首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
When aminophospholipids with only saturated and monounsaturated fatty acids esterified to the glycerol backbone were labeled with isotopically enriched N-methylpiperazine acetic acid N-hydroxysuccinimide ester reagents, it was found that they could be readily detected as N-methylpiperazine-amide-tagged aminophospholipids using a precursor scan of the stable isotope reporter ion (m/z 114-117) formed by tandem mass spectrometry/mass spectrometry. However, it was found in the current study that these precursor ion scans are not useful in determining the changes of aminophospholipids with polyunsaturated fatty acids (PUFAs) esterified to the glycerol backbone due to the presence of interfering ions in the reporter ion region. Therefore, a method was developed using tandem mass spectrometry/mass spectrometry/mass spectrometry (MS(3)) to obtain reporter ion ratios that were not distorted by interfering ions present in the collision-induced dissociation spectra of nontagged aminophospholipids with PUFAs. This new MS(3) method for N-methylpiperazine- amide-tagged aminophospholipids was used to examine the fate of diacyl, ether, or plasmalogen glycerophosphoethanolamine (GPEtn) species after exposure of human polymorphonuclear leukocytes to A23187 and granulocyte macrophage-colony-stimulating factor/formyl-methionyl-leucyl-phenylalanine stimuli, which can induce eicosanoid biosynthesis, to follow those GPEtn molecular species which were the source of arachidonic acid released. Upon stimulation of the human polymorphonuclear leukocyte, it was found that the abundant arachidonoyl GPEtn plasmalogen molecular species were uniquely reduced in relative content compared to ether or diacyl species and this subclass of GPEtn may be a source of the arachidonic acid converted to leukotrienes by the 5-lipoxygenase pathway activated in this cell.  相似文献   

2.
A simplified method for the quantitative analysis of neurosteroids in rat plasma and brain is described. The method uses negative chemical ionization gas chromatography/mass spectrometry and involves the synthesis of pentafluorobenzyloxime/trimethylsilyl ether derivatives with excellent chromatographic and electron-capturing properties. Deuterium-labeled analogs of the steroids of interest were synthesized and used as internal standards. The steroids (allopregnanolone, epiallopregnanolone, pregnenolone, testosterone, and dehydroepiandrosterone) were isolated from the plasma or brain matrix by a rapid and straightforward solid-phase extraction procedure. The mass spectrometer was operated in a selective ion monitoring mode, allowing for picograms of neurosteroids to be quantified from biological extracts. The method was linear (typical R(2) = 0.999) over the concentration range (100 to 8000 pg from 0.3 ml plasma and 250 to 8000 pg from 100 mg brain tissue) with good precision and accuracy. In experimental protocols, the procedure was suitable for measuring concentrations of endogenous neurosteroids in rat plasma and brain. Significant elevations (P < 0.001) were observed in the frontal cortex for allopregnanolone and pregnenolone following a swim stress and for allopregnanolone and epiallopregnanolone following allopregnanolone injection (8 mg/kg, sc). The present method allows accurate determination of neurosteroids and will be helpful in elucidating the role of neurosteroids in health and disease.  相似文献   

3.
Highly selective techniques of gas chromatography mass spectrometry have been used in the unequivocal identification of salivary steroids at concentrations ranging from 20 pg ml-1 to 20 ng ml-1. Oestradiol-17 beta, for example, has been identified in pregnancy saliva by gas chromatography high resolution mass spectrometry selected ion monitoring of the bis-TMS ether and by gas chromatography mass spectrometry metastable peak monitoring of the bis-tert-butyldimethylsilyl ether. Dehydroepiandrosterone sulphate has been identified in saliva, following enzymic hydrolysis, by gas chromatography high resolution mass spectrometry selected ion monitoring of the tert-butyldimethylsilyl ether and methyloxime tert-butyldimethylsilyl ether. These initial analyses have been designed to guide the development of routine immunoassay procedures which may subsequently be validated by comparison with reference gas chromatographic mass spectrometric methods.  相似文献   

