首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The worldwide prevalence of metabolic syndrome, which includes obesity and its associated diseases, is rising rapidly. The human gut microbiome is recognized as an independent environmental modulator of host metabolic health and disease. Research in animal models has demonstrated that the gut microbiome has the functional capacity to induce or relieve metabolic syndrome. One way to modify the human gut microbiome is by transplanting fecal matter, which contains an abundance of live microorganisms, from a healthy individual to a diseased one in the hopes of alleviating illness. Here we review recent evidence suggesting efficacy of fecal microbiota transplant (FMT) in animal models and humans for the treatment of obesity and its associated metabolic disorders.  相似文献   

2.
Human gut microbiome is a diversified, resilient, immuno-stabilized, metabolically active and physiologically essential component of the human body. Scientific explorations have been made to seek in-depth information about human gut microbiome establishment, microbiome functioning, microbiome succession, factors influencing microbial community dynamics and the role of gut microbiome in health and diseases. Extensive investigations have proposed the microbiome therapeutics as a futuristic medicine for various physiological and metabolic disorders. A comprehensive outlook of microbial colonization, host–microbe interactions, microbial adaptation, commensal selection and immuno-survivability is still required to catalogue the essential genetic and physiological features for the commensal engagement. Evolution of a structured human gut microbiome relies on the microbial flexibility towards genetic, immunological and physiological adaptation in the human gut. Key features for commensalism could be utilized in developing tailor-made microbiome-based therapy to overcome various physiological and metabolic disorders. This review describes the key genetics and physiological traits required for host–microbe interaction and successful commensalism to institute a human gut microbiome.  相似文献   

3.
It is well known that an unhealthy lifestyle is a major risk factor for metabolic diseases,while in recent years,accumulating evidence has demonstrated that the gut microbiome and its metabolites also play a crucial role in the onset and development of many metabolic dis-eases,including obesity,type 2 diabetes,nonalcoholic fatty liver disease,cardiovascular disease and so on.Numerous microorganisms dwell in the gastrointestinal tract,which is a key interface for energy acquisition and can metabolize dietary nutrients into many bioactive substances,thus acting as a link between the gut microbiome and its host.The gut microbiome is shaped by host genetics,immune responses and dietary fac-tors.The metabolic and immune potential of the gut microbiome determines its significance in host health and diseases.Therefore,targeting the gut microbiome and relevant metabolic pathways would be effective therapeutic treatments for many metabolic diseases in the near future.This review will summarize information about the role of the gut microbiome in organism metabolism and the relationship between gut micro-biome-derived metabolites and the pathogenesis of many metabolic diseases.Furthermore,recent advan-ces in improving metabolic diseases by regulating the gut microbiome will be discussed.  相似文献   

4.
熊智  王连荣  陈实 《微生物学报》2018,58(11):1916-1925
高通量测序技术已经增加了人们对肠道微生物组和表观遗传学修饰的理解,将肠道微生物组和宿主表观遗传学修饰紧密联系起来,阐明了很多疾病的发生过程如免疫、代谢、心血管疾病甚至是癌症。肠道微生物组与宿主具有相互作用,与人体密不可分,相辅相成。肠道微生物组的生态失调可能诱导疾病的发生并能调控宿主表观遗传学修饰。宿主表观遗传学调控和肠道微生物组(或其代谢产物)变化的相互关系在很多疾病中都有报道。因此,肠道微生物组可作为某些疾病的诊断标记,健康肠道微生物组的移植会逆转这种微生态失调,可作为一种有效的治疗策略。本文主要探讨了肠道微生物组直接调控宿主表观修饰和通过小分子生物活性物质和其他酶辅因子间接影响表观修饰,以及基于肠道微生物组调控宿主表观修饰的诊断和治疗应用等。  相似文献   

5.
Investigating metabolic functional capability of a human gut microbiome enables the quantification of microbiome changes, which can cause a phenotypic change of host physiology and disease. One possible way to estimate the functional capability of a microbial community is through inferring metagenomic content from 16S rRNA gene sequences. Genome-scale models (GEMs) can be used as scaffold for functional estimation analysis at a systematic level, however up to date, there is no integrative toolbox based on GEMs for uncovering metabolic functions. Here, we developed the MetGEMs (metagenome-scale models) toolbox, an open-source application for inferring metabolic functions from 16S rRNA gene sequences to facilitate the study of the human gut microbiome by the wider scientific community. The developed toolbox was validated using shotgun metagenomic data and shown to be superior in predicting functional composition in human clinical samples compared to existing state-of-the-art tools. Therefore, the MetGEMs toolbox was subsequently applied for annotating putative enzyme functions and metabolic routes related in human disease using atopic dermatitis as a case study.  相似文献   

