共查询到20条相似文献,搜索用时 0 毫秒
1.
Elena A. Gerasimova Andrey O. Plotnikov Yuri A. Khlopko Vasily V. Zlatogursky 《The Journal of eukaryotic microbiology》2020,67(2):223-231
The diversity of centrohelids in inland saline waters was studied with metabarcoding for the first time. The fragment of V6–V7 regions of 18S rDNA was sequenced with newly designed primers. Obtained OTUs were identified with molecular phylogenetic analysis and comparison of the signatures in 39es9 hairpin of V7. The obtained data included some OTUs, which could be attributed to four described species, but the majority belonged to previously established or novel environmental clades. Along with some presumably marine/brackish clades and freshwater/low salinity (0–2 ppt) clades, seven presumable species demonstrating broad (from 1–2 up to 78 ppt) salinity tolerance were detected. A number of OTUs belonged to Raphidocystis contractilis, which is known from three independent findings in brackish habitats only. Thus, it was assumed that this species is stenohaline and specifically adapted to salinity 5–15 ppt. The high level of salinity tolerance was suggested for centrohelids before based on morphology, which was used to justify their cosmopolitan distribution. Later these views were criticized based on environmental sequencing, but the results of the current survey indicate, that at least some species are present at salinities from almost freshwater (1–2 ppt) to twice oceanic (78 ppt) and are presumably capable of overcoming oceanic salinity barriers for their distribution. 相似文献
2.
DNA metabarcoding for diet analysis and biodiversity: A case study using the endangered Australian sea lion (Neophoca cinerea) 下载免费PDF全文
Tina E. Berry Sylvia K. Osterrieder Dáithí C. Murray Megan L. Coghlan Anthony J. Richardson Alicia K. Grealy Michael Stat Lars Bejder Michael Bunce 《Ecology and evolution》2017,7(14):5435-5453
The analysis of apex predator diet has the ability to deliver valuable insights into ecosystem health, and the potential impacts a predator might have on commercially relevant species. The Australian sea lion (Neophoca cinerea) is an endemic apex predator and one of the world's most endangered pinnipeds. Given that prey availability is vital to the survival of top predators, this study set out to understand what dietary information DNA metabarcoding could yield from 36 sea lion scats collected across 1,500 km of its distribution in southwest Western Australia. A combination of PCR assays were designed to target a variety of potential sea lion prey, including mammals, fish, crustaceans, cephalopods, and birds. Over 1.2 million metabarcodes identified six classes from three phyla, together representing over 80 taxa. The results confirm that the Australian sea lion is a wide‐ranging opportunistic predator that consumes an array of mainly demersal fauna. Further, the important commercial species Sepioteuthis australis (southern calamari squid) and Panulirus cygnus (western rock lobster) were detected, but were present in <25% of samples. Some of the taxa identified, such as fish, sharks and rays, clarify previous knowledge of sea lion prey, and some, such as eel taxa and two gastropod species, represent new dietary insights. Even with modest sample sizes, a spatial analysis of taxa and operational taxonomic units found within the scat shows significant differences in diet between many of the sample locations and identifies the primary taxa that are driving this variance. This study provides new insights into the diet of this endangered predator and confirms the efficacy of DNA metabarcoding of scat as a noninvasive tool to more broadly define regional biodiversity. 相似文献
3.
Karen L. Bell Robert A. Petit III Anya Cutler Emily K. Dobbs J. Michael Macpherson Timothy D. Read Kevin S. Burgess Berry J. Brosi 《Ecology and evolution》2021,11(22):16082
Molecular identification of mixed‐species pollen samples has a range of applications in various fields of research. To date, such molecular identification has primarily been carried out via amplicon sequencing, but whole‐genome shotgun (WGS) sequencing of pollen DNA has potential advantages, including (1) more genetic information per sample and (2) the potential for better quantitative matching. In this study, we tested the performance of WGS sequencing methodology and publicly available reference sequences in identifying species and quantifying their relative abundance in pollen mock communities. Using mock communities previously analyzed with DNA metabarcoding, we sequenced approximately 200Mbp for each sample using Illumina HiSeq and MiSeq. Taxonomic identifications were based on the Kraken k‐mer identification method with reference libraries constructed from full‐genome and short read archive data from the NCBI database. We found WGS to be a reliable method for taxonomic identification of pollen with near 100% identification of species in mixtures but generating higher rates of false positives (reads not identified to the correct taxon at the required taxonomic level) relative to rbcL and ITS2 amplicon sequencing. For quantification of relative species abundance, WGS data provided a stronger correlation between pollen grain proportion and sequence read proportion, but diverged more from a 1:1 relationship, likely due to the higher rate of false positives. Currently, a limitation of WGS‐based pollen identification is the lack of representation of plant diversity in publicly available genome databases. As databases improve and costs drop, we expect that eventually genomics methods will become the methods of choice for species identification and quantification of mixed‐species pollen samples. 相似文献
4.