4.
Mitochondria are the main cellular source of reactive oxygen species and are recognized as key players in several age‐associated disorders and neurodegeneration. Their dysfunction has also been linked to cellular aging. Additionally, mechanisms leading to the preservation of mitochondrial function promote longevity. In this study we investigated the proteomic and functional alterations in brain mitochondria isolated from mature (5 months old), old (12 months old), and aged (24 months old) mice as determinants of normal “healthy” aging. Here the global changes concomitant with aging in the mitochondrial proteome of mouse brain analyzed by quantitative mass‐spectrometry based super‐SILAC identified differentially expressed proteins involved in several metabolic pathways including glycolysis, the tricarboxylic acid cycle, and oxidative phosphorylation. Despite these changes, the bioenergetic function of these mitochondria was preserved. Overall, this data indicates that proteomic changes during aging may compensate for functional defects aiding in preservation of mitochondrial function. The mass spectrometry proteomics data have been deposited to the ProteomeXchange Consortium with the data set identifier PXD001370 ( http://proteomecentral.proteomexchange.org/dataset/PXD001370 ).  相似文献   

5.
It was demonstrated that a shotgun approach can be utilized for the characterization of phospholipids (PLs) extracted from mouse liver and brain by using nanoflow reversed phase liquid chromatography/electrospray ionization tandem mass spectrometry (LC-ESI-MS-MS). In this study, a dual scan method was introduced for the high throughput analysis of complex PL mixtures. Two consecutive LC-ESI-MS-MS runs were made in positive ion mode (for phosphatidylcholines (PCs) and phosphatidylethanolamines (PEs)) first followed by analysis in negative ion mode (for phosphatidylserine (PSs) and phosphatidylinositol (PIs)) using the same binary gradient elution with and without adding formic acid, respectively. The separation of the PLs was carried out using a home made pull tip capillary column (C18) with an end frit. The MS analysis of the eluted PL molecules was performed with a precursor scan followed by a data dependent MS-MS scan. The developed dual scan method was tested with the extracts of PCs and PIs mixtures from soybean, PEs from Escherichia coli, and PSs from bovine brain. It was further applied for the characterization of intact PL samples that were extracted from both mouse liver and mouse brain in the laboratory, and resulted in the identification of 90 and 80 PL species, respectively.  相似文献   

6.
吕西  叶敏才 《蛇志》2016,(3):311-312
目的探讨急诊内科医生和外科医生对颅脑损伤患者的院前救治效果。方法将我院120例急性颅脑损伤患者随机分为内科救治组和外科救治组各60例,比较两组的救治效果。结果两组患者的院前急救时间、急诊科救治时间、救治成功率比较,差异无统计学意义(P0.05)。结论经过专业培训的急诊内科医师能胜任急性颅脑损伤患者的院前急救和急诊救治工作。  相似文献   

7.
One of the causes of amyotrophic lateral sclerosis (ALS) is due to mutations in Cu,Zn-superoxide dismutase (SOD1). The mutant protein exhibits a toxic gain of function that adversely affects the function of neurons in the spinal cord, brain stem, and motor cortex. A proteomic analysis of protein expression in a widely used mouse model of ALS was undertaken to identify differences in protein expression in the spinal cords of mice expressing a mutant protein with the G93A mutation found in human ALS. Protein profiling was done on soluble and particulate fractions of spinal cord extracts using high throughput two-dimensional liquid chromatography coupled to tandem mass spectrometry. An integrated proteomics-informatics platform was used to identify relevant differences in protein expression based upon the abundance of peptides identified by database searching of mass spectrometry data. Changes in the expression of proteins associated with mitochondria were particularly prevalent in spinal cord proteins from both mutant G93A-SOD1 and wild-type SOD1 transgenic mice. G93A-SOD1 mouse spinal cord also exhibited differences in proteins associated with metabolism, protein kinase regulation, antioxidant activity, and lysosomes. Using gene ontology analysis, we found an overlap of changes in mRNA expression in presymptomatic mice (from microarray analysis) in three different gene categories. These included selected protein kinase signaling systems, ATP-driven ion transport, and neurotransmission. Therefore, alterations in selected cellular processes are detectable before symptomatic onset in ALS mouse models. However, in late stage disease, mRNA expression analysis did not reveal significant changes in mitochondrial gene expression but did reveal concordant changes in lipid metabolism, lysosomes, and the regulation of neurotransmission. Thus, concordance of proteomic and mRNA expression data within multiple categories validates the use of gene ontology analysis to compare different types of "omic" data.  相似文献   

