首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
A major challenge in the field of proteomics is obtaining high‐quality peptides for comprehensive proteome profiling by LC–MS. Here, evaluation and modification of a range of sample preparation methods using photosynthetically active Arabidopsis leaf tissue are done. It was found that inclusion of filter‐aided sample preparation (FASP) based on filter digestion improves all protein extraction methods tested. Ultimately, a detergent‐free urea‐FASP approach that enables deep and robust quantification of leaf and root proteomes is shown. For example, from 4‐day‐old leaf tissue, up to 11 690 proteins were profiled from a single sample replicate. This method should be broadly applicable to researchers working with difficult to process plant samples.  相似文献   

4.
In this study the analysis and confirmation of flumequine enantiomers in rat plasma by ultra‐fast liquid chromatography coupled with electron spray ionization mass spectrometry (using propranolol as an internal standard [IS]) was developed and validated. Plasma samples were prepared by liquid–liquid extraction using methyl tert‐butyl ether as the extraction solvent. Direct resolution of the R‐ and S‐isomers was performed on a CHIRALCEL OJ‐RH column (4.6 × 150 mm, 5 μm) using acetonitrile / 0.1% formic acid / 1 mM ammonium acetate as the mobile phase. Detection was operated by electron spray ionization in the selected ion monitoring and positive ion mode. The target ions at m/z 262.1 and m/z 260.1 were selected for the quantification of the enantiomers and IS, respectively. The linear range was 0.5–500 ng/mL. The precisions (coefficient of variation, CV%) and recoveries were 1.43–8.68 and 94.24–106.76%, respectively. The lowest quantitation limit for both enantiomers is 0.5 ng/mL, which is sensitive enough to be applied to sample analysis in other related studies.  相似文献   

5.
Members of the genus Cronobacter are opportunistic pathogens for neonates and are often associated with contaminated milk powder formulas. At present little is known about the virulence mechanisms or the natural reservoir of these organisms. The proteome of Cronobacter turicensis 3032, which has recently caused two deaths, was mapped aiming at a better understanding of physiology and putative pathogenic traits of this clinical isolate. Our analyses of extracellular, surface‐associated and whole‐cell proteins by two complementary proteomics approaches, 1D‐SDS‐PAGE combined with LC‐ESI‐MS/MS and 2D‐LC‐MALDI‐TOF/TOF MS, lead to the identification of 832 proteins corresponding to a remarkable 19% of the theoretically expressed protein complement of C. turicensis. The majority of the identified proteins are involved in central metabolic pathways, translation, protein folding and stability. Several putative virulence factors, whose expressions were confirmed by phenotypic assays, could be identified: a macrophage infectivity potentiator involved in C. turicensis persistence in host cells, a superoxide dismutase protecting the pathogen against reactive oxygen species and an enterobactin‐receptor protein for the uptake of siderophore‐bound iron. Most interestingly, a chitinase and a metalloprotease that might act against insects and fungi but no casein hydrolysing enzymes were found, suggesting that there is an environmental natural habitat of C. turicensis 3032.  相似文献   

6.
Pulmonary tuberculosis (TB) caused by Mycobacterium tuberculosis is a chronic disease. Currently, there are no sufficiently validated biomarkers for early diagnosis of TB infection. In this study, a panel of potential serum biomarkers was identified between patients with pulmonary TB and healthy controls by using iTRAQ‐coupled 2D LC‐MS/MS technique. Among 100 differentially expressed proteins screened, 45 proteins were upregulated (>1.25‐fold at p < 0.05) and 55 proteins were downregulated (<0.8‐fold at p < 0.05) in the TB serum. Bioinformatics analysis revealed that the differentially expressed proteins were related to the response to stimulus, the metabolic and immune system processes. The significantly differential expression of apolipoprotein CII (APOCII), CD5 antigen‐like (CD5L), hyaluronan‐binding protein 2 (HABP2), and retinol‐binding protein 4 (RBP4) was further confirmed using immunoblotting and ELISA analysis. By forward stepwise multivariate regression analysis, a panel of serum biomarkers including APOCII, CD5L, and RBP4 was obtained to form the disease diagnostic model. The receiver operation characteristic curve of the diagnostic model was 0.98 (sensitivity = 93.42%, specificity = 92.86%). In conclusion, APOCII, CD5L, HABP2, and RBP4 may be potential protein biomarkers of pulmonary TB. Our research provides useful data for early diagnosis of TB.  相似文献   

