首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In natural ecosystems, arthropod predation on herbivore prey is higher at lower latitudes, mirroring the latitudinal diversity gradient observed across many taxa. This pattern has not been systematically examined in human‐dominated ecosystems, where frequent disturbances can shift the identity and abundance of local predators, altering predation rates from those observed in natural ecosystems. We investigated how latitude, biogeographical, and local ecological factors influenced arthropod predation in Brassica oleracea‐dominated agroecosystems in 55 plots spread among 5 sites in the United States and 4 sites in Brazil, spanning at least 15° latitude in each country. In both the United States and Brazil, arthropod predator attacks on sentinel model caterpillar prey were highest at the highest latitude studied and declined at lower latitudes. The rate of increased arthropod attacks per degree latitude was higher in the United States and the overall gradient was shifted poleward as compared to Brazil. PiecewiseSEM analysis revealed that aridity mediates the effect of latitude on arthropod predation and largely explains the differences in the intensity of the latitudinal gradient between study countries. Neither predator richness, predator density, nor predator resource availability predicted variation in predator attack rates. Only greater non‐crop plant density drove greater predation rates, though this effect was weaker than the effect of aridity. We conclude that climatic factors rather than ecological community structure shape latitudinal arthropod predation patterns and that high levels of aridity in agroecosystems may dampen the ability of arthropod predators to provide herbivore control services as compared to natural ecosystems.  相似文献   

2.
Shell fragmentation patterns that result from attacks by durophagous predators on hard‐shelled marine invertebrates are a rich source of indirect evidence that have proved useful in interpreting predation pressure in the fossil record and recent ecology. The behaviour and effectiveness of predators are known to be variable with respect to prey size. It is less well understood if variable predator–prey interactions are reflected in shell fragmentation patterns. Therefore, we conducted experimental trials to test the behavioural response of a living crab, Carcinus maenas, during successful predatory attacks on the blue mussel Mytilus edulis on two prey size categories. Further, we examined resultant shell fragments to determine whether specific attack behaviours by C. maenas could be successfully deduced from remaining mussel shells. In contrast to previous studies, we observed no significant differences in attack behaviour by the predators attributable to prey size. In most experimental predation events, crabs employed an ad hoc combination of five mechanisms of predation previously described for this species. We identified seven categories of shell breakage in predated mussels, but none of these were unambiguously correlated with specific attack behaviour. Combined attack behaviours may produce shell breakage patterns that have previously been assumed to be attributable to a single behaviour. While specific patterns of shell breakage are clearly attributable to durophagy, the results of this study provide important insights into the limitations of indirect evidence to interpret ecological interactions.  相似文献   

3.
Suppression of a target prey by a predator can depend on its surrounding community, including the presence of nontarget, alternative prey. Basic theoretical models of two prey species that interact only via a shared predator predict that adding an alternative prey should increase predator numbers and ultimately lower target pest densities as compared to when the target pest is the only prey. While this is an alluring prediction, it does not explain the numerous responses empirically observed. To better understand and predict the indirect interactions produced by shared predation, we explore how additional prey species affect three broad ecological mechanisms, the predator's reproductive, movement, and functional responses. Specifically, we review current theoretical models of shared predation by focusing on these mechanisms, and make testable predictions about the effects of shared predation. We find that target predation is likely to be higher in the two prey system because of predator reproduction, especially when: predators are prey limited, alternative or total prey density is high, or alternative prey are available over time. Target predation may also be greater because of predator movement, but only under certain movement rules and spatial distributions. Predator foraging behavior is most likely to cause lower target predation in the two-prey system, when per capita predation is limited by something other than prey availability. It is clear from this review that no single theoretical generalization will accurately predict community-level effects for every system. However, we can provide testable hypotheses for future empirical and theoretical investigations of indirect interactions and help enhance their potential use in biological control.  相似文献   