Antton Alberdi Ostaizka Aizpurua Kristine Bohmann Shyam Gopalakrishnan Christina Lynggaard Martin Nielsen Marcus Thomas Pius Gilbert 《Molecular ecology resources》2019,19(2):327-348
The application of high‐throughput sequencing‐based approaches to DNA extracted from environmental samples such as gut contents and faeces has become a popular tool for studying dietary habits of animals. Due to the high resolution and prey detection capacity they provide, both metabarcoding and shotgun sequencing are increasingly used to address ecological questions grounded in dietary relationships. Despite their great promise in this context, recent research has unveiled how a wealth of biological (related to the study system) and technical (related to the methodology) factors can distort the signal of taxonomic composition and diversity. Here, we review these studies in the light of high‐throughput sequencing‐based assessment of trophic interactions. We address how the study design can account for distortion factors, and how acknowledging limitations and biases inherent to sequencing‐based diet analyses are essential for obtaining reliable results, thus drawing appropriate conclusions. Furthermore, we suggest strategies to minimize the effect of distortion factors, measures to increase reproducibility, replicability and comparability of studies, and options to scale up DNA sequencing‐based diet analyses. In doing so, we aim to aid end‐users in designing reliable diet studies by informing them about the complexity and limitations of DNA sequencing‐based diet analyses, and encourage researchers to create and improve tools that will eventually drive this field to its maturity. 相似文献
5.
Cristina Gamba Kristian Hanghøj Charleen Gaunitz Ahmed H. Alfarhan Saleh A. Alquraishi Khaled A. S. Al‐Rasheid DANIEL G. Bradley Ludovic Orlando 《Molecular ecology resources》2016,16(2):459-469
The DNA molecules that can be extracted from archaeological and palaeontological remains are often degraded and massively contaminated with environmental microbial material. This reduces the efficacy of shotgun approaches for sequencing ancient genomes, despite the decreasing sequencing costs of high‐throughput sequencing (HTS). Improving the recovery of endogenous molecules from the DNA extraction and purification steps could, thus, help advance the characterization of ancient genomes. Here, we apply the three most commonly used DNA extraction methods to five ancient bone samples spanning a ~30 thousand year temporal range and originating from a diversity of environments, from South America to Alaska. We show that methods based on the purification of DNA fragments using silica columns are more advantageous than in solution methods and increase not only the total amount of DNA molecules retrieved but also the relative importance of endogenous DNA fragments and their molecular diversity. Therefore, these methods provide a cost‐effective solution for downstream applications, including DNA sequencing on HTS platforms. 相似文献
6.
Sonia Boughattas Dana Albatesh Albandari AlKhater Bruno W. Giraldes Asma A. Althani Fatiha M. Benslimane 《Ecology and evolution》2021,11(24):18505
Marine habitats are Earth''s largest aquatic ecosystems, yet little is known about marine organism''s genomes. Molecular studies can unravel their genetics print, thus shedding light on specie''s adaptation and speciation with precise authentication. However, extracting high molecular weight DNA from marine organisms and subsequent DNA library preparation for whole genome sequencing is challenging. The challenges can be explained by excessive metabolites secretion that co‐precipitates with DNA and barricades their sequencing. In this work, we sought to resolve this issue by describing an optimized isolation method and comparing its performance with the most commonly reported protocols or commercial kits: SDS/phenol–chloroform method, Qiagen Genomic Tips kit, Qiagen DNeasy Plant mini kit, a modified protocol of Qiagen DNeasy Plant kit, Qiagen DNeasy Blood and Tissue kit, and Qiagen Qiamp DNA Stool mini kit. Our method proved to work significantly better for different marine species regardless of their shape, consistency, and sample preservation, improving Oxford Nanopore Technologies sequencing yield by 39 folds for Spirobranchus sp. and enabling generation of almost 10 GB data per flow cell/run for Chrysaora sp. and Palaemon sp. samples. 相似文献
7.