7.
8.
Most genes in evolutionarily complex genomes are expressed to multiple protein isoforms, but there is not yet any simple high‐throughput approach to identify these isoforms. Using an oversimplified top‐down LC–MS/MS strategy, we detected, around the 26‐kD position of SDS‐PAGE, proteins produced from 782 genes in a Cdk4?/? mouse embryonic fibroblast cell line. Interestingly, only 213 (27.24%, about one‐fourth) of these 782 genes have their proteins with a theoretical molecular mass (TMM) 10% smaller or larger than 26 kD, that is, between 23 and 29 kD, the range set as allowed variation in SDS‐PAGE. These 213 proteins are considered as the wild type (WT). The remaining three‐fourths includes proteins from 66 (9.44%) genes with a TMM smaller than 23 kD and proteins from 503 (64.32%, nearly two‐thirds) genes with a TMM larger than 29 kD; these proteins are categorized into a larger‐group or a smaller‐group, respectively, for their appearance at a higher or lower position of SDS‐PAGE. For instance, at this 26‐kD position we detected proteins from the Rps27a, Snrpf, Hist1h4a, and Rps25 genes whose proteins' TMM is 8.6, 9.7, 11.4, and 13.7 kD, respectively, and detected proteins from the Plelc1 and Prkdc genes, whose largest isoform is 533.9 and 471.1 kD, respectively. We extrapolate that many of those proteins migrating unexpectedly in SDS‐PAGE may be isoforms besides the WT protein. Moreover, we also detected a Cdk4 protein in this Cdk4?/? cell line, thus wondering whether some of other gene‐knockout cells or organisms show similar incompleteness of the knockout.  相似文献   

9.
10.
Recent studies have suggested that the isomerization/racemization of aspartate residues in proteins increases in aged tissues. One such residue is Asp151 in lens‐specific αA‐crystallin. Although many isomerization/racemization sites have been reported in various proteins, the factors that lead to those modifications in proteins in vivo remain obscure. Therefore, an in vitro system is needed to assess the mechanisms of modifications of Asp under various conditions. Deamidation of Asn to Asp in proteins occurs more rapidly than isomerization/racemization of Asp, although the reaction passes through the same intermediate in both pathways. Here, therefore, we replaced Asp151 in human lens αA‐crystallin with Asn by using site‐directed mutagenesis. The recombinant protein was expressed in Escherichia coli and used to investigate the deamidation/isomerization/racemization of Asn151 after incubation at 50°C for various durations and under different pH. After incubation, the mutant αA‐crystallin was subjected to enzymatic digestion followed by liquid chromatography–MS/MS to evaluate the ratio of modifications in Asn151‐containing peptides. The Asp151Asn αA‐crystallin mutant showed rapid deamidation to Asp with the formation of specific Asp isomers. In particular, deamidation increased greatly under basic conditions. By contrast, subunit–subunit interactions between αA‐crystallin and αB‐crystallin had little effect on the modification of Asn151. Our findings suggest that the Asp151Asn αA‐crystallin mutant represents a good in vitro model protein to assess deamidation, isomerization, and the racemization intermediates. Furthermore, our in vitro results show a different trend from in vivo data, implying the presence of specific factors that induce racemization from L‐Asp to D‐Asp residues in vivo.  相似文献   

11.
The aspect of time is essential in biological processes and thus it is important to be able to monitor signaling molecules through time. Proteins are key players in cellular signaling and they respond to many stimuli and change their expression in many time‐dependent processes. Mass spectrometry (MS) is an important tool for studying proteins, including their posttranslational modifications and their interaction partners—both in qualitative and quantitative ways. In order to distinguish the different trends over time, proteins, modification sites, and interacting proteins must be compared between different time points, and therefore relative quantification is preferred. In this review, the progress and challenges for MS‐based analysis of time‐resolved proteome dynamics are discussed. Further, aspects on model systems, technologies, sampling frequencies, and presentation of the dynamic data are discussed.  相似文献   

12.
13.
HepG‐2 cells are widely used as a cell model to investigate hepatocellular carcinomas and the effect of anticancer drugs such as doxorubicin, an effective antineoplastic agent, which has broad antitumoral activity against many solid and hematological malignancies. To investigate the effect of doxorubicin on the protein pattern, we used complementary proteomic workflows including 2‐D gel‐based and gel‐free methods. The analysis of crude HepG2 cell extracts by 2‐D DIGE provided data on 1835 protein spots which was then complemented by MS‐centered analysis of stable isotope labeling by amino acids in cell culture‐labeled cells. The monitoring of more than 1300 distinct proteins, including proteins of the membrane fraction provides the most comprehensive overview on the proteome of the widely used model cell line HepG2. Of the proteins monitored in total, 155 displayed doxorubicin‐induced changes in abundance. Functional analysis revealed major influences of doxorubicin on proteins involved in protein synthesis, DNA damage control, electron transport/mitochondrial function, and tumor growth. The strongest decrease in level was found for proteins involved in DNA replication and protein synthesis, whereas proteins with a function in DNA damage control and oxidative stress management displayed increased levels following treatment with doxorubicin compared with control cells. Furthermore, the doxorubicin‐associated increase in levels of multiple forms of keratins 8, 18, and 19 and other structural proteins revealed an influence on the cytoskeleton network.  相似文献   

