共查询到20条相似文献,搜索用时 31 毫秒
1.
A. L. J. Miehls S. D. Peacor L. Valliant A. G. McAdam 《Journal of evolutionary biology》2015,28(5):1091-1102
Invasive species are one of the greatest threats to ecosystems, and there is evidence that evolution plays an important role in the success or failure of invasions. Yet, few studies have measured natural selection and evolutionary responses to selection in invasive species, particularly invasive animals. We quantified the strength of natural selection on the defensive morphology (distal spine) of an invasive zooplankton, Bythotrephes longimanus, in Lake Michigan across multiple months during three growing seasons. We used multiple lines of evidence, including historic and contemporary wild‐captured individuals and palaeoecology of retrieved spines, to assess phenotypic change in distal spine length since invasion. We found evidence of temporally variable selection, with selection for decreased distal spine length early in the growing season and selection for increased distal spine length later in the season. This trend in natural selection is consistent with seasonal changes in the relative strength of non‐gape‐limited and gape‐limited fish predation. Yet, despite net selection for increased distal spine length and a known genetic basis for distal spine length, we observed little evidence of an evolutionary response to selection. Multiple factors likely limit an evolutionary response to selection, including genetic correlations, trade‐offs between components of fitness, and phenotypic plasticity. 相似文献
2.
《Journal of evolutionary biology》2017,30(3):616-626
Despite accumulating examples of selection acting on heritable traits in the wild, predicted evolutionary responses are often different from observed phenotypic trends. Various explanations have been suggested for these mismatches. These include within‐individual changes across lifespan that can create important variation in genetic architecture of traits and selection acting on them, but also potential problems with the methodological approach used to predict evolutionary responses of traits. Here, we used an 8‐year data set on tree swallow (Tachycineta bicolor) to first assess the effects of differences among three nestling life‐history stages on the genetic (co)variances of two morphological traits (body mass and primary feather length) and the selection acting on them over three generations. We then estimated the evolutionary potential of these traits by predicting their evolutionary responses using the breeder's equation and the secondary theorem of selection approaches. Our results showed variation in strength and direction of selection and slight changes in trait variance across ages. Predicted evolutionary responses differed importantly between both approaches for half of the trait–age combinations we studied, suggesting the presence of environmentally induced correlations between focal traits and fitness possibly biasing breeder's equation predictions. Our results emphasize that predictions of evolutionary potential for morphological traits are likely to be highly variable, both in strength and direction, depending on the life stage and method used, thus mitigating our capacity to predict adaptation and persistence of wild populations. 相似文献
3.
Nathaniel T. Wheelwright Lukas F. Keller Erik Postma 《Evolution; international journal of organic evolution》2014,68(11):3325-3336
The heritability (h2) of fitness traits is often low. Although this has been attributed to directional selection having eroded genetic variation in direct proportion to the strength of selection, heritability does not necessarily reflect a trait's additive genetic variance and evolutionary potential (“evolvability”). Recent studies suggest that the low h2 of fitness traits in wild populations is caused not by a paucity of additive genetic variance (VA) but by greater environmental or nonadditive genetic variance (VR). We examined the relationship between h2 and variance‐standardized selection intensities (i or βσ), and between evolvability (IA:VA divided by squared phenotypic trait mean) and mean‐standardized selection gradients (βμ). Using 24 years of data from an island population of Savannah sparrows, we show that, across diverse traits, h2 declines with the strength of selection, whereas IA and IR (VR divided by squared trait mean) are independent of the strength of selection. Within trait types (morphological, reproductive, life‐history), h2, IA, and IR are all independent of the strength of selection. This indicates that certain traits have low heritability because of increased residual variance due to the age at which they are expressed or the multiple factors influencing their expression, rather than their association with fitness. 相似文献
4.