4.
Animal species differ considerably in their response to predation risks. Interspecific variability in prey behaviour and morphology can alter cascading effects of predators on ecosystem structure and functioning. We tested whether species‐specific morphological defenses may affect responses of leaf litter consuming invertebrate prey to sit‐and‐wait predators, the odonate Cordulegaster boltonii larvae, in aquatic food webs. Partly or completely blocking the predator mouthparts (mandibles and/or extensible labium), thus eliminating consumptive (i.e. lethal) predator effects, we created a gradient of predator‐prey interaction intensities (no predator < predator – no attack < predator – non‐lethal attacks < lethal predator). A field experiment was first used to assess both consumptive and non‐consumptive predator effects on leaf litter decomposition and prey abundances. Laboratory microcosms were then used to examine behavioural responses of armored and non‐armored prey to predation risk and their consequences on litter decomposition. Results show that armored and non‐armored prey responded to both acute (predator – non‐lethal attacks) and chronic (predator – no attack) predation risks. Acute predation risk had stronger effects on litter decomposition, prey feeding rate and prey habitat use than predator presence alone (chronic predation risk). Predator presence induced a reduction in feeding activity (i.e. resource consumption) of both prey types but a shift to predator‐free habitat patches in non‐armored detritivores only. Non‐consumptive predator effects on prey subsequently decreased litter decomposition rate. Species‐specific prey morphological defenses and behaviour should thus be considered when studying non‐consumptive predator effects on prey community structure and ecosystem functioning.  相似文献   

5.
Many organisms use inducible defenses as protection against predators. In animals, inducible defenses may manifest as changes in behavior, morphology, physiology, or life history, and prey species can adjust their defensive responses based on the dangerousness of predators. Analogously, prey may also change the composition and quantity of defensive chemicals when they coexist with different predators, but such predator‐induced plasticity in chemical defenses remains elusive in vertebrates. In this study, we investigated whether tadpoles of the common toad (Bufo bufo) adjust their chemical defenses to predation risk in general and specifically to the presence of different predator species; furthermore, we assessed the adaptive value of the induced defense. We reared tadpoles in the presence or absence of one of four caged predator species in a mesocosm experiment, analyzed the composition and quantity of their bufadienolide toxins, and exposed them to free‐ranging predators. We found that toad tadpoles did not respond to predation risk by upregulating their bufadienolide synthesis. Fishes and newts consumed only a small percentage of toad tadpoles, suggesting that bufadienolides provided protection against vertebrate predators, irrespective of the rearing environment. Backswimmers consumed toad tadpoles regardless of treatment. Dragonfly larvae were the most voracious predators and consumed more predator‐naïve toad tadpoles than tadpoles raised in the presence of dragonfly cues. These results suggest that tadpoles in our experiment had high enough toxin levels for an effective defense against vertebrate predators even in the absence of predator cues. The lack of predator‐induced phenotypic plasticity in bufadienolide synthesis may be due to local adaptation for constantly high chemical defense against fishes in the study population and/or due to the high density of conspecifics.  相似文献   

6.
Predation on pest organisms is an essential ecosystem function supporting yields in modern agriculture. However, assessing predation rates is intricate, and they can rarely be linked directly to predator densities or functions. We tested whether sentinel prey aphid cards are useful tools to assess predation rates in the field. Therefore, we looked at aphid cards of different sizes on the ground level as well as within the vegetation. Additionally, by trapping ground-dwelling predators, we examined whether obtained predation rates could be linked to predator densities and traits. Predation rates recorded with aphid cards were independent of aphid card size. However, predation rates on the ground level were three times higher than within the vegetation. We found both predatory carabid activity densities as well as community weighted mean body size to be good predictors for predation rates. Predation rates obtained from aphid cards are stable over card type and related to predator assemblages. Aphid cards, therefore, are a useful, efficient method for rapidly assessing the ecosystem function predation. Their use might especially be recommended for assessments on the ground level and when time and resource limitations rule out more elaborate sentinel prey methods using exclosures with living prey animals.  相似文献   