Ken Kraaijeveld Letty A. de Weger Marina Ventayol García Henk Buermans Jeroen Frank Pieter S. Hiemstra Johan T. den Dunnen 《Molecular ecology resources》2015,15(1):8-16
Pollen monitoring is an important and widely used tool in allergy research and creation of awareness in pollen‐allergic patients. Current pollen monitoring methods are microscope‐based, labour intensive and cannot identify pollen to the genus level in some relevant allergenic plant groups. Therefore, a more efficient, cost‐effective and sensitive method is needed. Here, we present a method for identification and quantification of airborne pollen using DNA sequencing. Pollen is collected from ambient air using standard techniques. DNA is extracted from the collected pollen, and a fragment of the chloroplast gene trnL is amplified using PCR. The PCR product is subsequently sequenced on a next‐generation sequencing platform (Ion Torrent). Amplicon molecules are sequenced individually, allowing identification of different sequences from a mixed sample. We show that this method provides an accurate qualitative and quantitative view of the species composition of samples of airborne pollen grains. We also show that it correctly identifies the individual grass genera present in a mixed sample of grass pollen, which cannot be achieved using microscopic pollen identification. We conclude that our method is more efficient and sensitive than current pollen monitoring techniques and therefore has the potential to increase the throughput of pollen monitoring. 相似文献
8.
Amrita Srivathsan John C. M. Sha Alfried P. Vogler Rudolf Meier 《Molecular ecology resources》2015,15(2):250-261
Faecal samples are of great value as a non‐invasive means to gather information on the genetics, distribution, demography, diet and parasite infestation of endangered species. Direct shotgun sequencing of faecal DNA could give information on these simultaneously, but this approach is largely untested. Here, we used two faecal samples to characterize the diet of two red‐shanked doucs langurs (Pygathrix nemaeus) that were fed known foliage, fruits, vegetables and cereals. Illumina HiSeq produced ~74 and 67 million paired reads for these samples, of which ~10 000 (0.014%) and ~44 000 (0.066%), respectively, were of chloroplast origin. Sequences were matched against a database of available chloroplast ‘barcodes’ for angiosperms. The results were compared with ‘metabarcoding’ using PCR amplification of the P6 loop of trnL. Metagenomics identified seven and nine of the likely 16 diet plants while six and five were identified by metabarcoding. Metabarcoding produced thousands of reads consistent with the known diet, but the barcodes were too short to identify several plant species to genus. Metagenomics utilized multiple, longer barcodes that combined had greater power of identification. However, rare diet items were not recovered. Read numbers for diet species in metagenomic and metabarcoding data were correlated, indicating that both are useful for determining relative sequence abundance. Metagenomic reads were uniformly distributed across the chloroplast genomes; thus, if chloroplast genomes were used as reference, the precision of identifications and species recovery would improve further. Metagenomics also recovered the host mitochondrial genome and numerous intestinal parasite sequences in addition to generating data useful for characterizing the microbiome. 相似文献
9.
Kvin Cilleros Alice Valentini Luc Allard Tony Dejean Roselyne Etienne Gaël Grenouillet Amaia Iribar Pierre Taberlet Rgis Vigouroux Sbastien Brosse 《Molecular ecology resources》2019,19(1):27-46
Determining the species compositions of local assemblages is a prerequisite to understanding how anthropogenic disturbances affect biodiversity. However, biodiversity measurements often remain incomplete due to the limited efficiency of sampling methods. This is particularly true in freshwater tropical environments that host rich fish assemblages, for which assessments are uncertain and often rely on destructive methods. Developing an efficient and nondestructive method to assess biodiversity in tropical freshwaters is highly important. In this study, we tested the efficiency of environmental DNA (eDNA) metabarcoding to assess the fish diversity of 39 Guianese sites. We compared the diversity and composition of assemblages obtained using traditional and metabarcoding methods. More than 7,000 individual fish belonging to 203 Guianese fish species were collected by traditional sampling methods, and ~17 million reads were produced by metabarcoding, among which ~8 million reads were assigned to 148 fish taxonomic units, including 132 fish species. The two methods detected a similar number of species at each site, but the species identities partially matched. The assemblage compositions from the different drainage basins were better discriminated using metabarcoding, revealing that while traditional methods provide a more complete but spatially limited inventory of fish assemblages, metabarcoding provides a more partial but spatially extensive inventory. eDNA metabarcoding can therefore be used for rapid and large‐scale biodiversity assessments, while at a local scale, the two approaches are complementary and enable an understanding of realistic fish biodiversity. 相似文献
10.