6.
Host-microbiome interactions and the microbial community have broad impact in human health and diseases. Most microbiome based studies are performed at the genome level based on next-generation sequencing techniques, but metaproteomics is emerging as a powerful technique to study microbiome functional activity by characterizing the complex and dynamic composition of microbial proteins. We conducted a large-scale survey of human gut microbiome metaproteomic data to identify generalist species that are ubiquitously expressed across all samples and specialists that are highly expressed in a small subset of samples associated with a certain phenotype. We were able to utilize the metaproteomic mass spectrometry data to reveal the protein landscapes of these species, which enables the characterization of the expression levels of proteins of different functions and underlying regulatory mechanisms, such as operons. Finally, we were able to recover a large number of open reading frames (ORFs) with spectral support, which were missed by de novo protein-coding gene predictors. We showed that a majority of the rescued ORFs overlapped with de novo predicted protein-coding genes, but on opposite strands or in different frames. Together, these demonstrate applications of metaproteomics for the characterization of important gut bacterial species.  相似文献   

7.
Although the significance of the gut microbiome for host health is well acknowledged, the impact of host traits and environmental factors on the interindividual variation of gut microbiomes of wildlife species is not well understood. Such information is essential; however, as changes in the composition of these microbial communities beyond the natural range might cause dysbiosis leading to increased susceptibility to infections. We examined the potential influence of sex, age, genetic relatedness, spatial tactics and the environment on the natural range of the gut microbiome diversity in free‐ranging Namibian cheetahs (Acinonyx jubatus). We further explored the impact of an altered diet and frequent contact with roaming dogs and cats on the occurrence of potential bacterial pathogens by comparing free‐ranging and captive individuals living under the same climatic conditions. Abundance patterns of particular bacterial genera differed between the sexes, and bacterial diversity and richness were higher in older (>3.5 years) than in younger individuals. In contrast, male spatial tactics, which probably influence host exposure to environmental bacteria, had no discernible effect on the gut microbiome. The profound resemblance of the gut microbiome of kin in contrast to nonkin suggests a predominant role of genetics in shaping bacterial community characteristics and functional similarities. We also detected various Operational Taxonomic Units (OTUs) assigned to potential pathogenic bacteria known to cause diseases in humans and wildlife species, such as Helicobacter spp., and Clostridium perfringens. Captive individuals did not differ in their microbial alpha diversity but exhibited higher abundances of OTUs related to potential pathogenic bacteria and shifts in disease‐associated functional pathways. Our study emphasizes the need to integrate ecological, genetic and pathogenic aspects to improve our comprehension of the main drivers of natural variation and shifts in gut microbial communities possibly affecting host health. This knowledge is essential for in situ and ex situ conservation management.  相似文献   

8.
Gut microbiome–host metabolic interactions affect human health and can be modified by probiotic and prebiotic supplementation. Here, we have assessed the effects of consumption of a combination of probiotics (Lactobacillus paracasei or L. rhamnosus) and two galactosyl‐oligosaccharide prebiotics on the symbiotic microbiome–mammalian supersystem using integrative metabolic profiling and modeling of multiple compartments in germ‐free mice inoculated with a model of human baby microbiota. We have shown specific impacts of two prebiotics on the microbial populations of HBM mice when co‐administered with two probiotics. We observed an increase in the populations of Bifidobacterium longum and B. breve, and a reduction in Clostridium perfringens, which were more marked when combining prebiotics with L. rhamnosus. In turn, these microbial effects were associated with modulation of a range of host metabolic pathways observed via changes in lipid profiles, gluconeogenesis, and amino‐acid and methylamine metabolism associated to fermentation of carbohydrates by different bacterial strains. These results provide evidence for the potential use of prebiotics for beneficially modifying the gut microbial balance as well as host energy and lipid homeostasis.  相似文献   

9.
Microbial communities in the gut have been hypothesized to play key roles in the health of the host organism. Exploring the relationship between these populations and disease states has been a focus of the human microbiome project. However, the biological roles of the compounds produced by the gut bacteria are largely unknown. We hypothesize that these compounds act as metabolic exchange factors-mediating inter-species and intra-species interactions in the microbiome. This view is supported through this review of known bacterial metabolic exchange factors and evidence for uncharacterized metabolic exchange factors in the gut. The impact of model systems and technological developments in exploring this hypothesis are also discussed. Together, these investigations are revolutionizing our understanding of the gut microbiome-presenting the possibility of identifying new strategies for treating disease in the host.  相似文献   

