首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study examined predator faunas of artificial ground and shrub nests and whether nest predation risk was influenced by nest site, proximity to forest edge, and habitat structure in 38 grassland plots in south-central Sweden. There was a clear separation of predator faunas between shrub and ground nests as identified from marks in plasticine eggs. Corvids accounted for almost all predation on shrub nests whereas mammals mainly depredated ground nests. Nest predation risk was significantly greater for shrub than for ground nests at all distances (i.e. 0, 15 and 30 m) from the forest edge. However, nest predation risk was not significantly related to distance to forest edge, but significantly increased with decreasing distance to the nearest tree. Different corvid species robbed nests at different distances from the forest edge, with jays robbing nests closest to edges. We conclude that the relationship between the predation risk of grassland bird nests and distance to the forest edge mainly depends on the relative importance of different nest predator species and on the structure of the forest edge zone. A review of published articles on artificial shrub and ground nest predation in the temperate zone corroborated the results of our own study, namely that shrub nests experienced higher rates of depredation in open habitats close to the forest edge and that avian predators predominantly robbed shrub nests. Furthermore, the review results showed that predation rates on nests in general are highest <50 m inside the forest and lower in open as well as forest interior habitats (≥50 m from the edge). Received: 16 March 1998 / Accepted: 30 July 1998  相似文献   

2.
Habitat fragmentation and invasive species are two of the greatest threats to species diversity worldwide. This is particularly relevant for oceanic islands with vulnerable endemics. Here, we examine how habitat fragmentation influences nest predation by Rattus spp. on cup‐nesting birds in Samoan forests. We determined models for predicting predation rates by Rattus on artificial nests at two scales: (i) the position of the bird's nest within the landscape (e.g. proximity to mixed crop plantations, distance to forest edge); and (ii) the microhabitat in the immediate vicinity of the nest (e.g. nest height, ground cover, slope). Nest cameras showed only one mammal predator, the black rat (Rattus rattus), predating artificial nests. The optimal model predicting nest predation rates by black rats included a landscape variable, proximity to plantations and a local nest site variable, the percentage of low (<15 cm) ground cover surrounding the nest tree. Predation rates were 22 ± 13% higher for nests in forest edges near mixed crop plantations than in edges without plantations. In contrast, predation rates did not vary significantly between edge habitat where the matrix did not contain plantations, and interior forest sites (>1 km from the edge). As ground cover reduced, nest predation rates increased. Waxtags containing either coconut or peanut butter were used as a second method for assessing nest predation. The rates at which these were chewed followed patterns similar to the predation of the artificial nests. Rural development in Samoa will increase the proportion of forest edge near plantations. Our results suggest that this will increase the proportion of forest birds that experience nest predation from black rats. Further research is required to determine if rat control is needed to maintain even interior forest sites populations of predator‐sensitive bird species on South Pacific islands.  相似文献   

3.
Clearing of caldén (Prosopis caldenia) forests for agriculture and cattle raising in east-central La Pampa Province, central Argentina, has created a highly fragmented landscape, a condition that has resulted in adverse effects on birds in other forests, mainly through increased predation rates near forest edges. We evaluated bird nest predation rates using artificial nests, assessing the effects of forest fragment size, distance to the edge and nest height. We measured survival rate of 570 artificial nests located in trees, in bushes and on the ground, at different distances from the edge, in six forest fragments ranging in size from 2.1 to 117.6 ha, during two consecutive breeding seasons. Nest predation rates were significantly related with the number of days of exposition of the nest, nest height and distance to the edge, whereas fragment size and year of the experiment were not associated with predation rates. Ground nests were less likely to be predated than those located in bushes and trees. Predation rates decreased with the distance to the edge, showing a pattern consistent with the existence of an edge effect.  相似文献   