8.
Cerebrospinal fluid (CSF) has frequently been studied to explore the total metal concentrations in patients with neurodegenerative diseases. Some examples of neurologic diseases include but are not limited to intracerebral hemorrhage, intraventricular hemorrhage, traumatic brain injury, subarachnoid hemorrhage and hydrocephalus. In this study, however, a comprehensive approach was begun using metallomics methods. First, two molecular weight cutoff filters were used to separate CSF constituents by molecular weight. The remaining CSF was then separated with capillary liquid chromatography/normal bore liquid chromatography and analyzed with inductively coupled mass spectrometry (ICPMS). With this ICPMS screening, a possible iron associated protein was suggested by nanoliquid chromatography-CHIP/ion trap mass spectrometry (nanoLC-CHIP/ITMS) identification in conjunction with a Spectrum Mill database search. In this preliminary study, three different types of pooled CSF were partially characterized by their metal (Pb, Mg, Zn, Fe and Cu) containing species with suggestions for fuller studies. Chemical 'differences' in the CSF and metal constituents suggests some utility in this analysis for understanding some of the complications observed following subarachnoid hemorrhage.  相似文献   

9.
Guan Z  Li S  Smith DC  Shaw WA  Raetz CR 《Biochemistry》2007,46(50):14500-14513
While profiling the lipidome of the mouse brain by mass spectrometry, we discovered a novel family of N-acylphosphatidylserine (N-acyl-PS) molecules. These N-acyl-PS species were enriched by DEAE-cellulose column chromatography, and they were then characterized by accurate mass measurements, tandem mass spectrometry, liquid chromatography/mass spectrometry, and comparison to an authentic standard. Mouse brain N-acyl-PS molecules are heterogeneous and constitute about 0.1% of the total lipid. In addition to various ester-linked fatty acyl chains on their glycerol backbones, the complexity of the N-acyl-PS series is further increased by the presence of diverse amide-linked N-acyl chains, which include saturated, monounsaturated, and polyunsaturated species. N-Acyl-PS molecular species were also detected in the lipids of pig brain, mouse RAW264.7 macrophage tumor cells, and yeast, but not Escherichia coli. N-Acyl-PSs may be biosynthetic precursors of N-acylserine molecules, such as the recently reported signaling lipid N-arachidonoylserine from bovine brain. We suggest that a phospholipase D might cleave N-acyl-PS to generate N-acylserine, in analogy to the biosynthesis of the endocannabinoid N-arachidonoylethanolamine (anadamide) from N-arachidonoylphosphatidylethanolamine.  相似文献   

10.
The calpain family of calcium‐dependent proteases has been implicated in a variety of diseases and neurodegenerative pathologies. Prolonged activation of calpains results in proteolysis of numerous cellular substrates including cytoskeletal components and membrane receptors, contributing to cell demise despite coincident expression of calpastatin, the specific inhibitor of calpains. Pharmacological and gene‐knockout strategies have targeted calpains to determine their contribution to neurodegenerative pathology; however, limitations associated with treatment paradigms, drug specificity, and genetic disruptions have produced inconsistent results and complicated interpretation. Specific, targeted calpain inhibition achieved by enhancing endogenous calpastatin levels offers unique advantages in studying pathological calpain activation. We have characterized a novel calpastatin‐overexpressing transgenic mouse model, demonstrating a substantial increase in calpastatin expression within nervous system and peripheral tissues and associated reduction in protease activity. Experimental activation of calpains via traumatic brain injury resulted in cleavage of α‐spectrin, collapsin response mediator protein‐2, and voltage‐gated sodium channel, critical proteins for the maintenance of neuronal structure and function. Calpastatin overexpression significantly attenuated calpain‐mediated proteolysis of these selected substrates acutely following severe controlled cortical impact injury, but with no effect on acute hippocampal neurodegeneration. Augmenting calpastatin levels may be an effective method for calpain inhibition in traumatic brain injury and neurodegenerative disorders.  相似文献   

