首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
    
Despite accumulating examples of selection acting on heritable traits in the wild, predicted evolutionary responses are often different from observed phenotypic trends. Various explanations have been suggested for these mismatches. These include within‐individual changes across lifespan that can create important variation in genetic architecture of traits and selection acting on them, but also potential problems with the methodological approach used to predict evolutionary responses of traits. Here, we used an 8‐year data set on tree swallow (Tachycineta bicolor) to first assess the effects of differences among three nestling life‐history stages on the genetic (co)variances of two morphological traits (body mass and primary feather length) and the selection acting on them over three generations. We then estimated the evolutionary potential of these traits by predicting their evolutionary responses using the breeder's equation and the secondary theorem of selection approaches. Our results showed variation in strength and direction of selection and slight changes in trait variance across ages. Predicted evolutionary responses differed importantly between both approaches for half of the trait–age combinations we studied, suggesting the presence of environmentally induced correlations between focal traits and fitness possibly biasing breeder's equation predictions. Our results emphasize that predictions of evolutionary potential for morphological traits are likely to be highly variable, both in strength and direction, depending on the life stage and method used, thus mitigating our capacity to predict adaptation and persistence of wild populations.  相似文献   

2.
    
Natural selection operates via fitness components like mating success, fecundity, and longevity, which can be understood as intermediaries in the causal process linking traits to fitness. In particular, sexual selection occurs when traits influence mating or fertilization success, which, in turn, influences fitness. We show how to quantify both these steps in a single path analysis, leading to better estimates of the strength of sexual selection. Our model controls for confounding variables, such as body size or condition, when estimating the relationship between mating and reproductive success. Correspondingly, we define the Bateman gradient and the Jones index using partial rather than simple regressions, which better captures how they are commonly interpreted. The model can be applied both to purely phenotypic data and to quantitative genetic parameters estimated using information on relatedness. The phenotypic approach breaks down selection differentials into a sexually selected and a “remainder” component. The quantitative genetic approach decomposes the estimated evolutionary response to selection analogously. We apply our method to analyze sexual selection in male dusky pipefish, Syngnathus floridae, and in two simulated datasets. We highlight conceptual and statistical limitations of previous path‐based approaches, which can lead to substantial misestimation of sexual selection.  相似文献   

3.
    
Pleistocene glaciations drove repeated range contractions and expansions shaping contemporary intraspecific diversity. Atlantic salmon (Salmo salar) in the western and eastern Atlantic diverged >600,000 years before present, with the two lineages isolated in different southern refugia during glacial maxima, driving trans‐Atlantic genomic and karyotypic divergence. Here, we investigate the genomic consequences of glacial isolation and trans‐Atlantic secondary contact using 108,870 single nucleotide polymorphisms genotyped in 80 North American and European populations. Throughout North America, we identified extensive interindividual variation and discrete linkage blocks within and between chromosomes with known trans‐Atlantic differences in rearrangements: Ssa01/Ssa23 translocation and Ssa08/Ssa29 fusion. Spatial genetic analyses suggest independence of rearrangements, with Ssa01/Ssa23 showing high European introgression (>50%) in northern populations indicative of post‐glacial trans‐Atlantic secondary contact, contrasting with low European ancestry genome‐wide (3%). Ssa08/Ssa29 showed greater intrapopulation diversity, suggesting a derived chromosome fusion polymorphism that evolved within North America. Evidence of potential selection on both genomic regions suggests that the adaptive role of rearrangements warrants further investigation in Atlantic salmon. Our study highlights how Pleistocene glaciations can influence large‐scale intraspecific variation in genomic architecture of northern species.  相似文献   

4.
    
Predicting the responses to natural selection is one of the key goals of evolutionary biology. Two of the challenges in fulfilling this goal have been the realization that many estimates of natural selection might be highly biased by environmentally induced covariances between traits and fitness, and that many estimated responses to selection do not incorporate or report uncertainty in the estimates. Here we describe the application of a framework that blends the merits of the Robertson–Price Identity approach and the multivariate breeder's equation to address these challenges. The approach allows genetic covariance matrices, selection differentials, selection gradients, and responses to selection to be estimated without environmentally induced bias, direct and indirect selection and responses to selection to be distinguished, and if implemented in a Bayesian‐MCMC framework, statistically robust estimates of uncertainty on all of these parameters to be made. We illustrate our approach with a worked example of previously published data. More generally, we suggest that applying both the Robertson–Price Identity and the multivariate breeder's equation will facilitate hypothesis testing about natural selection, genetic constraints, and evolutionary responses.  相似文献   

5.
    
