首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Deinococcus radiodurans is a robust bacterium best known for its capacity to resist to radiation. In this study, the SDS‐PAGE coupled with high‐precision LC‐MS/MS was used to study the D. radiodurans proteome. A total of 1951 proteins were identified which covers 63.18% protein‐coding genes. Comparison of the identified proteins to the key enzymes in amino acid biosyntheses from KEGG database showed the methionine biosynthesis module is incomplete while other amino acid biosynthesis modules are complete, which indicated methionine auxotrophy in D. radiodurans. The subsequent amino acid‐auxotrophic screening has verified methionine instead of other amino acids is essential for the growth of D. radiodurans. With molecular evolutionary genetic analysis, we found the divergence in methionine biosynthesis during the evolution of the common ancestor of bacteria. We also found D. radiodurans lost the power of synthesizing methionine because of the missing metA and metX in two types of methionine biosyntheses. For the first time, this study used high‐coverage proteome analysis to identify D. radiodurans amino acid auxotrophy, which provides the important reference for the development of quantitative proteomics analysis using stable isotope labeling in metabolomics of D. radiodurans and in‐depth analysis of the molecular mechanism of radiation resistance.  相似文献   

2.
3.
In light of the increasing incidence of renal cell carcinoma (RCC), its molecular mechanisms have been comprehensively explored in numerous recent studies. However, few studies focus on the influence of multi‐factor interactions during the occurrence and development of RCC. This study aims to investigate the quantitative global proteome and the changes in lysine succinylation in related proteins, seeking to facilitate a better understanding of the molecular mechanisms underlying RCC. LC‐MS/MS combined with bioinformatics analysis are used to quantitatively detect the perspectives at the global protein level. IP and WB analysis were conducted to further verify the alternations of related proteins and lysine succinylation. A total of 3,217 proteins and 1,238 lysine succinylation sites are quantified in RCC tissues, and 668 differentially expressed proteins and 161 differentially expressed lysine succinylation sites are identified. Besides, expressions of PGK1 and PKM2 at protein and lysine, succinylation levels are significantly altered in RCC tissues. Bioinformatics analysis indicates that the glycolysis pathway is a potential mechanism of RCC progression and lysine succinylation may plays a potential role in energy metabolism. These results can provide a new direction for exploring the molecular mechanism of RCC tumorigenesis.  相似文献   

4.
Deinococcus radiodurans possesses a DNA damage response mechanism that acts via the PprI protein to induce RecA and PprA proteins, both of which are necessary in conferring extreme radioresistance. In an effort to further delineate the nature of the DNA damage response mechanism in D. radiodurans, we set out to identify novel components of the PprI-dependent signal transduction pathway in response to radiation stress. Here we demonstrate the discovery of a novel regulatory protein, PprM (a modulator of the PprI-dependent DNA damage response), which is a homolog of cold shock protein (Csp). Disruption of the pprM gene rendered D. radiodurans significantly sensitive to γ-rays. PprM regulates the induction of PprA but not that of RecA. PprM belongs in a distinct clade of a subfamily together with Csp homologs from D. geothermalis and Thermus thermophilus. Purified PprM is present as a homodimer under physiological conditions, as the case with Escherichia coli CspD. The pprA pprM double-disruptant strain exhibited higher sensitivity than the pprA or pprM single disruptant strains, suggesting that PprM regulates other hitherto unknown protein(s) important for radioresistance besides PprA. This study strongly suggests that PprM is involved in the radiation response mediated by PprI in D. radiodurans.  相似文献   

5.
The nucleoids of radiation‐resistant Deinococcus species show a high degree of compaction maintained after ionizing irradiation. We identified proteins recruited after irradiation in nucleoids of Deinococcus radiodurans and Deinococcus deserti by means of comparative proteomics. Proteins in nucleoid‐enriched fractions from unirradiated and irradiated Deinococcus were identified and semiquantified by shotgun proteomics. The ssDNA‐binding protein SSB, DNA gyrase subunits GyrA and GyrB, DNA topoisomerase I, RecA recombinase, UvrA excinuclease, RecQ helicase, DdrA, DdrB, and DdrD proteins were found in significantly higher amounts in irradiated nucleoids of both Deinococcus species. We observed, by immunofluorescence microscopy, the subcellular localization of these proteins in D. radiodurans, showing for the first time the recruitment of the DdrD protein into the D. radiodurans nucleoid. We specifically followed the kinetics of recruitment of RecA, DdrA, and DdrD to the nucleoid after irradiation. Remarkably, RecA proteins formed irregular filament‐like structures 1 h after irradiation, before being redistributed throughout the cells by 3 h post‐irradiation. Comparable dynamics of DdrD localization were observed, suggesting a possible functional interaction between RecA and DdrD. Several proteins involved in nucleotide synthesis were also seen in higher quantities in the nucleoids of irradiated cells, indicative of the existence of a mechanism for orchestrating the presence of proteins involved in DNA metabolism in nucleoids in response to massive DNA damage. All MS data have been deposited in the ProteomeXchange with identifier PXD00196 ( http://proteomecentral.proteomexchange.org/dataset/PXD000196 ).  相似文献   