11.
The complicated secondary molecular and cellular mechanisms following traumatic brain injury (TBI) are still not fully understood. In the present study, we have used mass spectrometry to identify injury specific proteins in an in vitro model of TBI. A standardized injury was induced by scalpel cuts through a mixed cell culture of astrocytes, oligodendrocytes and neurons. Twenty-four hours after the injury, cell culture medium and whole-cell fractions were collected for analysis. We found 53 medium proteins and 46 cell fraction proteins that were specifically expressed after injury and the known function of these proteins was elucidated by an extensive literature survey. By using time-lapse microscopy and immunostainings we could link a large proportion of the proteins to specific cellular processes that occur in response to trauma; including cell death, proliferation, lamellipodia formation, axonal regeneration, actin remodeling, migration and inflammation. A high percentage of the proteins uniquely expressed in the medium after injury were actin-related proteins, which normally are situated intracellularly. We show that two of these, ezrin and moesin, are expressed by astrocytes both in the cell culture model and in mouse brain subjected to experimental TBI. Interestingly, we found many inflammation-related proteins, despite the fact that cells were present in the culture. This study contributes with important knowledge about the cellular responses after trauma and identifies several potential cell-specific biomarkers.  相似文献   

12.
We have previously shown that following traumatic brain injury (TBI) the presence of the amyloid precursor protein (APP) may be neuroprotective. APP knockout mice have increased neuronal death and worse cognitive and motor outcomes following TBI, which is rescued by treatment with exogenous sAPPα (the secreted ectodomain of APP generated by α‐secretase cleavage). Two neuroprotective regions were identified in sAPPα, the N and C‐terminal domains D1 and D6a/E2 respectively. As both D1 and D6a/E2 contain heparin binding activity it was hypothesized that this is responsible for the neuroprotective activity. In this study, we focused on the heparin binding site, encompassed by residues 96‐110 in D1, which has previously been shown to have neurotrophic properties. We found that treatment with APP96‐110 rescued motor and cognitive deficits in APP?/? mice following focal TBI. APP96‐110 also provided neuroprotection in Sprague–Dawley rats following diffuse TBI. Treatment with APP96‐110 significantly improved functional outcome as well as preserve histological cellular morphology in APP?/? mice following focal controlled cortical impact injury. Furthermore, following administration of APP96‐110 in rats after diffuse impact acceleration TBI, motor and cognitive outcomes were significantly improved and axonal injury reduced. These data define the heparin binding site in the D1 domain of sAPPα, represented by the sequence APP96‐110, as the neuroprotective site to confer neuroprotection following TBI.

  相似文献   


13.
Calpains are calcium-regulated cysteine proteases that have been implicated in the regulation of cell death pathways. Here, we used our calpain-1 null mouse model to evaluate the function of calpain-1 in neural degeneration following a rodent model of traumatic brain injury. In vivo, calpain-1 null mice show significantly less neural degeneration and apoptosis and a smaller contusion 3 days post-injury than wild type littermates. Protection from traumatic brain injury corroborated with the resistance of calpain-1 neurons to apoptosis induced by oxidative stress. Biochemical analysis revealed that caspase-3 activation, extracellular calcium entry, mitochondrial membrane permeability, and release of apoptosis-inducing factor from mitochondria are partially blocked in the calpain-1 null neurons. These findings suggest that the calpain-1 knock-out mice may serve as a useful model system for neuronal protection and apoptosis in traumatic brain injury and other neurodegenerative disorders in which oxidative stress plays a role.  相似文献   

14.
The rhizome of Glycyrrhiza glabra (licorice) was analyzed by high‐resolution mass spectrometry imaging and tandem mass spectrometry imaging. An atmospheric pressure matrix‐assisted laser desorption/ionization imaging ion source was combined with an orbital trapping mass spectrometer in order to obtain high‐resolution imaging in mass and space. Sections of the rhizome were imaged with a spatial resolution of 10 μm in the positive ion mode, and a large number of secondary metabolites were localized and identified based on their accurate mass and MS/MS fragmentation patterns. Major tissue‐specific metabolites, including free flavonoids, flavonoid glycosides and saponins, were successfully detected and visualized in images, showing their distributions at the cellular level. The analytical power of the technique was tested in the imaging of two isobaric licorice saponins with a mass difference of only 0.02 Da. With a mass resolving power of 140 000 and a bin width of 5 ppm in the image processing, the two compounds were well resolved in full‐scan mode, and appeared with different distributions in the tissue sections. The identities of the compounds and their distributions were validated in a subsequent MS/MS imaging experiment, thereby confirming their identities and excluding possible analyte interference. The use of high spatial resolution, high mass resolution and tandem mass spectrometry in imaging experiments provides significant information about the biosynthetic pathway of flavonoids and saponins in legume species, combing the spatially resolved chemical information with morphological details at the microscopic level. Furthermore, the technique offers a scheme capable of high‐throughput profiling of metabolites in plant tissues.  相似文献   