10.
The human gut is colonized by a wide diversity of micro-organisms, which are now known to play a key role in the human host by regulating metabolic functions and immune homeostasis. Many studies have indicated that the genomes of our gut microbiota, known as the gut microbiome or our “other genome” could play an important role in immune-related, complex diseases, and growing evidence supports a causal role for gut microbiota in regulating predisposition to diseases. A comprehensive analysis of the human gut microbiome is thus important to unravel the exact mechanisms by which the gut microbiota are involved in health and disease. Recent advances in next-generation sequencing technology, along with the development of metagenomics and bioinformatics tools, have provided opportunities to characterize the microbial communities. Furthermore, studies using germ-free animals have shed light on how the gut microbiota are involved in autoimmunity. In this review we describe the different approaches used to characterize the human microbiome, review current knowledge about the gut microbiome, and discuss the role of gut microbiota in immune homeostasis and autoimmunity. Finally, we indicate how this knowledge could be used to improve human health by manipulating the gut microbiota. This article is part of a Special Issue entitled: From Genome to Function.  相似文献   

11.
《Trends in microbiology》2023,31(8):832-844
Benefits of fasting and caloric restriction on host metabolic health are well established, but less is known about the effects on the gut microbiome and how this impacts renewal of the intestinal mucosa. What has been repeatedly shown during fasting, however, is that bacteria utilising host-derived substrates proliferate at the expense of those relying on dietary substrates. Considering the increased recognition of the gut microbiome’s role in maintaining host (metabolic) health, disentangling host–microbe interactions and establishing their physiological relevance in the context of fasting and caloric restriction is crucial. Such insights could aid in moving away from associations of gut bacterial signatures with metabolic diseases consistently reported in observational studies to potentially establishing causality. Therefore, this review aims to summarise what is currently known or still controversial about the interplay between fasting and caloric restriction, the gut microbiome and intestinal tissue physiology.  相似文献   

12.
Massive DNA sequencing studies have expanded our insights and understanding of the ecological and functional characteristics of the gut microbiome. Advanced sequencing technologies allow us to understand the close association of the gut microbiome with human health and critical illnesses. In the future, analyses of the gut microbiome will provide key information associating with human individual health, which will help provide personalized health care for diseases. Numerous molecular biological analysis tools have been rapidly developed and employed for the gut microbiome researches; however, methodological differences among researchers lead to inconsistent data, limiting extensive share of data. It is therefore very essential to standardize the current methodologies and establish appropriate pipelines for human gut microbiome research. Herein, we review the methods and procedures currently available for studying the human gut microbiome, including fecal sample collection, metagenomic DNA extraction, massive DNA sequencing, and data analyses with bioinformatics. We believe that this review will contribute to the progress of gut microbiome research in the clinical and practical aspects of human health.  相似文献   

13.
Recent major advances in metagenomics and metabolomics technologies have enabled us to collect more data on the gut microbiome and metabolome to evaluate its influence on host health. In this short opinion article, we have chosen to focus on summarizing the protective mechanisms of bifidobacteria, a highly regarded probiotic, and it's metabolite: acetate; against enteropathogens, specifically in the E. coli O157:H7 mice model. We advocate for using a novel approach metabologenomics, which is an integration of metagenomic and metabolomic information on a systems biology-wide approach to better understand this interplay between gut microbiome and host metabolism.  相似文献   

14.
近年来基于高通量基因测序的微生物组学研究极大加深了人们对微生物与健康和疾病关系的认识。然而基因测序方法不能直接测定微生物的功能活性,难以鉴定微生物中的关键功能分子,单独使用无法回答肠道微生物何种成员通过何种方式影响宿主等关键科学问题。单一组学研究弊端尽显,多组学联用势在必行。肠道微生物代谢组学以微生物群落所有小分子代谢物为研究对象,可发现肠道微生物随宿主病理生理变化的关键代谢物,为微生物组-宿主互作机制研究提供线索,成为微生物组学研究的重要补充。肠道微生物功能基因组学与代谢组学关联分析在宿主生理、疾病病理、药物药理等方面取得众多进展,展现良好应用前景。然而目前肠道微生物功能基因组学与代谢组学关联分析存在方法滥用、相关性结论与生物学知识相悖等突出问题。为帮助正确应用肠道微生物功能宏基因组学与代谢组学关联分析,本文综述了各种多组学数据整合分析方法的原理、优缺点与适用范围,并给出了应用建议。  相似文献   