4.
为了解栖息地片段化对鸟类巢捕食风险的影响,我们于2010年4-8月,在千岛湖地区选取16个岛屿,分别在岛屿边缘和内部区域用放置鸡蛋(大型卵)和鹌鹑(Coturnix japonica)蛋(小型卵)的方法进行人工模拟地面巢试验,研究不同体积大小鸟卵的巢捕食率及其差异,分析巢捕食率与岛屿面积、隔离度、形状指数和植物物种丰富...  相似文献   

5.
《Ostrich》2013,84(1):93-96
Nest predation is the leading cause of reproductive failure in birds and thus it shapes their life history strategies. Intensities of nest predation appear to differ among nest locations and types in both temperate and tropical regions. However, there is limited knowledge of factors influencing susceptibility of avian nests to predation in Africa. The aim of our study was to investigate artificial nest predation rates of different ground and shrub nests located at different heights in the rainforest undergrowth. We placed artificial avian nests within a homogeneous lowland forest interior with sparse forest undergrowth in the Mount Cameroon National Park, Cameroon. We exposed three sets of nests: 50 bare-ground, 50 cup-ground and 50 cup-shrub nests, for 10 d. Predation was higher for cup-ground nests compared to cup-shrub nests, and bare-ground nests were more depredated than cup-ground nests. We concluded that the presence of a cup as well as higher nest position significantly increased probability of artificial nest survival. The results of this study suggest a potential selection pressure on nest type and placement in lowland forest birds for a poorly known tropical region.  相似文献   

6.
We studied the effects of forest patch size and forest edge structure on nest predation in a boreal coniferous forest landscape. The following predictions were tested. Nest predation should be higher in small than in large stands, in edges than in interior areas of forest stands, and in barren forest/clear–cut edges created by forestry than in natural forest/open marsh edges. Four types of artificial above ground nests (total of 261) were used; open cup nests with reindeer Rangifer t. tarandus hair, open cup nests with domestic hen Gallus domesticus feathers, and unlined open cup and nest–box nests. Nests were baited with one Japanese quail Coturnix coturnix japonica egg. Nest–boxes were depredated significantly less than open cup nests of all types. No edge- or stand size–related nest predation was found. The predation rate, regardless of the nest type, did not differ relative to the edge type and vegetation characteristics. However, better horizontal visibility of open cup nests due to more open vegetation structure increased predation risk in man–made edges compared to inherent edges. The results suggest that edge–related nest predation is absent or weak in forest dominated landscapes. This may be due to predator types present in the landscape and/or predators habitat use in forest dominated areas. Therefore, it might be that findings documented in other areas, such as in agricultural dominated landscapes, cannot be directly applied to managed forest landscapes.  相似文献   

7.
We performed nest predation experiments with artificial nests in reedbeds investigating whether nest predation pressure is different at the water-reed edge and the grassland-reed edge compared with the reed interior. Furthermore, we tested the effects of vegetation structure (reed density, height and thickness) and the effect of other nest site characteristics (distance from edge, water depth) on the success of artificial nests. The experiments were completed 3 times during the breeding season in 2001 at Lake Neusiedl, Austria. Each artificial nest resembled Great Reed Warbler (Acrocephalus arundinaceus) nests and contained one plasticine and one Quail (Coturnix coturnix) egg and the predators were identified by marks left on the eggs. The potential predators were birds, probably the Marsh Harrier (Circus aeruginosus), gulls (Larus spp.) and reed warblers (Acrocephalus spp.). Nest survival data were analysed using the Mayfield method, and we performed a discriminant analysis for the data of vegetation and nest site characteristics. The nest predation was higher at the edges than in the reed interior, and was most pronounced in April, before the new reed sprouted. The reason for this finding was probably that after May the new reed contributed to greater concealment of the nests through the higher reed density and height.  相似文献   