Elucidating the genetic basis of adaptation to the local environment can improve our understanding of how the diversity of life has evolved. In this study, we used a dense SNP array to identify candidate loci potentially underlying fine‐scale local adaptation within a large Atlantic salmon (Salmo salar) population. By combining outlier, gene–environment association and haplotype homozygosity analyses, we identified multiple regions of the genome with strong evidence for diversifying selection. Several of these candidate regions had previously been identified in other studies, demonstrating that the same loci could be adaptively important in Atlantic salmon at subdrainage, regional and continental scales. Notably, we identified signals consistent with local selection around genes associated with variation in sexual maturation, energy homeostasis and immune defence. These included the large‐effect age‐at‐maturity gene vgll3, the known obesity gene mc4r, and major histocompatibility complex II. Most strikingly, we confirmed a genomic region on Ssa09 that was extremely differentiated among subpopulations and that is also a candidate for local selection over the global range of Atlantic salmon. This region colocalized with a haplotype strongly associated with spawning ecotype in sockeye salmon (Oncorhynchus nerka), with circumstantial evidence that the same gene (six6) may be the selective target in both cases. The phenotypic effect of this region in Atlantic salmon remains cryptic, although allelic variation is related to upstream catchment area and covaries with timing of the return spawning migration. Our results further inform management of Atlantic salmon and open multiple avenues for future research.  相似文献   

6.
Water velocity shapes juvenile salmonids   总被引:1,自引:0,他引:1  
Phenotypic plasticity in morphology is often considered adaptive. Stream-living fish encounter considerable spatial and temporal environmental variation in their native habitats, and the ability to adapt to this variation is of utmost importance. We studied experimentally whether water velocity affects the body shape of juvenile Atlantic salmon (Salmo salar m. sebago Girard) and brown trout (Salmo trutta m. lacustris L.). The fish were reared in slow and fast water flow, and their morphology was studied by measuring a number of morphometric characters. We studied which characters differed between the environments in each species, and found that water velocity caused morphological differentiation in both salmon and brown trout. The differences occurred especially in body height as well as in fin sizes, characters that are very likely to be of functional importance for life in the stream environment. Salmon in fast flow became more robust, whereas brown trout in fast flow became slightly more streamlined. The observed variation in body morphology of salmon and brown trout indicates phenotypic plasticity, but the species differed in their response to environmental variation, which may be due to different energetics and cost reduction strategies. Morphological differentiation caused by water flow occurred very rapidly, within 1-month exposure to the different water flows. This revised version was published online in November 2006 with corrections to the Cover Date.  相似文献   

7.
In a previous study, three significant quantitative trait loci (QTL) associated with resistance to Infectious Pancreatic Necrosis (IPN) disease were identified by analysing challenge data from one sub-population of Landcatch Atlantic salmon (Salmo salar) smolt. While these QTL were shown to affect the resistance in seawater, their effect in freshwater was unknown. This study investigates the effect of these QTL on IPN resistance in salmon fry in freshwater. Twenty families with intermediate levels of IPN mortality were analysed from a freshwater challenge trial undertaken on a different sup-population of LNS salmon to that studied previously. Only the QTL from linkage group 21 (LG21) appeared to have a significant and large effect on resistance in freshwater; the same QTL was found to have the largest effect in seawater in the previous study. Variance component analysis showed a high heritability for the QTL: 0.45 ± 0.07 on the liability scale and 0.25 ± 0.05 on the observed scale. In a family where both parents were segregating for the QTL, there was a 0% vs. 100% mortality in homozygous offspring for resistant and susceptible QTL alleles. The finding that the same QTL has major effect in both freshwater and seawater has important practical implications, as this will allow the improvement of resistance in both phases through marker assisted selection by targeting this QTL. Moreover, the segregation of the LG21 QTL in a different sub-population gives further evidence of its association with IPN-resistance.  相似文献   