15.
ABC transporters are the focus of extensive research attempts due to their natural ability of selective transport of huge variety of substances into and out of the cells. They are being a potential target for pharmacologists and drug designers as well as basic scientists. We were interested to study the expression patterns of mouse proteins which belong to the “A” family of ABCs as well as to analyze their protein–protein interactions. The most exciting finding came with the studies of ABCA4, which mRNA was distributed in several mouse tissues, including eyes, brain, heart, lungs, liver, and testis, and the corresponding protein was present in brain, heart, eyes, and testis. Previously, ABCA4 was described as retina‐specific transporter, therefore, we extended our research to clarify where ABCA4 is expressed on RNA level, where its protein is expressed and what are its interacting proteins, in tissues different then retina. By several techniques which utilized the protein‐specific antibody we proved that ABCA4 is not a retina‐specific ABC transporter and that we purified it from brain and testis as well as from eyes and the heart. Analysis of the co‐purifying proteins by mass‐spectrometry had shown that apart from ABCA4, ABCA1, and ABCC3 were present in cross‐linked fraction. We also identified map kinase 12 and jade1S protein as putative ABCA4 interacting proteins. J. Cell. Biochem. © 2010 Wiley‐Liss, Inc.  相似文献   

16.
Increasing evidence suggests that apolipoprotein D (apoD) could play a major role in mediating neuronal degeneration and regeneration in the CNS and the PNS. To investigate further the temporal pattern of apoD expression after experimental traumatic brain injury in the rat, male Sprague-Dawley rats were subjected to unilateral cortical impact injury. The animals were killed and examined for apoD mRNA and protein expression and for immunohistological analysis at intervals from 15 min to 14 days after injury. Increased apoD mRNA and protein levels were seen in the cortex and hippocampus ipsilateral to the injury site from 48 h to 14 days after the trauma. Immunohistological investigation demonstrated a differential pattern of apoD expression in the cortex and hippocampus, respectively: Increased apoD immunoreactivity in glial cells was detected from 2 to 3 days after the injury in cortex and hippocampus. In contrast, increased expression of apoD was seen in cortical and hippocampal neurons at later time points following impact injury. Concurrent histopathological examination using hematoxylin and eosin demonstrated dark, shrunken neurons in the cortex ipsilateral to the injury site. In contrast, no evidence of cell death was observed in the hippocampus ipsilateral to the injury site up to 14 days after the trauma. No evidence of increased apoD mRNA or protein expression or neuronal pathology by hematoxylin and eosin staining was detected in the contralateral cortex and hippocampus. Our results reveal induction of apoD expression in the cortex and hippocampus following traumatic brain injury in the rat. Our data also suggest that increased apoD expression may play an important role in cortical neuronal degeneration after brain injury in vivo. However, increased expression of apoD in the hippocampus may not necessarily be indicative of neuronal death.  相似文献   

17.
Lipids, particularly phospholipids, are fundamental to CNS tissue architecture and function. Endogenous polyunsaturated fatty acid chains of phospholipids possess cis-double bonds each separated by one methylene group. These phospholipids are very susceptible to free-radical attack and oxidative modifications. A combination of analytical methods including different versions of chromatography and mass spectrometry allows detailed information to be obtained on the content and distribution of lipids and their oxidation products thus constituting the newly emerging field of oxidative lipidomics. It is becoming evident that specific oxidative modifications of lipids are critical to a number of cellular functions, disease states and responses to oxidative stresses. Oxidative lipidomics is beginning to provide new mechanistic insights into traumatic brain injury which may have significant translational potential for development of therapies in acute CNS insults. In particular, selective oxidation of a mitochondria-specific phospholipid, cardiolipin, has been associated with the initiation and progression of apoptosis in injured neurons thus indicating new drug discovery targets. Furthermore, imaging mass-spectrometry represents an exciting new opportunity for correlating maps of lipid profiles and their oxidation products with structure and neuropathology. This review is focused on these most recent advancements in the field of lipidomics and oxidative lipidomics based on the applications of mass spectrometry and imaging mass spectrometry as they relate to studies of phospholipids in traumatic brain injury.  相似文献   