7.
Jan H. Mol 《Oecologia》1996,107(3):395-410
This study investigated the role of predators in preventing competitive exclusion among three closely related armoured catfishes (Callichthys callichthys, Hoplosternum littorale and H. thoracatum) that occur synthopically in multi-predator freshwater swamps of Suriname, South America. The potential impact of predation on armoured catfish was determined by combining laboratory measurements of predation rates on five early developmental stages of the armoured catfish H. thoracatum for 24 aquatic predators with field studies of the density of the predators in the swamps. The contribution of a particular predator to the total predation pressure on its prey was determined to a large extent by the density of the predator in the swamp. Seemingly innocuous predators with low or moderate predation rates in the laboratory may be extremely important in the swamps due to their high abundance. Small-sized omnivorous fishes and aquatic invertebrates were major predators of early developmental stages of armoured catfish. Both qualitative and quantitative ontogenetic changes in the predation pressure on armoured catfish were observed. Major predation on eggs, larvae and juveniles of H. thoracatum resulted from a different set of predators in each developmental stage of the prey. In all developmental stages of H. thoracatum the predation pressure involved several predator species and not a single, dominant predator. The potential predation pressure of the 24 predators taken together and the number of predators that were able to prey on H. thoracatum decreased sharply with increasing age (size) of the prey. Even if egg (nest) predation is prevented by the guarding male, the potential impact of the 24 predators on the populations of armoured catfish is large. Predation may account for the high mortality of H. thoracatum observed in the swamps. The high predation pressure on callichthyid catfishes may help to explain the coexistence of three closely related and morphologically quite similar armoured catfishes in Surinamese swamps.  相似文献   

8.
The likelihood of encountering a predator influences prey behavior and spatial distribution such that non‐consumptive effects can outweigh the influence of direct predation. Prey species are thought to filter information on perceived predator encounter rates in physical landscapes into a landscape of fear defined by spatially explicit heterogeneity in predation risk. The presence of multiple predators using different hunting strategies further complicates navigation through a landscape of fear and potentially exposes prey to greater risk of predation. The juxtaposition of land cover types likely influences overlap in occurrence of different predators, suggesting that attributes of a landscape of fear result from complexity in the physical landscape. Woody encroachment in grasslands furnishes an example of increasing complexity with the potential to influence predator distributions. We examined the role of vegetation structure on the distribution of two avian predators, Red‐tailed Hawk (Buteo jamaicensis) and Northern Harrier (Circus cyaneus), and the vulnerability of a frequent prey species of those predators, Northern Bobwhite (Colinus virginianus). We mapped occurrences of the raptors and kill locations of Northern Bobwhite to examine spatial vulnerability patterns in relation to landscape complexity. We use an offset model to examine spatially explicit habitat use patterns of these predators in the Southern Great Plains of the United States, and monitored vulnerability patterns of their prey species based on kill locations collected during radio telemetry monitoring. Both predator density and predation‐specific mortality of Northern Bobwhite increased with vegetation complexity generated by fine‐scale interspersion of grassland and woodland. Predation pressure was lower in more homogeneous landscapes where overlap of the two predators was less frequent. Predator overlap created areas of high risk for Northern Bobwhite amounting to 32% of the land area where landscape complexity was high and 7% where complexity was lower. Our study emphasizes the need to evaluate the role of landscape structure on predation dynamics and reveals another threat from woody encroachment in grasslands.  相似文献   

9.
Intraguild predation (IGP) is a combination of competition and predation which is the most basic system in food webs that contains three species where two species that are involved in a predator/prey relationship are also competing for a shared resource or prey. We formulate two intraguild predation (IGP: resource, IG prey and IG predator) models: one has generalist predator while the other one has specialist predator. Both models have Holling-Type I functional response between resource-IG prey and resource-IG predator; Holling-Type III functional response between IG prey and IG predator. We provide sufficient conditions of the persistence and extinction of all possible scenarios for these two models, which give us a complete picture on their global dynamics. In addition, we show that both IGP models can have multiple interior equilibria under certain parameters range. These analytical results indicate that IGP model with generalist predator has “top down” regulation by comparing to IGP model with specialist predator. Our analysis and numerical simulations suggest that: (1) Both IGP models can have multiple attractors with complicated dynamical patterns; (2) Only IGP model with specialist predator can have both boundary attractor and interior attractor, i.e., whether the system has the extinction of one species or the coexistence of three species depending on initial conditions; (3) IGP model with generalist predator is prone to have coexistence of three species.  相似文献   