6.
Oxidative stress resistant Deinococcus radiodurans surprisingly exhibited moderate sensitivity to tellurite induced oxidative stress (LD50 = 40 μM tellurite, 40 min exposure). The organism reduced 70% of 40 μM potassium tellurite within 5 h. Tellurite exposure significantly modulated cellular redox status. The level of ROS and protein carbonyl contents increased while the cellular reduction potential substantially decreased following tellurite exposure. Cellular thiols levels initially increased (within 30 min) of tellurite exposure but decreased at later time points. At proteome level, tellurite resistance proteins (TerB and TerD), tellurite reducing enzymes (pyruvate dehydrogense subunits E1 and E3), ROS detoxification enzymes (superoxide dismutase and thioredoxin reductase), and protein folding chaperones (DnaK, EF‐Ts, and PPIase) displayed increased abundance in tellurite‐stressed cells. However, remarkably decreased levels of key metabolic enzymes (aconitase, transketolase, 3‐hydroxy acyl‐CoA dehydrogenase, acyl‐CoA dehydrogenase, electron transfer flavoprotein alpha, and beta) involved in carbon and energy metabolism were observed upon tellurite stress. The results demonstrate that depletion of reduction potential in intensive tellurite reduction with impaired energy metabolism lead to tellurite toxicity in D. radiodurans.  相似文献   

7.
Post-translational modification of proteins through lysine succinylation plays important regulatory roles in living cells. Lysine succinylation was recently identified as a novel post-translational modification in Escherichia coli, yeast, Toxoplasma gondii, HeLa cells, and mouse liver. Interestingly, only a few sites of lysine succinylation have been detected in plants to date. In this study, we identified 347 sites of lysine succinylation in 202 proteins in tomato by using high-resolution mass spectrometry. Succinylated proteins are implicated in the regulation of diverse metabolic processes, including chloroplast and mitochondrial metabolism. Bioinformatic analysis showed that succinylated proteins are evolutionarily conserved and involved in various cellular functions such as metabolism and epigenetic regulation. Moreover, succinylated proteins exhibit diverse subcellular localizations. We also defined six types of definitively conserved succinylation motifs. These results provide the first in-depth analysis of the lysine succinylome and novel insights into the role of succinylation in tomato, thereby elucidating lysine succinylation in the context of cellular physiology and metabolite biosynthesis in plants.  相似文献   

8.
Response and defense systems against reactive oxygen species (ROS) contribute to the remarkable resistance of Deinococcus radiodurans to oxidative stress induced by oxidants or radiation. However, mechanisms involved in ROS response and defense systems of D. radiodurans are not well understood. Fur family proteins are important in ROS response. Only a single Fur homolog is predicted by sequence similarity in the current D. radiodurans genome database. Our bioinformatics analysis demonstrated an additional guanine nucleotide in the genome of D. radiodurans that is not in the database, leading to the discovery of another Fur homolog DrPerR. Gene disruption mutant of DrPerR showed enhanced resistance to hydrogen peroxide (H2O2) and increased catalase activity in cell extracts. Real-time PCR results indicated that DrPerR functions as a repressor of the catalase gene katE. Meanwhile, derepression of dps (DNA-binding proteins from starved cells) gene under H2O2 stress by DrPerR point to its regulatory role in metal ions hemostasis. Thus, DrPerR might function as a Fur homolog protein which is involved in ROS response and defense. These results help clarify the complicated regulatory network that responds to ROS stress in D. radiodurans.  相似文献   