Susanna A. Wood Xavier Pochon Olivier Laroche Ulla von Ammon Janet Adamson Anastasija Zaiko 《Molecular ecology resources》2019,19(6):1407-1419
Targeted species‐specific and community‐wide molecular diagnostics tools are being used with increasing frequency to detect invasive or rare species. Few studies have compared the sensitivity and specificity of these approaches. In the present study environmental DNA from 90 filtered seawater and 120 biofouling samples was analyzed with quantitative PCR (qPCR), droplet digital PCR (ddPCR) and metabarcoding targeting the cytochrome c oxidase I (COI) and 18S rRNA genes for the Mediterranean fanworm Sabella spallanzanii. The qPCR analyses detected S. spallanzanii in 53% of water and 85% of biofouling samples. Using ddPCR S. spallanzanii was detected in 61% of water of water and 95% of biofouling samples. There were strong relationships between COI copy numbers determined via qPCR and ddPCR (water R2 = 0.81, p < .001, biofouling R2 = 0.68, p < .001); however, qPCR copy numbers were on average 125‐fold lower than those measured using ddPCR. Using metabarcoding there was higher detection in water samples when targeting the COI (40%) compared to 18S rRNA (5.4%). The difference was less pronounced in biofouling samples (25% COI, 29% 18S rRNA). Occupancy modelling showed that although the occupancy estimate was higher for biofouling samples (ψ = 1.0), higher probabilities of detection were derived for water samples. Detection probabilities of ddPCR (1.0) and qPCR (0.93) were nearly double metabarcoding (0.57 to 0.27 marker dependent). Studies that aim to detect specific invasive or rare species in environmental samples should consider using targeted approaches until a detailed understanding of how community and matrix complexity, and primer biases affect metabarcoding data. 相似文献
11.
Gert-Jan Jeunen Jasmine S. Cane Sara Ferreira Francesca Strano Ulla von Ammon Hugh Cross Robert Day Sean Hesseltine Kaleb Ellis Lara Urban Niall Pearson Pamela Olmedo-Rojas Anya Kardailsky Neil J. Gemmell Miles Lamare 《Molecular ecology resources》2023,23(4):771-786
Aquatic environmental DNA (eDNA) surveys are transforming how marine ecosystems are monitored. The time-consuming preprocessing step of active filtration, however, remains a bottleneck. Hence, new approaches that eliminate the need for active filtration are required. Filter-feeding invertebrates have been proven to collect eDNA, but side-by-side comparative studies to investigate the similarity between aquatic and filter-feeder eDNA signals are essential. Here, we investigated the differences among four eDNA sources (water; bivalve gill-tissue; sponges; and ethanol in which filter-feeding organisms were stored) along a vertically stratified transect in Doubtful Sound, New Zealand using three metabarcoding primer sets targeting fish and vertebrates. Combined, eDNA sources detected 59 vertebrates, while concurrent diver surveys observed eight fish species. There were no significant differences in alpha and beta diversity between water and sponge eDNA and both sources were highly correlated. Vertebrate eDNA was successfully extracted from the ethanol in which sponges were stored, although a reduced number of species were detected. Bivalve gill-tissue dissections, on the other hand, failed to reliably detect eDNA. Overall, our results show that vertebrate eDNA signals obtained from water samples and marine sponges are highly concordant. The strong similarity in eDNA signals demonstrates the potential of marine sponges as an additional tool for eDNA-based marine biodiversity surveys, by enabling the incorporation of larger sample numbers in eDNA surveys, reducing plastic waste, simplifying sample collection, and as a cost-efficient alternative. However, we note the importance to not detrimentally impact marine communities by, for example, nonlethal subsampling, specimen cloning, or using bycatch specimens. 相似文献
12.