10.
  • 1 In predator–prey theory, habitat heterogeneity can affect the relationship between kill rates and prey or predator density through its effect on the predator's ability to search for, encounter, kill and consume its prey. Many studies of predator–prey interactions include the effect of spatial heterogeneity, but these are mostly based on species with restricted mobility or conducted in experimental settings.
  • 2 Here, we aim to identify the patterns through which spatial heterogeneity affects predator–prey dynamics and to review the literature on the effect of spatial heterogeneity on predator–prey interactions in terrestrial mammalian systems, i.e. in freely moving species with high mobility, in non‐experimental settings. We also review current methodologies that allow the study of the predation process within a spatial context.
  • 3 When the functional response includes the effect of spatial heterogeneity, it usually takes the form of predator‐dependent or ratio‐dependent models and has wide applicability.
  • 4 The analysis of the predation process through its different stages may further contribute towards identifying the spatial scale of interest and the specific spatial mechanism affecting predator–prey interactions.
  • 5 Analyzing the predation process based on the functional response theory, but separating the stages of predation and applying a multiscale approach, is likely to increase our insight into how spatial heterogeneity affects predator–prey dynamics. This may increase our ability to forecast the consequences of landscape transformations on predator–prey dynamics.
  相似文献   

11.
John L. Quinn  Will Cresswell 《Oikos》2012,121(8):1328-1334
Theory and empirical evidence suggest that predator activity makes prey more wary and less vulnerable to predation. However if at least some prey in the population are energetically or spatially constrained, then predators may eventually increase local prey vulnerability because of the cumulative costs of anti‐predation behaviour. We tested whether repeated attacks by a predator might increase prey vulnerability in a system where redshanks on a saltmarsh are attacked regularly by sparrowhawks from adjacent woodland. Cumulative attack number led to a reduction in redshank numbers and flock size (but had no effect on how close redshanks fed to predator‐concealing cover) because some redshanks moved to safer but less profitable habitats, leaving smaller flocks on the saltmarsh. This effect held even though numbers of redshank on the saltmarsh increased with time of day. As a result of the change in flock size, predicted attack‐success increased up to 1.6‐fold for the sparrowhawk, while individual risk of capture for the redshank increased up to 4.5‐fold among those individuals remaining on the saltmarsh. The effect did not arise simply because hawks were more likely to attack smaller flocks because attack rate was not dependent on flock size or abundance. Our data demonstrate that when some individual prey are constrained in their ability to feed on alternative, safer foraging sites, their vulnerability to predation increases as predator attacks accumulate, although those, presumably better quality individuals that leave the immediate risky area will have lower vulnerability, so that the mean vulnerability across the entire population may not have changed substantially. This suggests that the selective benefits of multiple low‐cost attacks by predators on prey could potentially lead to 1) locally heightened trait‐mediated interactions, 2) locally reduced interference among competing predators, and 3) the evolution of active prey manipulation by predators.  相似文献   

12.
Bird flocks under predation demonstrate complex patterns of collective escape. These patterns may emerge by self-organization from local interactions among group-members. Computational models have been shown to be valuable for identifying what behavioral rules may govern such interactions among individuals during collective motion. However, our knowledge of such rules for collective escape is limited by the lack of quantitative data on bird flocks under predation in the field. In the present study, we analyze the first GPS trajectories of pigeons in airborne flocks attacked by a robotic falcon in order to build a species-specific model of collective escape. We use our model to examine a recently identified distance-dependent pattern of collective behavior: the closer the prey is to the predator, the higher the frequency with which flock members turn away from it. We first extract from the empirical data of pigeon flocks the characteristics of their shape and internal structure (bearing angle and distance to nearest neighbors). Combining these with information on their coordination from the literature, we build an agent-based model adjusted to pigeons’ collective escape. We show that the pattern of turning away from the predator with increased frequency when the predator is closer arises without prey prioritizing escape when the predator is near. Instead, it emerges through self-organization from a behavioral rule to avoid the predator independently of their distance to it. During this self-organization process, we show how flock members increase their consensus over which direction to escape and turn collectively as the predator gets closer. Our results suggest that coordination among flock members, combined with simple escape rules, reduces the cognitive costs of tracking the predator while flocking. Such escape rules that are independent of the distance to the predator can now be investigated in other species. Our study showcases the important role of computational models in the interpretation of empirical findings of collective behavior.  相似文献   