9.
Histone proteins are essential elements for DNA packaging. Their PTMs contribute in modeling chromatin structure and recruiting enzymes involved in gene regulation, DNA repair, and chromosome condensation. This fundamental aspect, together with the fact that histone PTMs can be epigenetically inherited through cell generations, enlightens their importance in chromatin biology, and the consequent necessity of having biochemical techniques for their characterization. Nanoflow LC coupled to MS (nanoLC‐MS) is the strategy of choice for protein PTM accurate quantification. However, histones require adjustments to the digestion protocol such as lysine derivatization to obtain suitable peptides for the analysis. nanoLC‐MS has numerous advantages, spanning from high confidence identification to possibility of high throughput analyses, but the peculiarity of the histone preparation protocol requires continuous monitoring with the most modern available technologies to question its reliability. The work of Meert et al. (Proteomics 2015, 15, 2966–2971) establishes which protocols lead to either incomplete derivatization or derivatization of undesired amino acid residues using a combination of high resolution MS and bioinformatics tools for the alignment and the characterization of nanoLC‐MS runs. As well, they identify a number of side reactions that could be potentially misinterpreted as biological PTMs.  相似文献   

10.
Acylation modifications, such as the succinylation of lysine, are post-translational modifications and a powerful means of regulating protein activity. Some acylations occur nonenzymatically, driven by an increase in the concentration of acyl group donors. Lysine succinylation has a profound effect on the corresponding site within the protein, as it dramatically changes the charge of the residue. In eukaryotes, it predominantly affects mitochondrial proteins because the donor of succinate, succinyl-CoA, is primarily generated in the tricarboxylic acid cycle. Although numerous succinylated mitochondrial proteins have been identified in Saccharomyces cerevisiae, a more detailed characterization of the yeast mitochondrial succinylome is still lacking. Here, we performed a proteomic MS analysis of purified yeast mitochondria and detected 314 succinylated mitochondrial proteins with 1763 novel succinylation sites. The mitochondrial nucleoid, a complex of mitochondrial DNA and mitochondrial proteins, is one of the structures whose protein components are affected by succinylation. We found that Abf2p, the principal component of mitochondrial nucleoids responsible for compacting mitochondrial DNA in S. cerevisiae, can be succinylated in vivo on at least thirteen lysine residues. Abf2p succinylation in vitro inhibits its DNA-binding activity and reduces its sensitivity to digestion by the ATP-dependent ScLon protease. We conclude that changes in the metabolic state of a cell resulting in an increase in the concentration of tricarboxylic acid intermediates may affect mitochondrial functions.  相似文献   

11.
The Asian citrus psyllid Diaphorina citri Kuwayama (Hemiptera: Liviidae) is an insect vector that transmits the bacterial pathogen Candidatus Liberibacter asiaticus (CLas) associated with the destructive citrus disease, citrus huanglongbing (HLB). Currently, D. citri is the major target in HLB management, although insecticidal control and disruption of the D. citri–CLas interactions both face numerous challenges. The present study reports the subcellular proteomic profiles of D. citri, encompassing the three main subcellular protein fractions: cytosol, mitochondria and microsomes. After optimization, subcellular proteins of both high and low abundance are obtained by two‐dimensional gel electrophoresis (2‐DE). A total of 1170 spots are detected in the 2‐DE gels of the three subcellular fractions. One hundred and sixty‐four differentially expressed proteins are successfully identified using liquid chromatography‐dual mass spectroscopy. An efficient protocol for subcellular protein fractionation from D. citri is established and a clear protein separation is achieved with the chosen protein fractionation protocol. The identified cytosolic proteins are mainly metabolic enzymes, whereas a large portion of the identified proteins in the mitochondrial and microsomal fractions are involved in ATP biosynthesis and protein metabolism, respectively. Protein–protein interaction networks are predicted for some identified proteins known to be implicated in pathogen–vector interactions, such as actin, tubulin and ATP synthase, as well as insecticide resistance, such as the cytochrome P450 superfamily. The findings should provide useful information to help identify the mechanism responsible for the CLas–D. citri interactions and eventually contribute to D. citri control.  相似文献   