Jonathan M. Henshaw Michael D. Jennions Loeske E. B. Kruuk 《Evolution; international journal of organic evolution》2018,72(9):1904-1917
Natural selection operates via fitness components like mating success, fecundity, and longevity, which can be understood as intermediaries in the causal process linking traits to fitness. In particular, sexual selection occurs when traits influence mating or fertilization success, which, in turn, influences fitness. We show how to quantify both these steps in a single path analysis, leading to better estimates of the strength of sexual selection. Our model controls for confounding variables, such as body size or condition, when estimating the relationship between mating and reproductive success. Correspondingly, we define the Bateman gradient and the Jones index using partial rather than simple regressions, which better captures how they are commonly interpreted. The model can be applied both to purely phenotypic data and to quantitative genetic parameters estimated using information on relatedness. The phenotypic approach breaks down selection differentials into a sexually selected and a “remainder” component. The quantitative genetic approach decomposes the estimated evolutionary response to selection analogously. We apply our method to analyze sexual selection in male dusky pipefish, Syngnathus floridae, and in two simulated datasets. We highlight conceptual and statistical limitations of previous path‐based approaches, which can lead to substantial misestimation of sexual selection. 相似文献
5.
Detection of QTL affecting harvest traits in a commercial Atlantic salmon population 总被引:1,自引:0,他引:1
R. D. Houston S. C. Bishop A. Hamilton D. R. Guy A. E. Tinch J. B. Taggart A. Derayat B. J. McAndrew C. S. Haley 《Animal genetics》2009,40(5):753-755
Genetic variation in performance and quality traits measured at harvest has previously been demonstrated in Atlantic salmon aquaculture populations. To map major loci underlying this variation, we utilized data from 10 families from a commercial breeding programme. Significant QTL were detected affecting harvest weight and length traits on linkage group 1, and affecting waste weight on linkage group 5. In total, 11 of the 29 linkage groups examined showed at least suggestive evidence for a QTL. These data suggest that major loci affecting economically important harvest characteristics are segregating in commercial salmon populations. 相似文献
6.
Jane M. Reid 《Proceedings. Biological sciences / The Royal Society》2012,279(1747):4652-4660
The evolutionary forces that underlie polyandry, including extra-pair reproduction (EPR) by socially monogamous females, remain unclear. Selection on EPR and resulting evolution have rarely been explicitly estimated or predicted in wild populations, and evolutionary predictions are vulnerable to bias due to environmental covariances and correlated selection through unmeasured traits. However, evolutionary responses to (correlated) selection on any trait can be directly predicted as additive genetic covariances (covA) with appropriate components of relative fitness. I used comprehensive life-history, paternity and pedigree data from song sparrows (Melospiza melodia) to estimate covA between a female''s liability to produce extra-pair offspring and two specific fitness components: relative annual reproductive success (ARS) and survival to recruitment. All three traits showed non-zero additive genetic variance. Estimates of covA were positive, predicting evolution towards increased EPR, but 95% credible intervals overlapped zero. There was therefore no conclusive prediction of evolutionary change in EPR due to (correlated) selection through female ARS or recruitment. Negative environmental covariance between EPR and ARS would have impeded evolutionary prediction from phenotypic selection differentials. These analyses demonstrate an explicit quantitative genetic approach to predicting evolutionary responses to components of (correlated) selection on EPR that should be unbiased by environmental covariances and unmeasured traits. 相似文献
7.
Carolyne Houle Fanie Pelletier Marc Bélisle Dany Garant 《Evolution; international journal of organic evolution》2020,74(6):1142-1154
Natural selection has been studied for several decades, resulting in the computation of thousands of selection estimates. Although the importance of environmental conditions on selection has often been suggested, published estimates rarely take into account the effects of environmental heterogeneity on selection patterns. Here, we estimated linear and nonlinear viability selection gradients on morphological traits of 12-day old nestlings in a wild population of tree swallows (Tachycineta bicolor) across a large-scale heterogeneous study system in southern Québec, Canada. We assessed the environmental drivers of nestling survival and evaluated their effects on strength and direction of selection gradients. Separate analyses of environmental variables showed that high temperatures and heavy rainfall caused stronger positive linear selection on morphological traits. Weaker linear selection was also measured in more extensively cultivated areas. Both strength and shape of nonlinear quadratic and correlational components of selection were modified by environmental variables. Considering all environmental variables revealed that precipitation since hatching affected patterns of linear selection on traits, while temperatures since hatching shaped nonlinear selection patterns. Our study underlines the importance of quantifying linear and nonlinear natural selection under various environmental conditions and how the evolutionary response of traits may be affected by ongoing human-induced environmental changes. 相似文献
8.