13.
The initial evolution of conspicuous warning signals presents an evolutionary problem because selection against rare conspicuous signals is presumed to be strong, and new signals are rare when they first arise. Several possible solutions have been offered to solve this apparent evolutionary paradox, but disagreement persists over the plausibility of some of the proposed mechanisms. In this paper, we construct a deterministic numerical simulation model that allows us to derive the strength of selection on novel warning signals in a wide range of biologically relevant situations. We study the effects of predator psychology (learning, rate of mistaken attacks, and neophobia) on selection. We also study the how prey escape, predation intensity, number of predators, and abundance of different prey types affects selection. The model provides several important results. Selection on novel warning signals is number rather than frequency dependent. In most cases, there exists a threshold number of aposematic individuals below which aposematism is selected against and above which aposematism is selected for. Signal conspicuousness (which increases detection rate) and distinctiveness (which allows predator to distinguish defended from nondefended prey) have opposing effects on evolution of warning signals. A more conspicuous warning signal cannot evolve unless it makes the prey more distinctive from palatable prey, reducing mistaken attacks by predators. A novel warning signal that is learned quickly can spread from lower abundance more easily than a signal that is learned more slowly. However, the relative rate at which the resident signal and the novel signal are learned is irrelevant for the spread of the novel signal. Long-lasting neophobia can facilitate the spread of novel warning signals. Individual selection via the ability of defended prey to escape from predator is not likely to facilitate evolution of conspicuous warning signals if both the resident (cryptic) morph and the novel morph have the same escape probability. Predation intensity (defined as the proportion of palatable prey eaten by the predator) has a strong effect on selection. More intense predation results in strong selection against rare signals, but also strong selective advantage to common signals. The threshold number of aposematic individuals is lower when predation is intense. Thus, the evolution of warning signals may be more likely in environments where predation is intense. The effect of numbers of predators depends on whether predation intensity also changes. When predation intensity is constant, increasing numbers of predators raises the threshold number of aposematic individuals, and thus makes evolution of aposematism more difficult. If predation intensity increases in parallel with number of predators, the threshold number of aposematic individuals does not change much, but selection becomes more intense on both sides of the threshold.  相似文献   

14.
Structural complexity strongly influences the outcome of predator–prey interactions in benthic marine communities affecting both prey concealment and predator hunting efficacy. How habitat structure interacts with species‐specific differences in predatory style and antipredatory strategies may therefore be critical in determining higher trophic functions. We examined the role of structural complexity in mediating predator–prey interactions across several macrophyte habitats along a gradient of structural complexity in three different bioregions: western Mediterranean Sea (WMS), eastern Indian Ocean (EIO) and northern Gulf of Mexico (NGM). Using sea urchins as model prey, we measured survival rates of small (juveniles) and medium (young adults) size classes in different habitat zones: within the macrophyte habitat, along the edge and in bare sandy spaces. At each site we also measured structural variables and predator abundance. Generalised linear models identified biomass and predatory fish abundance as the main determinants of predation intensity but the efficiency of predation was also influenced by urchin size class. Interestingly though, the direction of structure‐mediated effects on predation risk was markedly different between habitats and bioregions. In WMS and NGM, where predation by roving fish was relatively high, structure served as a critical prey refuge, particularly for juvenile urchins. In contrast, in EIO, where roving fish predation was low, predation was generally higher inside structurally complex environments where sea stars were responsible for much of the predation. Larger prey were generally less affected by predation in all habitats, probably due to the absence of large predators. Overall, our results indicate that, while the structural complexity of habitats is critical in mediating predator–prey interactions, the direction of this mediation is strongly influenced by differences in predator composition. Whether the regional pool of predators is dominated by visual roving species or chemotactic benthic predators may determine if structure dampens or enhances the influence of top–down control in marine macrophyte communities.  相似文献   