8.
  总被引:3,自引:0,他引:3  
Evidence of selection acting on major histocompatibility complex (MHC) genes has been illustrated with the analysis of their nucleotide sequences and allele frequency distribution. Comparing the patterns of population differentiation at neutral markers and MHC genes in the wild may provide further insights about the relative role of selection and neutrality in shaping their diversity. In this study, we combine both methods to assess the role of selection on a MHC gene in Atlantic salmon. We compare variation at a MHC class II B locus and microsatellites among 14 samples from seven different rivers and seven subpopulations within a single river system covering a variety of habitats and different geographical scales. We show that diversifying selection is acting on the sites involved in antigen presentation and that balancing selection maintains a high level of polymorphism within populations. Despite important differences in habitat type, the comparison of the population structure at MHC and microsatellites on large geographical scales reveals a correlation between patterns of differentiation, indicating that drift and migration have been more important than selection in shaping population differentiation at the MHC locus. In contrast, strong discrepancies between patterns of population differentiation at the two types of markers provides support for the role of selection in shaping population structure within rivers. Together, these results confirm that natural selection is influencing MHC gene diversity in wild Atlantic salmon although neutral forces may also be important in their evolution.  相似文献   

9.
Data on geographical variation in allele frequencies at enzyme coding loci in Atlantic salmon from the British Isles were collated from published and unpublished sources. Statistically significant differences in allele frequencies were found among samples both within and among river systems, suggesting that the Atlantic salmon in the British Isles is not a panmictic population and that even within major river systems it cannot be treated as a single genetic stock for fisheries management purposes. Although there was some evidence of regional differences in the frequency of some rare alleles, most single‐locus variation did not show strong geographic patterns, with the exception of the AAT‐4 * locus at which allele frequencies had a significant latitudinal cline. There was some evidence for the existence of genetically‐distinct celtic and boreal races of Atlantic salmon in the British Isles as previously has been suggested. Multiple regression analyses revealed associations between genetic variation and local environmental conditions ( i.e . between variation at MEP‐2 * and both temperature and local river gradient), providing additional evidence for adaptive population divergence in the species.  相似文献   

10.
    
The effect of physical river habitat variables on the distribution of juvenile Atlantic salmon Salmo salar L. in the Rivière de la Trinité, Québec, Canada, was examined using generalized additive modelling. A survey of Atlantic salmon fry and parr densities and habitat variables (flow velocity, water column depth and substratum size) was conducted in the summer months from 1984 to 1992. Clear patterns of habitat use existed: specific ranges of habitat variables were selected, with parr preferring greater velocities, depths and substratum sizes than fry. There was a large variation, however, in juvenile densities for given velocities, depths or substratum sizes, with this variation being greatest in optimal habitats. On examination of an individual year, interaction between the variables was found to explain some of the variation. On a year‐to‐year basis the juvenile Atlantic salmon population was found to exhibit an 'Ideal Free Distribution', which resulted in greatest variation in optimal habitats with year‐to‐year changes in population abundance.  相似文献   

11.
    
In northern environments, periods of isolation during Pleistocene glaciations and subsequent recolonization and secondary contact have had a significant influence on contemporary diversity of many species. The recent advent of high-resolution genomic analyses allows unprecedented power to resolve genomic signatures of such events in northern species. Here, we provide the highest resolution genomic characterization of Atlantic salmon in North America to date to infer glacial refugia and the geographic scales of post-glacial secondary contact.  相似文献   

12.
    
Records extending back from three to seven decades from Atlantic salmon Salmo salar fisheries on the Blackwater, Newport and Owenduff River systems in Ireland, were used to test the hypothesis that there have been progressive declines in size and associated shifts in run timing. They showed identical patterns in four respects: 1) peaks of catch, in spring (March to April) and summer (June to July), 2) the largest fish were caught in the spring, with declines in size over the summer and a slight increase in autumn, 3) marked declines over time in average size and in the proportion of the Atlantic salmon taken in spring and 4) reductions in size in most months at all three sites. Correlations were also detected in average fish mass among the rivers over time (especially the Owenduff and Newport systems), showing a slight rise from the late 1960s until the late 1970s, followed by a steep decline. Data from an electronic counter on the Blackwater showed a reduction in the abundance of early migrants. The early fish were apparently much more vulnerable to fishing than later migrants, so the catch records overstated the abundance of early fish. These long‐term declines in size, which have been noted elsewhere, may be due to other factors in addition to changes in marine productivity. Specifically, reduction in the abundance of large, spring‐running Atlantic salmon may be due to selection resulting from heavy angler exploitation.  相似文献   