Lifetime selection on heritable life-history traits in a natural population of red squirrels 总被引:2,自引:0,他引:2
Réale D Berteaux D McAdam AG Boutin S 《Evolution; international journal of organic evolution》2003,57(10):2416-2423
Abstract Despite their importance in evolutionary biology, heritability and the strength of natural selection have rarely been estimated in wild populations of iteroparous species or have usually been limited to one particular event during an organism's lifetime. Using an animal-model restricted maximum likelihood and phenotypic selection models, we estimated quantitative genetic parameters and the strength of lifetime selection on parturition date and litter size at birth in a natural population of North American red squirrels, Tamiasciurus hudsonicus. Litter size at birth and parturition date had low heritabilities ( h2 = 0.15 and 0.16, respectively). We considered potential effects of temporal environmental covariances between phenotypes and fitness and of spatial environmental heterogeneity in estimates of selection. Selection favored early breeders and females that produced litter sizes close to the population average. Stabilizing selection on litter size at birth may occur because of a trade-off between number of offspring produced per litter and offspring survival or a trade-off between a female's fecundity and her future reproductive success and survival. 相似文献
9.
Koshio Chiharu; Muraji Makoto; Tatsuta Haruki; Kudo Shin-ichi 《Behavioral ecology》2007,18(3):571-578
Sexual selection is generally caused by female choice and malemalecompetition. In female choice process, female preference isfavored indirectly and/or directly by sexual selection. In indirectselection, females expressing the preference might gain indirectgenetic benefits. In direct selection, females expressing thepreference might gain direct benefits or avoid male-imposedcosts. The white-tailed zygaenid moth Elcysma westwoodii ismonandrous, and males often gather around a female to mate withher, suggesting a high opportunity for sexual selection on maletraits. We quantified phenotypic selection on male morphologyin this species in the field. The morphological characters analyzedincluded body weight, antenna length, forewing length, hindwing length, hind wing tail length, genital clasper length,and the fluctuating asymmetry (FA) of these bilateral traits.In E. westwoodii, selection favored males with more symmetricgenital claspers, as well as longer and more symmetrical hindwings and antennae. Negative correlations between FA and sizewere also detected in the clasper and the antenna. Our resultssuggest that FAs of male traits, in particular the genital clasper,may have indirect and direct influences on mating success. Duringa copulatory attempt, an E. westwoodii male will try to graspthe female's abdominal tip with his claspers but often failto do so because of the female's reluctance to mate. The femaleabdominal tips are smooth and strongly sclerotized and couldthus be difficult for males to grasp. We hypothesize that moresymmetrical male claspers are more efficient in overcoming femalereluctance. 相似文献
10.
Donald Kolakowski Edward F. Harris Howard L. Bailit 《American journal of physical anthropology》1980,53(2):301-308
A complex segregation analysis was performed on Carabelli's trait on the upper first molar utilizing 358 nuclear families from the Solomon Islands of Bougainville and Malaita. Simultaneous estiamtion of three sources of variation by the method of maximum likelihood demonstrates a significant effect of shared sibling environment which accounts for over 19% of the variance in liability for the trait. In addition, a statistically significant major gene influence is discussed and suggestions for quantifying individual liability levels for this and other dental traits are outlined. 相似文献
11.
Barbara Tschirren Erik Postma Lars Gustafsson Ton G. G. Groothuis Blandine Doligez 《Ecology letters》2014,17(10):1310-1315
Maternal hormones are important mediators of prenatal maternal effects. Although many experimental studies have demonstrated their potency in shaping offspring phenotypes, we know remarkably little about their adaptive value. Using long‐term data on a wild collared flycatcher (Ficedula albicollis) population, we show that natural selection acts in opposite ways on two maternally derived androgens, yolk androstenedione (A4) and yolk testosterone (T). High yolk A4 concentrations are associated with higher fitness, whereas high yolk T concentrations are associated with lower fitness. Natural selection thus favours females that produce eggs with high A4 and low T concentrations. Importantly, however, there exists a positive (non‐genetic) correlation between A4 and T, which suggests that females are limited in their ability to reach this adaptive optimum. Thereby, these results provide strong evidence for an adaptive value of differential maternal androgen deposition, and a mechanistic explanation for the maintenance of variation in maternal investment in the wild. 相似文献
12.