14.
A wealth of information on proteins involved in many aspects of disease is encased within formalin‐fixed paraffin‐embedded (FFPE) tissue repositories stored in hospitals worldwide. Recently, access to this “hidden treasure” is being actively pursued by the application of two main extraction strategies: digestion of the entangled protein matrix with generation of tryptic peptides, or decrosslinking and extraction of full‐length proteins. Here, we describe an optimised method for extraction of full‐length proteins from FFPE tissues. This method builds on the classical “antigen retrieval” technique used for immunohistochemistry, and allows generation of protein extracts with elevated and reproducible yields. In model animal tissues, average yields of 16.3 μg and 86.8 μg of proteins were obtained per 80 mm2 tissue slice of formalin‐fixed paraffin‐embedded skeletal muscle and liver, respectively. Protein extracts generated with this method can be used for the reproducible investigation of the proteome with a wide array of techniques. The results obtained by SDS‐PAGE, western immunoblotting, protein arrays, ELISA, and, most importantly, nanoHPLC‐nanoESI‐Q‐TOF MS of FFPE proteins resolved by SDS‐PAGE, are presented and discussed. An evaluation of the extent of modifications introduced on proteins by formalin fixation and crosslink reversal, and their impact on quality of MS results, is also reported.  相似文献   

15.
16.
17.
18.
A sensitive and high‐throughput chiral liquid chromatography–tandem mass spectrometry method was developed and validated for the quantification of R‐pantoprazole and S‐pantoprazole in human plasma. Sample extraction was carried out by using ethyl acetate liquid–liquid extraction in 96‐well plate format. The separation of pantoprazole enantiomers was performed on a CHIRALCEL OJ‐RH column and an overlapping injection mode was used to achieve a run time of 5.0 min/sample. The mobile phase consisted of 1) 10 mM ammonium acetate in methanol: acetonitrile (1:1, v/v) and 2) 20 mM ammonium acetate in water. Isocratic elution was used with flow rate at 500 μL/min. The enantiomers were quantified on a triple‐quadrupole mass spectrometer under multiple reaction monitoring (MRM) mode with m/z 382.1/230.0 for pantoprazole and m/z 388.4/230.1 for pantoprazole‐d7. Linearity from 20.0 to 5000 ng/mL was established for each enantiomer (r2 > 0.99). Extraction recovery ranged from 91.7% to 96.4% for R‐pantoprazole and from 92.5% to 96.5% for S‐pantoprazole and the IS‐normalized matrix factor was 0.98 to 1.07 for R‐pantoprazole and S‐pantoprazole, respectively. The method was demonstrated with acceptable accuracy, precision, selectivity, and stability and the method was applied to support a pharmacokinetic study of a phase I clinical trial of racemic pantoprazole in healthy Chinese subjects. Chirality 28:569–575, 2016. © 2016 Wiley Periodicals, Inc.  相似文献   

19.
In the past decade, encouraging results have been obtained in extraction and analysis of proteins from formalin‐fixed, paraffin‐embedded (FFPE) tissues. However, 2‐D PAGE protein maps with satisfactory proteomic information and comparability to fresh tissues have never been described to date. In the present study, we report 2‐D PAGE separation and MS identification of full‐length proteins extracted from FFPE skeletal muscle tissue. The 2‐D protein profiles obtained from FFPE tissues could be matched to those achieved from frozen tissues replicates. Up to 250 spots were clearly detected in 2‐D maps of proteins from FFPE tissue following standard mass‐compatible silver staining. Protein spots from both FFPE and frozen tissue 2‐D gels were excised, subjected to in situ hydrolysis, and identified by MS analysis. Matched spots produced matched protein identifications. Moreover, 2‐D protein maps from FFPE tissues were successfully subjected to Western immunoblotting, producing comparable results to fresh‐frozen tissues. In conclusion, this study provides evidence that, when adequately extracted, full‐length proteins from FFPE tissues might be suitable to 2‐D PAGE‐MS analysis, allowing differential proteomic studies on the vast existing archives of healthy and pathological‐fixed tissues.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号