Toward an ecoregion scale evaluation of eDNA metabarcoding primers: A case study for the freshwater fish biodiversity of the Murray–Darling Basin (Australia) 下载免费PDF全文
Jonas Bylemans Dianne M. Gleeson Christopher M. Hardy Elise Furlan 《Ecology and evolution》2018,8(17):8697-8712
High‐throughput sequencing of environmental DNA (i.e., eDNA metabarcoding) has become an increasingly popular method for monitoring aquatic biodiversity. At present, such analyses require target‐specific primers to amplify DNA barcodes from co‐occurring species, and this initial amplification can introduce biases. Understanding the performance of different primers is thus recommended prior to undertaking any metabarcoding initiative. While multiple software programs are available to evaluate metabarcoding primers, all programs have their own strengths and weaknesses. Therefore, a robust in silico workflow for the evaluation of metabarcoding primers will benefit from the use of multiple programs. Furthermore, geographic differences in species biodiversity are likely to influence the performance of metabarcoding primers and further complicate the evaluation process. Here, an in silico workflow is presented that can be used to evaluate the performance of metabarcoding primers on an ecoregion scale. This workflow was used to evaluate the performance of published and newly developed eDNA metabarcoding primers for the freshwater fish biodiversity of the Murray–Darling Basin (Australia). To validate the in silico workflow, a subset of the primers, including one newly designed primer pair, were used in metabarcoding analyses of an artificial DNA community and eDNA samples. The results show that the in silico workflow allows for a robust evaluation of metabarcoding primers and can reveal important trade‐offs that need to be considered when selecting the most suitable primer. Additionally, a new primer pair was described and validated that allows for more robust taxonomic assignments and is less influenced by primer biases compared to commonly used fish metabarcoding primers. 相似文献
13.
Jrme Morinire Michael Balke Dieter Doczkal Matthias F. Geiger Laura A. Hardulak Gerhard Haszprunar Axel Hausmann Lars Hendrich Ledis Regalado Bjrn Rulik Stefan Schmidt Johann‐Wolfgang Wgele Paul D. N. Hebert 《Molecular ecology resources》2019,19(4):900-928
This study summarizes results of a DNA barcoding campaign on German Diptera, involving analysis of 45,040 specimens. The resultant DNA barcode library includes records for 2,453 named species comprising a total of 5,200 barcode index numbers (BINs), including 2,700 COI haplotype clusters without species‐level assignment, so called “dark taxa.” Overall, 88 out of 117 families (75%) recorded from Germany were covered, representing more than 50% of the 9,544 known species of German Diptera. Until now, most of these families, especially the most diverse, have been taxonomically inaccessible. By contrast, within a few years this study provided an intermediate taxonomic system for half of the German Dipteran fauna, which will provide a useful foundation for subsequent detailed, integrative taxonomic studies. Using DNA extracts derived from bulk collections made by Malaise traps, we further demonstrate that species delineation using BINs and operational taxonomic units (OTUs) constitutes an effective method for biodiversity studies using DNA metabarcoding. As the reference libraries continue to grow, and gaps in the species catalogue are filled, BIN lists assembled by metabarcoding will provide greater taxonomic resolution. The present study has three main goals: (a) to provide a DNA barcode library for 5,200 BINs of Diptera; (b) to demonstrate, based on the example of bulk extractions from a Malaise trap experiment, that DNA barcode clusters, labelled with globally unique identifiers (such as OTUs and/or BINs), provide a pragmatic, accurate solution to the “taxonomic impediment”; and (c) to demonstrate that interim names based on BINs and OTUs obtained through metabarcoding provide an effective method for studies on species‐rich groups that are usually neglected in biodiversity research projects because of their unresolved taxonomy. 相似文献
14.