8.
Nest predation is widely regarded as a major driver underlying the population dynamics of small forest birds. Following forest fragmentation and the subsequent invasion by species from non-forested landscape matrices, shifts in predator communities may increase nest predation near forest edges. However, effects of human-driven habitat change on nest predation have mainly been inferred from studies with artificial nests, despite being regarded as poor surrogates for natural ones. We studied variation in predation rates, and relationships with timing of breeding and characteristics of microhabitats and fragments, on natural white-starred robin Pogonocichla stellata nests during three consecutive breeding seasons (2004–2007) in a Kenyan fragmented cloud forest. More than 70% of all initiated nests were predated during each breeding season. Predation rates nearly quadrupled between the earliest and the latest nests within a single breeding season, increased with distance to the forest edge, and decreased with the edge-to-area ratio of forest fragments. These spatial relationships oppose the traditional perception of edge and fragmentation effects on nest predation, but are in line with results from artificial nest experiments in other East African forests. In case of inverse edge and fragmentation effects on nest predation, such as shown in this study, species that tolerate edges for breeding may be affected positively, rather than negatively, by forest fragmentation, while the opposite can be expected for species restricted to the forest interior. The possibility of inverse edge effects, and its conservation implications, should therefore be taken into account when drafting habitat restoration plans.  相似文献   

9.
Nest predation is assumed to be an important factor driving avian life histories. Altitudinal gradients offer valuable study systems to investigate how avian nest predation risk varies between bird populations. In this study, a hypothesis postulating an increase in avian nest survival rate with elevation as a result of decreasing predation pressure was experimentally tested along an altitudinal gradient (300‐2250 m) in West‐Central Africa. Three types of artificial nests (cup‐shrub, cup‐ground and bare‐ground) were used along the altitudinal gradient. Overall, elevation had no effect on the daily survival rate (DSR) of the artificial nests. However, there was a significant elevation‐nest type interaction. Daily survival rate for cup‐shrub nests decreased significantly with elevation, but for cup‐ground and bare‐ground nests, elevation had no significant effect. We tested the effects of the same vegetation parameters (tree density, herb and shrub layer coverage, and canopy openness) on the DSR of different nest types to understand how different vegetation layers or combinations of them affect DSR. Daily survival rate for bare‐ground nests significantly decreased with increasing canopy openness, and was positively influenced by coverage of herb layer and tree density. For cup‐shrub nests, DSR increased significantly with increasing shrub layer coverage. Finally, for cup‐ground nests, we found a positive effect of shrub coverage and canopy openness on DSR. In summary, we found that different forest vegetation layers affect predation risk of different nest types along elevations on Mt. Cameroon.  相似文献   

10.
Southeast Asia is rapidly losing native habitats and the consequences of this are poorly understood. Because habitat loss and disturbance can affect avian and seed survivorship, we conducted artificial nest and seed predation experiments on tropical southeast Asian islands. Data among islands and fragments or different forest types (e.g. primary versus exotic forest) within the islands are compared. On Singapore Island, predation among different forest types (primary, secondary and woodland) did not differ. Only at one of the sites, nest predation was higher at 75 m from the forest edge than at 25 m. In other sites, predation did not differ in relation to the distance from the forest edge. Predation among 10 small (0.8–1026 ha) Singaporean islands differed. However, none of the environmental variables (e.g. island area) could explain the predation differences. The lowest predation of both nests and seeds was recorded in the primary forest areas of a contiguous forest (25 500 ha) in central Java (Linggoasri). Small mammals were the main predators on Singapore and other surrounding islands. However, the index of potential predator abundance, overall, did not correlate with predation. While larger and more pristine forests may be better for avian and seed survivorship, pinpointing variables affecting both artificial nest and seed predation may be difficult.  相似文献   

11.
We determined the effect of distance from ecological edges, both wooded and water edges, on nest predation for 862 painted turtle, Chrysemys picta , nests from 1995 to 1999 at an ∼1.5 ha study site. In three of five years and overall, nests closer to the water edge had a higher probability of predation; and in one year nests closer to the wooded edge had a higher probability of predation. Although more turtles nested closer to the water edge as the nesting season progressed in some years and overall, this behavior does not explain the observed patterns of nest predation. We present a novel application of the cubic spline analysis to address the dynamics of predation across continuous distances from an edge and identify threshold values where the predation rate levels off. Threshold values of ∼25–40 m were detected in 1995, 1998, and with all five years combined. However, even though a significant edge effect was detected in 1997, a threshold was not clear. While an edge effect on predation was not detected in each year, this study provides evidence for a strong effect of distance from the water edge on nest predation over significant ecological time. Focusing on turtle nest predation and smaller spatial scales addresses previous taxonomic and spatial bias in edge effects research, and provides further support for the ecological importance of edge effects.  相似文献   