15.
Scientific research is shedding light on the interaction of the gut microbiome with the human host and on its role in human health. Existing machine learning methods have shown great potential in discriminating healthy from diseased microbiome states. Most of them leverage shotgun metagenomic sequencing to extract gut microbial species-relative abundances or strain-level markers. Each of these gut microbial profiling modalities showed diagnostic potential when tested separately; however, no existing approach combines them in a single predictive framework. Here, we propose the Multimodal Variational Information Bottleneck (MVIB), a novel deep learning model capable of learning a joint representation of multiple heterogeneous data modalities. MVIB achieves competitive classification performance while being faster than existing methods. Additionally, MVIB offers interpretable results. Our model adopts an information theoretic interpretation of deep neural networks and computes a joint stochastic encoding of different input data modalities. We use MVIB to predict whether human hosts are affected by a certain disease by jointly analysing gut microbial species-relative abundances and strain-level markers. MVIB is evaluated on human gut metagenomic samples from 11 publicly available disease cohorts covering 6 different diseases. We achieve high performance (0.80 < ROC AUC < 0.95) on 5 cohorts and at least medium performance on the remaining ones. We adopt a saliency technique to interpret the output of MVIB and identify the most relevant microbial species and strain-level markers to the model’s predictions. We also perform cross-study generalisation experiments, where we train and test MVIB on different cohorts of the same disease, and overall we achieve comparable results to the baseline approach, i.e. the Random Forest. Further, we evaluate our model by adding metabolomic data derived from mass spectrometry as a third input modality. Our method is scalable with respect to input data modalities and has an average training time of < 1.4 seconds. The source code and the datasets used in this work are publicly available.  相似文献   

16.
人体是一个有机的整体,不同系统之间存在着相互影响。近年来,随着科学的不断发展,肠道菌群与人体健康的关系也逐渐受到重视。肠道菌群虽然居住于肠道,但其作用已经不仅仅局限于消化系统。通过对人体代谢和免疫功能的影响,肠道菌群对人体产生的作用是全身性的。肾脏是体内代谢产物排泄的主要器官,也是免疫复合物沉积的重要部位。因此,肠道菌群在肾脏疾病发展和治疗中都起着至关重要的作用。现如今,两者的关系已经成为科学研究的热点话题。本文总结了近5年的文献,从中西医的角度,针对肠道菌群与肾脏疾病之间的相互关系作一综述。  相似文献   

17.
18.
19.
Gut microbiome has received significant attention for its influences on a variety of host functions, especially immune modulation. With the next-generation sequencing methodologies, more knowledge is gathered about gut microbiome and its irreplaceable role in keeping the balance between human health and diseases is figured out. Immune checkpoint inhibitors (ICIs) are one of the most innovational cancer immunotherapies across cancer types and significantly expand the therapeutic options of cancer patients. However, a proportion of patients show no effective responses or develop immune-related adverse events when responses do occur. More important, it is demonstrated that the therapeutic response or treatment-limiting toxicity of cancer immunotherapy can be ameliorated or diminished by gut microbiome modulation. In this review, we first introduce the relationship between gut microbiome and cancer immunotherapy. And then, we expound the impact of gut microbiome on efficacy and toxicity of cancer immunotherapy. Further, we review approaches to manipulating gut microbiome to regulate response to ICIs. Finally, we discuss the current challenges and propose future directions to improve cancer immunotherapy via gut microbiome manipulation.  相似文献   

20.
赵立平  张晨虹 《生命科学》2010,(12):1247-1253
肥胖及相关的慢性代谢性疾病近年来已经成为威胁全球的公共健康问题。越来越多的证据表明,在宿主的营养、免疫和代谢中有不可替代的作用的肠道菌群不仅可以通过调节宿主脂肪吸收存储相关的基因,影响后者的能量平衡,更重要的是其结构失调导致宿主循环系统中内毒素增加,诱发慢性、低水平炎症,导致肥胖和胰岛素抵抗。运用微生物分子生态学、元基因组学和代谢组学的方法,揭示与代谢性疾病相关的菌群结构失调,并鉴定出相关的特定细菌类群及其功能,使得通过以菌群为靶点的营养干预手段防止慢性代谢性疾病成为可能,将带来代谢性疾病预防和控制策略的革命性的变化。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号