Filipa M. S. Martins Mafalda Galhardo Ana F. Filipe Amílcar Teixeira Paulo Pinheiro Joana Pauprio Paulo C. Alves Pedro Beja 《Molecular ecology resources》2019,19(4):863-876
DNA metabarcoding can contribute to improving cost‐effectiveness and accuracy of biological assessments of aquatic ecosystems, but significant optimization and standardization efforts are still required to mainstream its application into biomonitoring programmes. In assessments based on freshwater macroinvertebrates, a key challenge is that DNA is often extracted from cleaned, sorted and homogenized bulk samples, which is time‐consuming and may be incompatible with sample preservation requirements of regulatory agencies. Here, we optimize and evaluate metabarcoding procedures based on DNA recovered from 96% ethanol used to preserve field samples and thus including potential PCR inhibitors and nontarget organisms. We sampled macroinvertebrates at five sites and subsampled the preservative ethanol at 1 to 14 days thereafter. DNA was extracted using column‐based enzymatic (TISSUE) or mechanic (SOIL) protocols, or with a new magnetic‐based enzymatic protocol (BEAD), and a 313‐bp COI fragment was amplified. Metabarcoding detected at least 200 macroinvertebrate taxa, including most taxa detected through morphology and for which there was a reference barcode. Better results were obtained with BEAD than SOIL or TISSUE, and with subsamples taken 7–14 than 1–7 days after sampling, in terms of DNA concentration and integrity, taxa diversity and matching between metabarcoding and morphology. Most variation in community composition was explained by differences among sites, with small but significant contributions of subsampling day and extraction method, and negligible contributions of extraction and PCR replication. Our methods enhance reliability of preservative ethanol as a potential source of DNA for macroinvertebrate metabarcoding, with a strong potential application in freshwater biomonitoring. 相似文献
15.
Morgan Gueuning Dominik Ganser Simon Blaser Matthias Albrecht Eva Knop Christophe Praz Juerg E. Frey 《Molecular ecology resources》2019,19(4):847-862
Implementing cost‐effective monitoring programs for wild bees remains challenging due to the high costs of sampling and specimen identification. To reduce costs, next‐generation sequencing (NGS)‐based methods have lately been suggested as alternatives to morphology‐based identifications. To provide a comprehensive presentation of the advantages and weaknesses of different NGS‐based identification methods, we assessed three of the most promising ones, namely metabarcoding, mitogenomics and NGS barcoding. Using a regular monitoring data set (723 specimens identified using morphology), we found that NGS barcoding performed best for both species presence/absence and abundance data, producing only few false positives (3.4%) and no false negatives. In contrast, the proportion of false positives and false negatives was higher using metabarcoding and mitogenomics. Although strong correlations were found between biomass and read numbers, abundance estimates significantly skewed the communities' composition in these two techniques. NGS barcoding recovered the same ecological patterns as morphology. Ecological conclusions based on metabarcoding and mitogenomics were similar to those based on morphology when using presence/absence data, but different when using abundance data. In terms of workload and cost, we show that metabarcoding and NGS barcoding can compete with morphology, but not mitogenomics which was consistently more expensive. Based on these results, we advocate that NGS barcoding is currently the seemliest NGS method for monitoring of wild bees. Furthermore, this method has the advantage of potentially linking DNA sequences with preserved voucher specimens, which enable morphological re‐examination and will thus produce verifiable records which can be fed into faunistic databases. 相似文献
16.
Comparison of manual and semi‐automatic DNA extraction protocols for the barcoding characterization of hematophagous louse flies (Diptera: Hippoboscidae) 下载免费PDF全文
Rafael Gutiérrez‐López Josué Martínez‐de la Puente Laura Gangoso Ramón C. Soriguer Jordi Figuerola 《Journal of vector ecology》2015,40(1):11-15
The barcoding of life initiative provides a universal molecular tool to distinguish animal species based on the amplification and sequencing of a fragment of the subunit 1 of the cytochrome oxidase (COI) gene. Obtaining good quality DNA for barcoding purposes is a limiting factor, especially in studies conducted on small‐sized samples or those requiring the maintenance of the organism as a voucher. In this study, we compared the number of positive amplifications and the quality of the sequences obtained using DNA extraction methods that also differ in their economic costs and time requirements and we applied them for the genetic characterization of louse flies. Four DNA extraction methods were studied: chloroform/isoamyl alcohol, HotShot procedure, Qiagen DNeasy® Tissue and Blood Kit and DNA Kit Maxwell® 16LEV. All the louse flies were morphologically identified as Ornithophila gestroi and a single COI‐based haplotype was identified. The number of positive amplifications did not differ significantly among DNA extraction procedures. However, the quality of the sequences was significantly lower for the case of the chloroform/isoamyl alcohol procedure with respect to the rest of methods tested here. These results may be useful for the genetic characterization of louse flies, leaving most of the remaining insect as a voucher. 相似文献
17.