Formica VA McGlothlin JW Wood CW Augat ME Butterfield RE Barnard ME Brodie ED 《Evolution; international journal of organic evolution》2011,65(10):2771-2781
Social interactions often have major fitness consequences, but little is known about how specific interacting phenotypes affect the strength of natural selection. Social influences on the evolutionary process can be assessed using a multilevel selection approach that partitions the effects of social partner phenotypes on fitness (referred to as social or group selection) from those of the traits of a focal individual (nonsocial or individual selection). To quantify the contribution of social selection to total selection affecting a trait, the patterns of phenotypic association among interactants must also be considered. We estimated selection gradients on male body size in a wild population of forked fungus beetles (Bolitotherus cornutus). We detected positive nonsocial selection and negative social selection on body size operating through differences in copulation success, indicating that large males with small social partners had highest fitness. In addition, we found that, in low-density demes, the phenotypes of focal individuals were negatively correlated with those of their social partners. This pattern reversed the negative effect of group selection on body size and led to stronger positive selection for body size. Our results demonstrate multilevel selection in nature and stress the importance of considering social selection whenever conspecific interactions occur nonrandomly. 相似文献
13.
SIMON BLANCHET OLIVIER REY PAULINE BERTHIER SOVAN LEK GERALDINE LOOT 《Molecular ecology》2009,18(6):1112-1123
Identifying the processes maintaining genetic variability in wild populations is a major concern in conservation and evolutionary biology. Parasite-mediated selection may strongly affect genetic variability in wild populations. The inbreeding depression theory predicts that directional selection imposed by parasites should act against the most inbred hosts, thus favouring genetic diversity in wild populations. We have tested this prediction by evaluating the strength and shape of the relationship between the load of a harmful fin-feeder ectoparasite ( Tracheliastes polycolpus ) and the genome-wide genetic diversity (i.e. heterozygosity measured at a set of 15 microsatellites) of its fish host, the rostrum dace ( Leuciscus leuciscus ). Contrary to expectation, we found a nonlinear relationship between host genetic diversity and ectoparasite load, with hosts that were either homozygous or heterozygous harbouring significantly fewer parasites than hosts with an intermediate level of heterozygosity. This relationship suggests that parasites could increase the variance of global heterozygosity in this host population through disruptive selection on genetic diversity. Moreover, when genetic diversity was measured at each locus separately, we found two very strong positive associations between host genetic diversity and the ectoparasite load. This latter result has three main implications: (i) genome-wide effect cannot alone explain the nonlinear relationship between global heterozygosity and ectoparasite load, (ii) negative non-additive allelic interactions (i.e. underdominance) may be a mechanism for resisting ectoparasite infection, and (iii) ectoparasites may favour homozygosity at some loci in this host population. 相似文献
14.
Maja Tarka Mikael ?kesson Dario Beraldi Jules Hernández-Sánchez Dennis Hasselquist Staffan Bensch Bengt Hansson 《Proceedings. Biological sciences / The Royal Society》2010,277(1692):2361-2369
Wing length is a key character for essential behaviours related to bird flight such as migration and foraging. In the present study, we initiate the search for the genes underlying wing length in birds by studying a long-distance migrant, the great reed warbler (Acrocephalus arundinaceus). In this species wing length is an evolutionary interesting trait with pronounced latitudinal gradient and sex-specific selection regimes in local populations. We performed a quantitative trait locus (QTL) scan for wing length in great reed warblers using phenotypic, genotypic, pedigree and linkage map data from our long-term study population in Sweden. We applied the linkage analysis mapping method implemented in GridQTL (a new web-based software) and detected a genome-wide significant QTL for wing length on chromosome 2, to our knowledge, the first detected QTL in wild birds. The QTL extended over 25 cM and accounted for a substantial part (37%) of the phenotypic variance of the trait. A genome scan for tarsus length (a body-size-related trait) did not show any signal, implying that the wing-length QTL on chromosome 2 was not associated with body size. Our results provide a first important step into understanding the genetic architecture of avian wing length, and give opportunities to study the evolutionary dynamics of wing length at the locus level. 相似文献
15.