15.
Sentinel plasticine prey has been increasingly used to estimate predation pressure. The use of plasticine prey may, however, bias the results, as this method was originally designed to account for predation by organisms that can visually recognize the shapes and colors of their prey. To evaluate the limitations of using sentinel plasticine prey, we compared predator attack rates between real prey – dead and live mealworms, Tenebrio molitor L. (Coleoptera: Tenebrionidae) – and plasticine models in a monsoonal tropical rainforest of southeastern China. The attack rates by invertebrates were highest on dead prey followed by live prey and plasticine models, whereas the attack rates by vertebrates were lowest on dead prey, and did not differ between live prey and plasticine models. These results confirm that bias imposed by using the plasticine models is affected by the type of predators. In addition, we tested the validity and generality of the premise that predators can distinguish the shapes of plasticine model prey and preferentially attack a caterpillar-like shape over other shapes. To test this hypothesis, we conducted three independent experiments in China, Papua New Guinea, and Finland. In the two latter localities, predation rates on plasticine caterpillars were higher than on models of other shapes, whereas in China, these differences were not significant. Taken together, our study suggests that plasticine models may underestimate the predation by invertebrates to a greater extent than predation by vertebrates, and the preference of model shape by predators may be locality-specific, presumably due to differences in the composition of the predator community. We propose that predation be estimated on both live and plasticine prey in future studies to measure the potential bias imposed by using plasticine models and its variation among various habitats and predator groups.  相似文献   

16.
Prey modify their behaviour to avoid predation, but dilemmas arise when predators vary in hunting style. Behaviours that successfully evade one predator sometimes facilitate exposure to another predator, forcing the prey to choose the lesser of two evils. In such cases, we need to quantify behavioural strategies in a mix of predators. We model optimal behaviour of Atlantic cod Gadus morhua larvae in a water column, and find the minimal vulnerability from three common predator groups with different hunting modes; 1) ambush predators that sit‐and‐wait for approaching fish larvae; 2) cruising invertebrates that eat larvae in their path; and 3) fish which are visually hunting predators. We use a state‐dependent model to find optimal behaviours (vertical position and swimming speed over a diel light cycle) under any given exposure to the three distinct modes of predation. We then vary abundance of each predator and quantify direct and indirect effects of predation. The nature and strength of direct and indirect effects varied with predator type and abundance. Larvae escaped about half the mortality from fish by swimming deeper to avoid light, but their activity level and cumulative predation from ambush predators increased. When ambush invertebrates dominated, it was optimal to be less active but in more lit habitats, and predation from fish increased. Against cruising predators, there was no remedy. In all cases, the shift in behaviour allowed growth to remain almost the same, while total predation were cut by one third. In early life stages with high and size‐dependent mortality rates, growth rate can be a poor measure of the importance of behavioural strategies.  相似文献   

17.
Chemical defences against predation often involve responses to specific predation events where the prey expels fluids, such as haemolymph or gut contents, which are aversive to the predator. The common link is that each predation attempt that is averted results in an energetic cost and a reduction in the chemical defences of the prey, which might leave the prey vulnerable if the next predation attempt occurs soon afterwards. Since prey appear to be able to control the magnitude of their responses, we should expect them to trade-off the need to repel the current threat against the need to preserve defences against future threats and conserve energy for other essential activities. Here we use dynamic state-dependent models to predict optimal strategies of defence deployment in the juvenile stage of an animal that has to survive to maturation. We explore the importance of resource level, predator density, and the costs of making defences on the magnitude of the responses and optimal age and size at maturation. We predict the patterns of investment and the magnitude of the deployment of defences to potentially multiple attacks over the juvenile period, and show that responses should be smaller when the costs of defences and/or predation risk are higher. The model enables us to predict that animals in which defences benefit the adult stage will employ different strategies than those that do not use the same defences as adults, and thereby experience a smaller reduction in body size as a result of repeated attacks. We also explore the effect of the importance of adult size, and find that the sex and mating system of the prey should also affect defensive strategies. Our work provides the first predictive theory of the adaptive use of responsive defences across taxa.  相似文献   