12.
Avian nest success often varies seasonally and because predation is the primary cause of nest failure, seasonal variation in predator activity has been hypothesized to explain seasonal variation in nest success. Despite the fact that nest predator communities are often diverse, recent evidence from studies of snakes that are nest predators has lent some support to the link between snake activity and nest predation. However, the strength of the relationship has varied among studies. Explaining this variation is difficult, because none of these studies directly identified nest predators, the link between predator activity and nest survival was inferred. To address this knowledge gap, we examined seasonal variation in daily survival rates of 463 bird nests (of 17 bird species) and used cameras to document predator identity at 137 nests. We simultaneously quantified seasonal activity patterns of two local snake species (N = 30 individuals) using manual (2136 snake locations) and automated (89,165 movements detected) radiotelemetry. Rat snakes (Pantherophis obsoletus), the dominant snake predator at the site (~28% of observed nest predations), were most active in late May and early June, a pattern reported elsewhere for this species. When analyzing all monitored nests, we found no link between nest predation and seasonal activity of rat snakes. When analyzing only nests with known predator identities (filmed nests), however, we found that rat snakes were more likely to prey on nests during periods when they were moving the greatest distances. Similarly, analyses of all monitored nests indicated that nest survival was not linked to racer activity patterns, but racer‐specific predation (N = 17 nests) of filmed nests was higher when racers were moving the greatest distances. Our results suggest that the activity of predators may be associated with higher predation rates by those predators, but that those effects can be difficult to detect when nest predator communities are diverse and predator identities are not known. Additionally, our results suggest that hand‐tracking of snakes provides a reliable indicator of predator activity that may be more indicative of foraging behavior than movement frequency provided by automated telemetry systems.  相似文献   

13.
As a major process affecting the reproductive success of birds, nest predation influences population density and dynamics and forces species to adapt to ecological and evolutionary time scales. The disentangling of potential natural and anthropogenic drivers of nest predation is crucial for the conservation of species. Thus, we investigated the effects of elevation, egg characteristics, vegetation structure and human activities on daily nest predation rates of artificial ground nests by baiting 700 artificial nests with quail eggs along an elevational gradient of about 1100 m. After 25 days, we found an overall daily nest predation rate of 0.045. Our generalized linear mixed model revealed increasing daily predation rates with increasing forest management, no impact of recreational activities, and lower daily predation rates in the vicinity of buildings. Furthermore, daily predation rates declined with increasing density of near-ground vegetation and increased with increasing tree cover. Finally, we found no influence of elevation, matching of egg and ground colouration, and dead wood on daily nest predation rates. Our results revealed that the risk of nest predation depends more on vegetation structure than on current levels of recreational activities. Moreover, the negative relation of nest predation risk and near-ground vegetation indicates that the changing forest structure after natural disturbances (e.g. wind throw or bark beetle infestation), which is tolerated within the benign neglect strategy applied by the authorities of protected areas, decreases the predation risk, whereas salvage logging increases this risk.  相似文献   