13.
Genetic variation in performance and quality traits measured at harvest has previously been demonstrated in Atlantic salmon aquaculture populations. To map major loci underlying this variation, we utilized data from 10 families from a commercial breeding programme. Significant QTL were detected affecting harvest weight and length traits on linkage group 1, and affecting waste weight on linkage group 5. In total, 11 of the 29 linkage groups examined showed at least suggestive evidence for a QTL. These data suggest that major loci affecting economically important harvest characteristics are segregating in commercial salmon populations.  相似文献   

14.
    
European Atlantic salmon (Salmo salar) populations inhabit rivers from northern Portugal to northern Norway across a wide spectrum of environmental variability. To address whether single physical factors might lead to genetic divergence of isolated populations, we compared the digestive performances total digestibility, relative nitrogen digestibility, passage time, and digestion rate (g dry matter · h–1) — of northern (Scotland) and southern (Asturias, northern Spain) populations at three temperature regimes (5, 12, and 20° C). Total dry matter digestibilities increased directly with temperature but were similar for both populations at each of the three trials. Relative nitrogen digestibility did not differ between populations nor among temperature regimes. In contrast, passage time was significantly longer for low-than for high-latitude fish at both 5 and 20° C. When the percentage of food digested and the passage time were integrated as digestion rates (food digested per unit time), a significant population × temperature interaction consistent with a genotype × environment interaction was detected in addition to the population and temperature effects. This implies that not only is the digestive performance of the high-latitude population higher throughout the range of temperatures examined, but moreover the difference is reinforced at high temperatures, where the digestion rate of high-latitude fish was 1.6 times greater. Taken together, these two results provide preliminary evidence for countergradient variation in digestive rates of salmonids in response to variation in growth opportunity. The data support our previous work on the same two populations showing differences in growth rates, and underlie one of the possible mechnisms leading to more rapid growth of the high-latitude fish when both populations are reared in a common environment.  相似文献   

15.
    
Domesticated species frequently spread their genes into populations of wild relatives through interbreeding. The domestication process often involves artificial selection for economically desirable traits. This can lead to an indirect response in unknown correlated traits and a reduction in fitness of domesticated individuals in the wild. Previous models for the effect of gene flow from domesticated species to wild relatives have assumed that evolution occurs in one dimension. Here, I develop a quantitative genetic model for the balance between migration and multivariate stabilizing selection. Different forms of correlational selection consistent with a given observed ratio between average fitness of domesticated and wild individuals offsets the phenotypic means at migration–selection balance away from predictions based on simpler one-dimensional models. For almost all parameter values, correlational selection leads to a reduction in the migration load. For ridge selection, this reduction arises because the distance the immigrants deviates from the local optimum in effect is reduced. For realistic parameter values, however, the effect of correlational selection on the load is small, suggesting that simpler one-dimensional models may still be adequate in terms of predicting mean population fitness and viability.  相似文献   

16.
The early marine migratory behaviour of two populations of hatchery-reared Atlantic salmon Salmo salar was compared in a common-garden experiment. Post-smolts from a river in a long fjord (Laerdal River, 144 km from the open coastline, n = 79) and a short fjord (Flekke River, 20 km from the open coastline, n = 80) in western Norway were tagged with acoustic transmitters and released during the spring of 2005 and 2006 in the inner part of the Hardangerfjord system (Opo River mouth, 179 km from the open coastline). The migratory behaviour of the tagged fish was monitored by acoustic listening stations in the fjord system up to 167 km from the release site. The Laerdal fish began migrating before the Flekke fish and had higher progression rates in the middle part of the fjord system. A greater number of Laerdal fish was detected along the most direct migratory route and in the outermost part of the Hardangerfjord system, which is indicative of a higher survival. The results from this study demonstrate differences in early marine migratory behaviour between S. salar from two different stocks and suggest that the distance a S. salar population travels to reach the open coastline may influence its early marine migratory behaviour and performance. The selective pressures of marine predation and arrival time at feeding areas in the ocean may be stronger for stocks with a longer inshore migration, creating more efficient migrants over time.  相似文献   