T. W. Bredy 《Genes, Brain & Behavior》2014,13(7):721-731
Experience‐dependent changes in DNA methylation can exert profound effects on neuronal function and behaviour. A single learning event can induce a variety of DNA modifications within the neuronal genome, some of which may be common to all individuals experiencing the event, whereas others may occur in a subset of individuals. Variations in experience‐induced DNA methylation may subsequently confer increased vulnerability or resilience to the development of neuropsychiatric disorders. However, the detection of experience‐dependent changes in DNA methylation in the brain has been hindered by the interrogation of heterogeneous cell populations, regional differences in epigenetic states and the use of pooled tissue obtained from multiple individuals. Methyl CpG Binding Domain Ultra‐Sequencing (MBD Ultra‐Seq) overcomes current limitations on genome‐wide epigenetic profiling by incorporating fluorescence‐activated cell sorting and sample‐specific barcoding to examine cell‐type‐specific CpG methylation in discrete brain regions of individuals. We demonstrate the value of this method by characterizing differences in 5‐methylcytosine (5mC) in neurons and non‐neurons of the ventromedial prefrontal cortex of individual adult C57BL/6 mice, using as little as 50 ng of genomic DNA per sample. We find that the neuronal methylome is characterized by greater CpG methylation as well as the enrichment of 5mC within intergenic loci. In conclusion, MBD Ultra‐Seq is a robust method for detecting DNA methylation in neurons derived from discrete brain regions of individual animals. This protocol will facilitate the detection of experience‐dependent changes in DNA methylation in a variety of behavioural paradigms and help identify aberrant experience‐induced DNA methylation that may underlie risk and resiliency to neuropsychiatric disease. 相似文献
18.
Sébastien Calvignac‐Spencer Kevin Merkel Nadine Kutzner Hjalmar Kühl Christophe Boesch Peter M. Kappeler Sonja Metzger Grit Schubert Fabian H. Leendertz 《Molecular ecology》2013,22(4):915-924
Large‐scale monitoring schemes are essential in assessing global mammalian biodiversity, and in this framework, leeches have recently been promoted as an indirect source of DNA from terrestrial mammal species. Carrion feeding flies are ubiquitous and can be expected to feed on many vertebrate carcasses. Hence, we tested whether fly‐derived DNA analysis may also serve as a novel tool for mammalian diversity surveys. We screened DNA extracted from 201 carrion flies collected in tropical habitats of Côte d'Ivoire and Madagascar for mammal DNA using multiple PCR systems and retrieved DNA sequences from a diverse set of species (22 in Côte d'Ivoire, four in Madagascar) exploiting distinct forest strata and displaying a broad range of body sizes. Deep sequencing of amplicons generated from pools of flies performed equally well as individual sequencing approaches. We conclude that the analysis of fly‐derived DNA can be implemented in a very rapid and cost‐effective manner and will give a relatively unbiased picture of local mammal diversity. Carrion flies therefore represent an extraordinary and thus far unexploited resource of mammal DNA, which will probably prove useful for future inventories of wild mammal communities. 相似文献
19.
广东野百合DNA提取和RAPD条件的优化 总被引:10,自引:0,他引:10
以野百合(Lilium brownii)新鲜叶片、硅胶干燥叶片及鳞片为材料,研究了DNA的提取方法,并对影响随机扩增多态DNA(RAPD)反应的各因素进行了优化。建立了野百合RAPD的优化反应体系及程序,即在20μl反应体系中,含20 ng模板DNA,2.0 mmol/L Mg2 、0.2 mmol/L dNTPs、1.5 U Taq DNA聚合酶、0.3μmol/L随机引物S1519;扩增程序为:94℃预变性5 min,然后94℃30 s,38℃50 s,72℃1 min,35个循环,最后72℃延伸10 min,4℃保存。 相似文献
20.
Eleven microsatellite DNA loci were identified and characterized for Atlantic salmon (Salmo salar) collected from the Penobscot River, Maine, USA and the River Nith, Scotland, UK. The markers revealed high levels of genetic diversity (seven to 48 alleles per locus), heterozygosity (to 100%), and allelic heterogeneity (all comparisons). Considerable differentiation was observed as the genetic distance (chord) between the two collections was 0.680 and the pairwise FST, 0.12, was highly significant. These findings are consistent with patterns of continental‐level differentiation observed previously using an alternate suite of microsatellite loci. Locus‐by‐locus analyses of molecular variance suggested that most markers were suitable for delineating kinships and population genetic structure. 相似文献