14.
Forest loss and fragmentation in Indonesia may seriously affect the survivorship of forest birds and lead to local extinction of bird populations. We used 786 artificial nests baited with quail eggs to examine the effect of habitat alteration on nest predation in Lore Lindu National Park, Sulawesi. Natural forest and four habitats of forest margin areas: forest edge, forest gardens, coffee plantations, and secondary forest, were studied. Two types of artificial nests, ground and shrub nests were placed in these habitats at two different locations for a period of 8 days. In addition, we used automatic cameras and cage-traps to identify the predators. Nests in shrubs experienced significantly higher predation rates in forest margin areas than in natural forest. Predation on ground nests did not differ significantly between these habitat types, but was significantly higher than that on shrub nests in each habitat except forest edge. Rodents were the most common predators of both nests, but shrub nests were also susceptible to Dwarf cuscus (Strigocuscus celebensis), squirrels, and tree snakes. The nest predation rates we found were among the highest found in tropical rainforests, probably a consequence of the unique predator assemblages of Sulawesi. These results suggest that egg survival is negatively affected by human intervention and that human-induced habitats might have only limited importance for the conservation of Sulawesi's largely endemic understorey avifauna. These considerations might be important since forest margins comprise significant proportions of protected areas on Sulawesi and play an important role in future Park zoning concepts as well as in conservation-oriented land use management.  相似文献   

15.
When nest predation levels are very high or very low, the absolute range of observable nest success is constrained (a floor/ceiling effect), and it may be more difficult to detect density-dependent nest predation. Density-dependent nest predation may be more detectable in years with moderate predation rates, simply because there can be a greater absolute difference in nest success between sites. To test this, we replicated a predation experiment 10 years after the original study, using both natural and artificial nests, comparing a year when overall rates of nest predation were high (2000) to a year with moderate nest predation (2010). We found no evidence for density-dependent predation on artificial nests in either year, indicating that nest predation is not density-dependent at the spatial scale of our experimental replicates (1-ha patches). Using nearest-neighbor distances as a measure of nest dispersion, we also found little evidence for "dispersion-dependent" predation on artificial nests. However, when we tested for dispersion-dependent predation using natural nests, we found that nest survival increased with shorter nearest-neighbor distances, and that neighboring nests were more likely to share the same nest fate than non-adjacent nests. Thus, at small spatial scales, density-dependence appears to operate in the opposite direction as predicted: closer nearest neighbors are more likely to be successful. We suggest that local nest dispersion, rather than larger-scale measures of nest density per se, may play a more important role in density-dependent nest predation.  相似文献   

16.
Several studies indicate that nest predation is higher along edges than in habitat interiors mainly due generalist predators arising from or proliferating in the surrounding matrix. Recent reviews demonstrate however that this is far from universal, in part because studies are strongly biased in temperate regions. Far fewer are known from the Neotropics and just a handful of studies have been carried out in the biologically-rich but severely fragmented Atlantic Forest of Brazil. Here we tested the influence of edge proximity on ground nest predation in a large (21,787 ha) Atlantic forest reserve. The experiment was carried out using chicken and quail eggs in 12 transects with 500 m in length, half of which parallel to internal edges (dirt roads) and half parallel to external edges (forest/pasture). Nest predation was significantly higher in wet season (42.7%), when no difference was found between edge and forest interior, than in dry season (16.5%), when nest predation was higher in forest interior (400 m). Within seasons, the difference between internal and external edges and the association between edge distance and edge type were not significant. Results suggest that ground nest predation in large protected areas of the Atlantic forest is mainly caused by forest dwellers rather than by species inhabiting the surrounding grassland-dominated landscape, mirroring recent findings in other tropical areas.  相似文献   

17.
Habitat edges alter the diversity of avian communities and are often associated with higher rates of nest predation. However, most previous studies on habitat edges have been conducted along long linear corridors or at the transition between large field and forest patches in agricultural systems. Less is known about predation rates when the habitat edge is the result of a small interior forest opening. We assessed predation rates on artificial nests mimicking ground and shrub nesters in Northern Michigan forests perforated by small clearings used previously for oil and gas extraction. Nests were placed at varying distances from the edges of these clearings, and in similar spatial arrangements within unfragmented interior forest plots. Predation rates increased in forests near edges, but significant impacts were limited to shrub nests. Markings on predated clay eggs indicated that the type of predation also differed. Scratch marks were the most prevalent egg indentation, but eggs with poked holes were twice as common near the forest edge. The increase in the number of poked eggs suggests that a higher density of avian predators occurred in forests near an edge. Predation rates at forest edges did not vary by distance from the forest edge. Surveys of the avian community revealed differences between edge and interior forests: American Crows Corvus brachyrhynchos and Blue Jays Cyanocitta cristata, two species known to predate bird nests, were more common near edges. Our results suggest that small forest openings alter the avian community and may adversely impact reproductive output in some species. If the alteration of these processes results in population‐level impacts, small forest perforations should be avoided when possible and reforestation of abandoned well‐pads should be encouraged.  相似文献   