18.
1.  Nest predation negatively affects most avian populations. Studies of nest predation usually group all nest failures when attempting to determine temporal and parental activities, habitat or landscape predictors of success. Often these studies find few significant predictors and interpret patterns as essentially random.
2.  Relatively little is known about the importance of individual predator species or groups on observed patterns of nest success, and how the ecology of these predators may influence patterns of success and failure.
3.  In 2006 and 2007, time-lapse, infrared video systems were deployed at nests of Swainson's warblers ( Limnothlypis swainsonii Audubon) in east-central Arkansas to identify dominant nest predators and determine whether factors predicting predation differed among these predators.
4.  Analysis of pooled data yielded few predictors of predation risk, whereas separate analyses for the three major predator groups revealed clear, but often conflicting, patterns.
5.  Predation by ratsnakes ( Elaphe obsoleta ) and raptors was more common during the nestling period, whereas predation by brown-headed cowbirds ( Molothrus ater ) occurred more during incubation. Additionally, the risk of predation by raptors and cowbirds decreased throughout the breeding season, whereas ratsnake predation risk increased.
6.  Contrary to expectations, predation by ratsnakes and cowbirds was more common far from edges, whereas raptor predation was more common close to agricultural edges.
7.  Collectively, our results suggest that associating specific predators with the nests they prey on is necessary to understand underlying mechanisms.  相似文献   

19.
Predation by introduced mammals is decimating New Zealand's indigenous fauna. Understanding factors that influence this process allows resources for predator control to be applied with maximum effect. This study examines how predation of a secondary prey species (a relatively common but declining native plover, the banded dotterel Charadrius bicinctus ) varied with reductions in abundance of a major prey source (rabbits), kill-trapping of predators, nest density and habitat complexity. Banded dotterels mostly nest in open braided riverbeds alongside a number of endemic threatened species. We measured the fate of 753 dotterel clutches exposed to predation by cats, ferrets and hedgehogs. We found key times and places of high predation risk. Immediately after widespread reduction in rabbit populations by rabbit haemorrhagic disease (RHD), clutch predation rates were almost as high (mean, 50%) as those recorded during past rabbit poisoning programmes (mean, 57%). Both rates were significantly higher than the mean predation rate of 22% without rabbit control, suggesting a shift in predator diet immediately after rabbit population declines. Unlike after rabbit poisoning, clutch predation rate remained high in the years after RHD. Other patterns observed included higher clutch predation rate where nest density was lower, suggesting that predation can potentially cause local extinction. Clutch predation was also higher along riverbed margins where vegetation was dense. There was equivocal evidence for an effect of predator kill-trapping on clutch predation rate. Management strategies that could potentially reduce clutch predation risks include focusing predator mitigation measures during periods of rabbit decline, maintaining them for more than one breeding season if the rabbit declines are widespread (e.g. RHD epidemics), and applying greater effort at sites with relatively low nest density and along riverbed margins where predator use is more frequent.  相似文献   

20.
Theoretical work on intraguild predation suggests that if a top predator and an intermediate predator share prey, the system will be stable only if the intermediate predator is better at exploiting the prey, and the top predator gains significantly from consuming the intermediate predator. In mammalian carnivore systems, however, there are examples of top predator species that attack intermediate predator species, but rarely or never consume the intermediate predator. We suggest that top predators attacking intermediate predators without consuming them may not only reduce competition with the intermediate predators, but may also increase the vigilance of the intermediate predators or alter the vigilance of their shared prey, and that this behavioral response may help to maintain the stability of the system. We examine two models of intraguild predation, one that incorporates prey vigilance, and a second that incorporates intermediate predator vigilance. We find that stable coexistence can occur when the top predator has a very low consumption rate on the intermediate predator, as long as the attack rate on the intermediate predator is relatively large. However, the system is stable when the top predator never consumes the intermediate predator only if the two predators share more than one prey species. If the predators do share two prey species, and those prey are vigilant, increasing top predator attack rates on the intermediate predator reduces competition with the intermediate predator and reduces vigilance by the prey, thereby leading to higher top predator densities. These results suggest that predator and prey behavior may play an important dynamical role in systems with intraguild predation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号