Sabin Lessard 《Journal of mathematical biology》2009,59(5):659-696
Diffusion approximations are ascertained from a two-time-scale argument in the case of a group-structured diploid population
with scaled viability parameters depending on the individual genotype and the group type at a single multi-allelic locus under
recurrent mutation, and applied to the case of random pairwise interactions within groups. The main step consists in proving
global and uniform convergence of the distribution of the group types in an infinite population in the absence of selection
and mutation, using a coalescent approach. An inclusive fitness formulation with coefficient of relatedness between a focal
individual J affecting the reproductive success of an individual I, defined as the expected fraction of genes in I that are identical by descent to one or more genes in J in a neutral infinite population, given that J is allozygous or autozygous, yields the correct selection drift functions. These are analogous to the selection drift functions
obtained with pure viability selection in a population with inbreeding. They give the changes of the allele frequencies in
an infinite population without mutation that correspond to the replicator equation with fitness matrix expressed as a linear
combination of a symmetric matrix for allozygous individuals and a rank-one matrix for autozygous individuals. In the case
of no inbreeding, the mean inclusive fitness is a strict Lyapunov function with respect to this deterministic dynamics. Connections
are made between dispersal with exact replacement (proportional dispersal), uniform dispersal, and local extinction and recolonization.
The timing of dispersal (before or after selection, before or after mating) is shown to have an effect on group competition
and the effective population size.
In memory of Sam Karlin. 相似文献
16.
In the annual plant Impatiens pallida, individuals exhibit a floral heteromorphism consisting of autogamously selfing, cleistogamous (CL) flowers and partially outcrossing, chasmogamous (CH) flowers. As part of an investigation into natural selection and mating system evolution in I. pallida, we measured the magnitude and direction of phenotypic selection on nine life history characters (two traits measured on three dates, one measured on two dates and one measured once). Three of these characters were positively correlated with the ratio of CH/CL flowers produced per plant, which is an important determinant of the mating system. Values for the nine characters and three different measures of fitness (viability, fecundity, lifetime) were estimated for 500 plants in five locations over a single growing season. Based on lifetime fitness, linear selection differentials were significant for all nine characters, indicating a selective advantage to tall, leafy, highly branched plants that flowered early. However, only two of these characters had a direct effect on fitness. Selection was significant on all nine characters when based on fecundity as well as lifetime fitness; however, only three of five characters examined had significant selection based on viability fitness. For all fitness components, the frequency of significant linear and nonlinear selection coefficients was comparable (23% vs 17% of all cases, respectively), but nonlinear coefficients were generally larger. Finally, the magnitude and direction of direct linear selection was heterogeneous among locations, for all characters and all fitness components. Collectively these results suggest that selection is strong, favouring large size, high allocation to reproduction and high CH/CL flower ratios. However, any directional evolutionary changes in vegetative or reproductive characters may be constrained by strong non-linear and correlational selection. 相似文献
17.
Sina J. Rometsch Julin TorresDowdall Gonzalo MachadoSchiaffino Nidal Karagic Axel Meyer 《Ecology and evolution》2021,11(23):17496
Exaggerated secondary sexual characteristics are apparently costly and seem to defy natural selection. This conundrum promoted the theory of sexual selection. Accordingly, exaggerated secondary sexual characteristics might be ornaments on which female choice is based and/or armaments used during male–male competition. Males of many cichlid fish species, including the adaptive radiation of Nicaraguan Midas cichlids, develop a highly exaggerated nuchal hump, which is thought to be a sexually selected trait. To test this hypothesis, we conducted a series of behavioral assays in F2 hybrids obtained from crossing a species with a relatively small hump and one with an exaggerated hump. Mate‐choice experiments showed a clear female preference for males with large humps. In an open‐choice experiment with limited territories, couples including large humped males were more successful in acquiring these territories. Therefore, nuchal humps appear to serve dual functions as an ornament for attracting mates and as an armament for direct contest with rivals. Although being beneficial in terms of sexual selection, this trait also imposes fitness costs on males possessing disproportionally large nuchal humps since they exhibit decreased endurance and increased energetic costs when swimming. We conclude that these costs illustrate trade‐offs associated with large hump size between sexual and natural selection, which causes the latter to limit further exaggeration of this spectacular male trait. 相似文献
18.