18.
Fragmentation and other habitat disturbances are long known to negatively affect birds, in large part by decreasing nest success due to high nest predation rates. The factors, however, that cause this decrease in nest success are still poorly understood and may vary among regions or species. Here, we show that nest survival is also lower in a disturbed landscape versus a protected cerrado (savanna-like) Neotropical landscape. Also, we tested the importance of garbage in the nest, brood parasitism, microhabitat and bird family in nest survival, controlling for temporal effects. We monitored 144 birds’ nests in a disturbed landscape and 150 nests in a natural reserve of cerrado vegetation in central Brazil, between September and December 2006. We used Program MARK to estimate nest survival probabilities and evaluate the effect of covariates in nest success in the disturbed area. Nest daily survival rate (DSR) was higher in the reserve (survival probability = 29.4%) than in the disturbed landscape (survival probability = 16.6%). Nest daily survival rate (DSR) was smaller in nests with garbage (survival probability = 9.3%) than in nests without garbage (survival probability = 19.5%) in the disturbed landscape. Effects of habitat disturbance on nest survival differed among bird families, with finches and tanagers being more affected mostly due to high nest predation rates. Conservation and management of birds in disturbed landscapes should include actions to decrease nest predation. In poor rural or suburban areas in developing countries, such as Brazil, actions like better garbage treatment may help conserve birds in disturbed landscapes.  相似文献   

19.
Forest edges can strongly affect avian nest success by altering nest predation rates, but this relationship is inconsistent and context dependent. There is a need for researchers to improve the predictability of edge effects on nest predation rates by examining the mechanisms driving their occurrence and variability. In this study, we examined how the capture rates of ship rats, an invasive nest predator responsible for avian declines globally, varied with distance from the forest edge within forest fragments in a pastoral landscape in New Zealand. We hypothesised that forest edges would affect capture rates by altering vegetation structure within fragments, and that the strength of edge effects would depend on whether fragments were grazed by livestock. We measured vegetation structure and rat capture rates at 488 locations ranging from 0–212 m from the forest edge in 15 forest fragments, seven of which were grazed. Contrary to the vast majority of previous studies of edge effects on nest predation, ship rat capture rates increased with increasing distance from the forest edge. For grazed fragments, capture rates were estimated to be 78% lower at the forest edge than 118 m into the forest interior (the farthest distance for grazed fragments). This relationship was similar for ungrazed fragments, with capture rates estimated to be 51% lower at the forest edge than 118 m into the forest interior. A subsequent path analysis suggested that these ‘reverse’ edge effects were largely or entirely mediated by changes in vegetation structure, implying that edge effects on ship rats can be predicted from the response of vegetation structure to forest edges. We suggest the occurrence, strength, and direction of edge effects on nest predation rates may depend on edge-driven changes in local habitat when the dominant predator is primarily restricted to forest patches.  相似文献   

20.
Forest fragmentation and avian nest predation in forested landscapes   总被引:8,自引:0,他引:8  
Summary The size of forest fragments, the use of land bordering fragments, and the distance of nests from an edge all affect the frequency of predation upon bird nests in Maine (USA), an area where the forest has been fragmented by roads, but not significantly reduced in area. We placed artificial nests containing quail eggs in forests of different sizes and at various distances from the edge to test which of these factors was most important in describing predation. Predation was greatest in small tracts surrounded completely by land. Large areas and those bordered on at least one side by a large water body had lower predation rates. This suggests that influx of predators from nearby habitats may be responsible for much of the nest predation in forest fragments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号