似文献   

17.
Current research into the evolution and adaptive function of avian eggshell pigmentation, including maculation, has focused mostly on signalling‐based and structural function hypotheses but ignored the potential consequences of shell pigmentation for the developing avian embryo, especially in moderating the embryo's interaction with its light environment. The exposure of the eggs to sunlight that frequently accompanies avian incubation behaviour is one of the major evolutionary steps setting apart birds and reptiles, and coincides with the appearance of eggshell pigmentation. This suggests that shell pigments could play a major role in ensuring the successful development of the avian embryo. We propose that the effects of shell pigments on the egg contents should be considered in addition to established hypotheses of shell pigmentation such as crypsis, egg recognition or a possible structural function. This approach has the potential to identify trade‐offs between different pigment functions and to resolve some of the long standing paradoxa in the evolution of eggshell colour, such as the occurrence of conspicuous blue eggs in passerines or the secondary evolution of white eggshells in cavity nesters. In particular, we identify seven hypotheses, which address how the interaction of eggshell pigments and the light environment may influence embryonic development. These hypotheses are the: thermo‐regulation; UV‐B protection; photo‐acceleration; lateralization; circadian rhythm; photo‐reactivation; and antimicrobial defence. We believe that the understanding of eggshell pigmentation will greatly benefit from taking these hypotheses into consideration when studying the functional significance of eggshell pigmentation and suggest a number of promising directions for future experimental and comparative research.  相似文献   

18.
Higham JP  Gosler AG 《Oecologia》2006,149(4):561-570
Many small passerine birds worldwide lay white eggs speckled with red, brown and black protoporphyrin pigment spots (maculation). Unlike some patterns of avian eggshell pigmentation which clearly serve a crypsis or signalling function, the ubiquity of maculation among passerines suggests that its origins lie in another function, not specific to any particular ecological or behavioural group. Elsewhere, we have presented evidence that protoporphyrin pigments serve a structural function related to eggshell thickness and calcium availability: eggshell maculation in the great tit Parus major increases with decreasing soil calcium levels, pigments demarcate thinner areas of shell, and both the pigment intensity and distribution are related to shell thickness. Here we show that maculation also affects the rate of water loss from the egg during incubation (≈ Mass Loss per Day or MLD, which is critical to egg viability), but not that of unincubated eggs. We also demonstrate, both by observation and experiment, that the effect of female incubation behaviour on MLD compensates in some way for variation in egg characteristics, and that differences between females in the degree of such compensation are related to differences in clutch maculation. Our results suggest that, while a principal function of maculation in this species may be to strengthen the eggshell, it may also reduce eggshell permeability when large amounts of pigment are used, and that this necessitates a behavioural adjustment from the female during incubation. We discuss these findings and make further testable predictions from our model.  相似文献   

19.
The morphology of the eggshell of the alligator, Alligator mississippiensis, is similar to that of birds. In many avian species there is a positive linear correlation between the numbers of pores and mammillae on the inner surfaces of eggshells, indicating that the distribution and density of mammillae may determine the porosity of the shell. It is not known, however, if a relationship exists between pores and mammillae on the shell of the alligator. Using a scanning electron microscope, we counted pores and mammillae on the inner surfaces of pieces of shell from the middle of fertile and infertile eggs from wild and captive, pen-reared alligators. Data were analyzed by ANOVA, Duncan's multiple range tests and linear regression equations. Results demonstrate a positive linear correlation between the numbers of pores and mammillae on the shells of unincubated fertile and infertile eggs from wild and captive alligators; however, there is no correlation between pores and mammillae on shells of eggs that were incubated for 55 days. It is suggested that initially the porosity of the eggshell of the alligator is related to the density of mammillae on the inner surface of the shell and that erosion of the shell during incubation destroys the original relationship between pores and mammillae.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号