17.
In order to investigate the mechanisms creating and maintaining variability at the major histocompatibility (MH) class II alpha (DAA) locus we examined patterns of polymorphism in two isolated Atlantic salmon populations which share a common post-glacial origin. As expected from their common origin, but contrary to the observation at the MH class I locus, these populations shared the majority of DAA alleles: out of 17 sequences observed, 11 were common to both populations. Recombination seems to play a more important role in the origin of new alleles at the class II alpha locus than at the class I locus. A greater than expected proportion of sites inferred to be positively selected (potentially peptide binding residues, PBRs) were found to be involved in recombination events, suggesting a mechanism for increasing MH variability through an interaction between recombination and natural selection. Thus it appears that although selection and recombination are important mechanisms for the evolution of both class II alpha and class I loci in the Atlantic salmon, the pattern of variability differs markedly between these classes of MH loci.  相似文献   

18.
Returning adult salmon caught at the mouth of the River Dee, Aberdeenshire, were transferred to tanks in the laboratory. For fish placed in fresh water, sea lice remained attached for up to 6 days, though most lice were lost in the first 48 hours. Few lice were lost from salmon maintained in sea water. The experiments were conducted in water within a temperature range of 12·8 to 16° C, equivalent to summer river temperatures in the Aberdeenshire Dee.  相似文献   

19.
The fundamental equation in evolutionary quantitative genetics, the Lande equation, describes the response to directional selection as a product of the additive genetic variance and the selection gradient of trait value on relative fitness. Comparisons of both genetic variances and selection gradients across traits or populations require standardization, as both are scale dependent. The Lande equation can be standardized in two ways. Standardizing by the variance of the selected trait yields the response in units of standard deviation as the product of the heritability and the variance-standardized selection gradient. This standardization conflates selection and variation because the phenotypic variance is a function of the genetic variance. Alternatively, one can standardize the Lande equation using the trait mean, yielding the proportional response to selection as the product of the squared coefficient of additive genetic variance and the mean-standardized selection gradient. Mean-standardized selection gradients are particularly useful for summarizing the strength of selection because the mean-standardized gradient for fitness itself is one, a convenient benchmark for strong selection. We review published estimates of directional selection in natural populations using mean-standardized selection gradients. Only 38 published studies provided all the necessary information for calculation of mean-standardized gradients. The median absolute value of multivariate mean-standardized gradients shows that selection is on average 54% as strong as selection on fitness. Correcting for the upward bias introduced by taking absolute values lowers the median to 31%, still very strong selection. Such large estimates clearly cannot be representative of selection on all traits. Some possible sources of overestimation of the strength of selection include confounding environmental and genotypic effects on fitness, the use of fitness components as proxies for fitness, and biases in publication or choice of traits to study.  相似文献   

20.
    
When traits cause variation in fitness, the distribution of phenotype, weighted by fitness, necessarily changes. The degree to which traits cause fitness variation is therefore of central importance to evolutionary biology. Multivariate selection gradients are the main quantity used to describe components of trait‐fitness covariation, but they quantify the direct effects of traits on (relative) fitness, which are not necessarily the total effects of traits on fitness. Despite considerable use in evolutionary ecology, path analytic characterizations of the total effects of traits on fitness have not been formally incorporated into quantitative genetic theory. By formally defining “extended” selection gradients, which are the total effects of traits on fitness, as opposed to the existing definition of selection gradients, a more intuitive scheme for characterizing selection is obtained. Extended selection gradients are distinct quantities, differing from the standard definition of selection gradients not only in the statistical means by which they may be assessed and the assumptions required for their estimation from observational data, but also in their fundamental biological meaning. Like direct selection gradients, extended selection gradients can be combined with genetic inference of multivariate phenotypic variation to provide quantitative prediction of microevolutionary trajectories.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号