12.
Lysine succinylation of proteins has potential impacts on protein structure and function, which occurs on post-translation level. However, the information about the succinylation of proteins in tea plants is limited. In the present study, the significant signal of succinylation in tea plants was found by western blot. Subsequently, we performed a qualitative analysis to globally identify the lysine succinylation of proteins using high accuracy nano LC-MS/MS combined with affinity purification. As a result, a total of 142 lysine succinylation sites were identified on 86 proteins in tea leaves. The identified succinylated proteins were involved in various biological processes and a large proportion of the succinylation sites were presented on proteins in the primary metabolism, including glyoxylate and dicarboxylate metabolism, TCA cycle and glycine, serine and threonine metabolism. Moreover, 10 new succinylation sites were detected on histones in tea leaves. The results suggest that succinylated proteins in tea plants might play critical regulatory roles in biological processes, especially in the primary metabolism. This study not only comprehensively analyzed the lysine succinylome in tea plants, but also provided valuable information for further investigating the functions of lysine succinylation in tea plants.  相似文献   

13.

Background  

Enzymes involved in DNA metabolic events of the highly radioresistant bacterium Deinococcus radiodurans are currently examined to understand the mechanisms that protect and repair the Deinococcus radiodurans genome after extremely high doses of γ-irradiation. Although several Deinococcus radiodurans DNA repair enzymes have been characterised, no biochemical data is available for DNA ligation and DNA endhealing enzymes of Deinococcus radiodurans so far. DNA ligases are necessary to seal broken DNA backbones during replication, repair and recombination. In addition, ionizing radiation frequently leaves DNA strand-breaks that are not feasible for ligation and thus require end-healing by a 5'-polynucleotide kinase or a 3'-phosphatase. We expect that DNA ligases and end-processing enzymes play an important role in Deinococcus radiodurans DNA strand-break repair.  相似文献   

14.
Necrotrophic fungal pathogen Cochliobolus miyabeanus causes brown spot disease in rice leaves upon infection, resulting in critical rice yield loss. To better understand the rice–C. miyabeanus interaction, we employed proteomic approaches to establish differential proteomes of total and secreted proteins from the inoculated leaves. The 2DE approach after PEG‐fractionation of total proteins coupled with MS (MALDI‐TOF/TOF and nESI‐LC‐MS/MS) analyses led to identification of 49 unique proteins out of 63 differential spots. SDS‐PAGE in combination with nESI‐LC‐MS/MS shotgun approach was applied to identify secreted proteins in the leaf apoplast upon infection and resulted in cataloging of 501 unique proteins, of which 470 and 31 proteins were secreted from rice and C. miyabeanus, respectively. Proteins mapped onto metabolic pathways implied their reprogramming upon infection. The enzymes involved in Calvin cycle and glycolysis decreased in their protein abundance, whereas enzymes in the TCA cycle, amino acids, and ethylene biosynthesis increased. Differential proteomes also generated distribution of identified proteins in the intracellular and extracellular spaces, providing a better insight into defense responses of proteins in rice against C. miyabeanus. Established proteome of the rice–C. miyabeanus interaction serves not only as a good resource for the scientific community but also highlights its significance from biological aspects.  相似文献   

15.
recF is a critical gene involved in the RecFOR pathway of DNA repair in Deinococcus radiodurans (D. radiodurans). To investigate the role of recF in UV-C radiation resistance, we generated the recF-deficient D. radiodurans strain R1, expressed recF in Escherichia coli (E. coli) BL21 cells, and compared the ability of each to resist UV-C radiation by F 10, inactivation constant (IC), and extrapolation number (N). The mutation of recF in D. radiodurans R1 resulted in characteristic slow growth and dramatic sensitivity to UV-C irradiation. Transformation of recF into E. coli BL21 cells resulted in increased UV-C resistance compared to untransformed E. coli BL21 cells. These results suggested that recF is needed for the replication of D. radiodurans. Furthermore, as a part of the RecFOR pathway in D. radiodurans, disruption of recF could dramatically decrease the UV-C resistance of D. radiodurans and recF could increase the UV-C resistance of E. coli BL21 cells.  相似文献   