Strong nonlinear selection against fluctuating asymmetry in wild populations of a marine fish 下载免费PDF全文
Ashley M. S. Tocts Darren W. Johnson Ashley J. R. Carter 《Evolution; international journal of organic evolution》2016,70(12):2899-2908
Theoretical links between fluctuating asymmetry (FA) and fitness have led many to use FA as a proxy for average fitness. However, studies examining whether asymmetry actually correlates with individual fitness in wild populations are relatively rare and often use simple measures of association (e.g., correlation coefficients). Consequently, the pattern of selection on asymmetry in the wild is seldom clear. We examined selection on FA of pectoral fin morphology in two wild populations of a marine fish (the kelp perch; Brachyistius frenatus). As expected, variance in signed FA in each initial sample was significantly greater than that found in the surviving population, indicating selection against FA. Our estimate of the fitness surface confirmed perfect symmetry as the phenotypic optimum and indicated strong, nonlinear selection against asymmetry. No difference in the form of selection was detected between populations. However, the level of FA in the initial samples varied among populations, leading to an overall difference in the level of selective mortality. Our results suggest that selection on asymmetry in wild populations may be strongly nonlinear, and indicate that the demographic costs of asymmetry may play a substantial role in the dynamics of populations. 相似文献
19.
Stefan P. W. Walker Mark I. McCormick 《Proceedings. Biological sciences / The Royal Society》2009,276(1671):3335-3343
In 1950, Rensch noted that in clades where males are the larger sex, sexual size dimorphism (SSD) tends to be more pronounced in larger species. This fundamental allometric relationship is now known as ‘Rensch''s rule’. While most researchers attribute Rensch''s rule to sexual selection for male size, experimental evidence is lacking. Here, we suggest that ultimate hypotheses for Rensch''s rule should also apply to groups of individuals and that individual trait plasticity can be used to test those hypotheses experimentally. Specifically, we show that in the sex-changing fish Parapercis cylindrica, larger males have larger harems with larger females, and that SSD increases with harem size. Thus, sexual selection for male body size is the ultimate cause of sexual size allometry. In addition, we experimentally illustrate a positive relationship between polygyny potential and individual growth rate during sex change from female to male. Thus, sexual selection is the ultimate cause of variation in growth rate, and variation in growth rate is the proximate cause of sexual size allometry. Taken together, our results provide compelling evidence in support of the sexual selection hypothesis for Rensch''s rule and highlight the potential importance of individual growth modification in the shaping of morphological patterns in Nature. 相似文献
20.
Microevolution in island forms: the roles of drift and directional selection in morphological divergence of a passerine bird 总被引:4,自引:0,他引:4
Clegg SM Degnan SM Moritz C Estoup A Kikkawa J Owens IP 《Evolution; international journal of organic evolution》2002,56(10):2090-2099
Abstract.— Theory predicts that in small isolated populations random genetic drift can lead to phenotypic divergence; however this prediction has rarely been tested quantitatively in natural populations. Here we utilize natural repeated island colonization events by members of the avian species complex, Zosterops lateralis , to assess whether or not genetic drift alone is an adequate explanation for the observed patterns of microevolutionary divergence in morphology. Morphological and molecular genetic characteristics of island and mainland populations are compared to test three predictions of drift theory: (1) that the pattern of morphological change is idiosyncratic to each island; (2) that there is concordance between morphological and neutral genetic shifts across island populations; and (3) for populations whose time of colonization is known, that the rate of morphological change is sufficiently slow to be accounted for solely by genetic drift. Our results are not consistent with these predictions. First, the direction of size shifts was consistently towards larger size, suggesting the action of a nonrandom process. Second, patterns of morphological divergence among recently colonized populations showed little concordance with divergence in neutral genetic characters. Third, rate tests of morphological change showed that effective population sizes were not small enough for random processes alone to account for the magnitude of microevolutionary change. Altogether, these three lines of evidence suggest that drift alone is not an adequate explanation of morphological differentiation in recently colonized island Zosterops and therefore we suggest that the observed microevolutionary changes are largely a result of directional natural selection. 相似文献