18.
For the determination of prostaglandins in microdialysis samples, usually immunoassays are used. However, these assays may show cross-reactivity among various prostaglandins. To overcome this problem a specific method for the determination of prostaglandin E2 and D2 in rat microdialysis samples by using liquid chromatography-electrospay ionization-tandem mass spectrometry (LC-ESI-MS/MS) is described. Prostaglandin E2 and D2 were extracted from microdialysis samples with liquid-liquid extraction using deuterated prostaglandin D2, [2H4]-PGD2, as internal standard. Subsequently, prostaglandins were separated with a phenomenex Synergi Hydro-RP column and determined with a PE Sciex API 3000 mass spectrometer equipped with a turbo ion spray interface operating in negative ionization mode. The method showed a LLOQ of 25 pg/ml for prostaglandin E2 and 50 pg/ml for prostaglandin D2. The applicability of the method is shown in rat spinal cord microdialysis samples following peripheral nociceptive stimulation.  相似文献   

19.
The structures of intact choline phospholipids were determined by positive and negative ion mode fast atom bombardment mass spectrometry, tandem mass spectrometry, and B2/E and B/E constant linked scan mass spectrometry. The molecular weight of the choline lipid could be clearly determined by the appearance of [M + H]+ or [M + Na]+ in the positive ion mode and triplet ions, e.g., [M - 15]-, [M - 60]-, and [M - 86]-, in the negative ion mode. The structures of the triplet ions were assigned to [M - CH3]-, [M - HN(CH3)3]-, and [M - CH2 = CHN(CH3)3]-, respectively, by the MS/MS of each triplet ion, and the origin of the triplet ions was found as the matrix-ion adduct to the target molecule by using the B2/E linked scan technique. The polar group could be identified by the existence of ions indicating glycerophosphocholine and its cleavage products and by the presence of the triplet ions in the negative ion mode. Positional determination of the distribution of constituent fatty acyl groups was carried out by comparing the intensity of deacylated ions from positions 1 and 2 in the positive ion mode and of the ions produced by MS/MS of the triplet ions. From the mass number of the [RCOO]- ion which appeared in the negative ion mode, the molecular weight and degree of unsaturation of the fatty acyl group were determined. The position of double bond(s) in the acyl group was determined from the MS/MS of the [RCOO]- ion.  相似文献   

20.
Lipid peroxidation has been implicated in the pathophysiological sequelae of human neurodegenerative disorders. It is recognized that quantification of lipid peroxidation is best assessed in vivo by measuring a series of prostaglandin (PG) F2-like compounds termed F2-isoprostanes (IsoPs) in tissues in which arachidonic acid is abundant. Unlike other organs, the major polyunsaturated fatty acid (PUFA) in the brain is docosahexaenoic acid (DHA, C22:6 omega-6), and this fatty acid is particularly enriched in neurons. We have previously reported that DHA undergoes oxidation in vitro and in vivo resulting in the formation of a series of F2-IsoP-like compounds termed F4-neuroprostanes (F4-NPs). We recently chemically synthesized one F4-NP, 17-F4c-NP, converted it to an 18O-labeled derivative, and utilized it as an internal standard to develop an assay to quantify endogenous production of F4-NPs by gas chromatography (GC)/negative ion chemical ionization (NICI) mass spectrometry (MS). The assay is highly precise and accurate. The lower limit of sensitivity is approximately 10 pg. Levels of F4-NPs in brain tissue from rodents were 8.7 +/- 2.0 ng/g wet weight (mean +/- S.D.). Levels of the F4-NPs in brains from normal humans were found to be 4.9 +/- 0.6 ng/g (mean +/- S.D.) and were 2.1-fold higher in affected regions of brains from humans with Alzheimer's disease (P = 0.02). Thus, this assay provides a sensitive and accurate method to assess oxidation of DHA in animal and human tissues and will allow for the further elucidation of the role of oxidative injury to the central nervous system in association with human neurodegenerative disorders.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号