16.
Lysine succinylation (Ksucc) is a newly identified protein posttranslational modification (PTM), which may play an important role in cellular physiology. However, the role of lysine succinylation in antibiotic resistance remains elusive. Isocitrate lyase (ICL) is crucial for broad-spectrum antibiotics tolerance in Mycobacterium tuberculosis (Mtb). We previously found that MtbICL (Rv0467) has at least three succinylated lysine residues, namely K189, K322, and K334.To explore the effect of succinylation on the activity of MtbICL, mutants’ mimicry of the lysine succinylation were generated by site-directed mutagenesis. ICL-K189E mutant strain is more sensitive than the wild-type to rifampicin and streptomycin, but not isoniazid. For the in vitro activity of the purified isocitrate lyase, only K189E mutant showed significantly decreased activity. Crystal structure analysis showed that Lys189 Glu dramatically increased the pKa of Glu188 and decreased the pKa of Lys190, whereas had negligible effect on other residues within 5?Å as well as disruption of the electrostatic interaction between Lys189 and Glu182, which might prevent the closure of the active site loop and cause severe reduction of the enzyme activity. Considering the genetic, biochemical, and crystallographical evidences together, the succinylation of specific ICL residue can fine-tune the bacterial resistance to selected antibiotics. The decreased enzymatic activity resulting from the succinylation-changed electrostatic interaction might underlie this phenotype. This study provided the first insight into the link between lysine succinylation and antibiotic resistance.  相似文献   

17.
18.
Members of the genus Cronobacter are opportunistic pathogens for neonates and are often associated with contaminated milk powder formulas. At present little is known about the virulence mechanisms or the natural reservoir of these organisms. The proteome of Cronobacter turicensis 3032, which has recently caused two deaths, was mapped aiming at a better understanding of physiology and putative pathogenic traits of this clinical isolate. Our analyses of extracellular, surface‐associated and whole‐cell proteins by two complementary proteomics approaches, 1D‐SDS‐PAGE combined with LC‐ESI‐MS/MS and 2D‐LC‐MALDI‐TOF/TOF MS, lead to the identification of 832 proteins corresponding to a remarkable 19% of the theoretically expressed protein complement of C. turicensis. The majority of the identified proteins are involved in central metabolic pathways, translation, protein folding and stability. Several putative virulence factors, whose expressions were confirmed by phenotypic assays, could be identified: a macrophage infectivity potentiator involved in C. turicensis persistence in host cells, a superoxide dismutase protecting the pathogen against reactive oxygen species and an enterobactin‐receptor protein for the uptake of siderophore‐bound iron. Most interestingly, a chitinase and a metalloprotease that might act against insects and fungi but no casein hydrolysing enzymes were found, suggesting that there is an environmental natural habitat of C. turicensis 3032.  相似文献   

19.
Protein lysine acetylation is a reversible and highly regulated post‐translational modification with the well demonstrated physiological relevance in eukaryotes. Recently, its important role in the regulation of metabolic processes in bacteria was highlighted. Here, we reported the lysine acetylproteome of Pseudomonas aeruginosa using a proteomic approach. We identified 430 unique peptides corresponding to 320 acetylated proteins. In addition to the proteins involved in various metabolic pathways, several enzymes contributing to the lipopolysaccharides biosynthesis were characterized as acetylated. This data set illustrated the abundance and the diversity of acetylated lysine proteins in P. aeruginosa and opens opportunities to explore the role of the acetylation in the bacterial physiology.  相似文献   

20.
Molecular simulations of the enzymes Candida rugosa lipase and Bos taurus α‐chymotrypsin in aqueous ionic liquids 1‐butyl‐3‐methylimidazolium chloride and 1‐ethyl‐3‐methylimidazolium ethyl sulfate were used to study the change in enzyme–solvent interactions induced by modification of the enzyme surface charge. The enzymes were altered by randomly mutating lysine surface residues to glutamate, effectively decreasing the net surface charge by two for each mutation. These mutations resemble succinylation of the enzyme by chemical modification, which has been shown to enhance the stability of both enzymes in ILs. After establishing that the enzymes were stable on the simulated time scales, we focused the analysis on the organization of the ionic liquid substituents about the enzyme surface. Calculated solvent charge densities show that for both enzymes and in both solvents that changing positively charged residues to negative charge does indeed increase the charge density of the solvent near the enzyme surface. The radial distribution of IL constituents with respect to the enzyme reveals decreased interactions with the anion are prevalent in the modified systems when compared to the wild type, which is largely accompanied by an increase in cation contact. Additionally, the radial dependence of the charge density and ion distribution indicates that the effect of altering enzyme charge is confined to short range (≤1 nm) ordering of the IL. Ultimately, these results, which are consistent with that from prior experiments, provide molecular insight into the effect of enzyme surface charge on enzyme stability in ILs. Proteins 2015; 83:670–680. © 2015 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号