首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Helicoverpa armigera is a major agricultural pest that is distributed across Europe, Asia, Africa and Australasia. This species is hypothesized to have spread to the Americas 1.5 million years ago, founding a population that is at present, a distinct species, Helicoverpa zea. In 2013, H. armigera was confirmed to have re‐entered South America via Brazil and subsequently spread. The source of the recent incursion is unknown and population structure in H. armigera is poorly resolved, but a basic understanding would highlight potential biosecurity failures and determine the recent evolutionary history of region‐specific lineages. Here, we integrate several end points derived from high‐throughput sequencing to assess gene flow in H. armigera and H. zea from populations across six continents. We first assemble mitochondrial genomes to demonstrate the phylogenetic relationship of H. armigera with other Heliothine species and the lack of distinction between populations. We subsequently use de novo genotyping‐by‐sequencing and whole‐genome sequences aligned to bacterial artificial chromosomes, to assess levels of admixture. Primarily, we find that Brazilian H. armigera are derived from diverse source populations, with strong signals of gene flow from European populations, as well as prevalent signals of Asian and African ancestry. We also demonstrate a potential field‐caught hybrid between H. armigera and H. zea, and are able to provide genomic support for the presence of the H. armigera conferta subspecies in Australasia. While structure among the bulk of populations remains unresolved, we present distinctions that are pertinent to future investigations as well as to the biosecurity threat posed by H. armigera.  相似文献   

2.
Since the last glacial maximum (LGM), many plant and animal taxa have expanded their ranges by migration from glacial refugia. Weeds of cultivation may have followed this trend or spread globally following the expansion of agriculture or ruderal habitats associated with human‐mediated disturbance. We tested whether the range expansion of the weed Silene vulgaris across Europe fit the classical model of postglacial expansion from southern refugia, or followed known routes of the expansion of human agricultural practices. We used species distribution modeling to predict spatial patterns of postglacial expansion and contrasted these with the patterns of human agricultural expansion. A population genetic analysis using microsatellite loci was then used to test which scenario was better supported by spatial patterns of genetic diversity and structure. Genetic diversity was highest in southern Europe and declined with increasing latitude. Locations of ancestral demes from genetic cluster analysis were consistent with areas of predicted refugia. Species distribution models showed the most suitable habitat in the LGM on the southern coasts of Europe. These results support the typical postglacial northward colonization from southern refugia while refuting the east‐to‐west agricultural spread as the main mode of expansion for S. vulgaris. We know that S. vulgaris has recently colonized many regions (including North America and other continents) through human‐mediated dispersal, but there is no evidence for a direct link between the Neolithic expansion of agriculture and current patterns of genetic diversity of S. vulgaris in Europe. Therefore, the history of range expansion of S. vulgaris likely began with postglacial expansion after the LGM, followed by more recent global dispersal by humans.  相似文献   

3.
Five species of noctuid moths, Helicoverpa armigera, H. punctigera, H. assulta, H. zea, and H. gelotopoeon, are major agricultural pests inhabiting various and often overlapping global distributions. Visual identification of these species requires a great deal of expertise and misidentification can have repercussions for pest management and agricultural biosecurity. Here, we report on the complete mitochondrial genomes of H. assulta assulta and H. assulta afra, H. gelotopoeon, H. punctigera, H. zea, and H. armigera armigera and H. armigera conferta’ assembled from high‐throughput sequencing data. This study significantly increases the mitogenome resources for these five agricultural pests with sequences assembled from across different continents, including an H. armigera individual collected from an invasive population in Brazil. We infer the phylogenetic relationships of these five Helicoverpa species based on the 13 mitochondrial DNA protein‐coding genes (PCG's) and show that two publicly available mitogenomes of H. assulta ( KP015198 and KR149448 ) have been misidentified or incorrectly assembled. We further consolidate existing PCR‐RFLP methods to cover all five Helicoverpa pest species, providing an updated method that will contribute to species differentiation and to future monitoring efforts of Helicoverpa pest species across different continents. We discuss the value of Helicoverpa mitogenomes to assist with species identification in view of the context of the rapid spread of H. armigera in the New World. With this work, we provide the molecular resources necessary for future studies of the evolutionary history and ecology of these species.  相似文献   

4.
The genetic diversity and population structure of Lippia origanoides, a species of the Verbenaceae family that shows promise as a crop plant, was investigated along an altitudinal gradient in the basin of the Chicamocha River in northeastern Colombia. The economic importance of the species, quality of its essential oils, and the fact that it is restricted to some few semiarid areas in northern South America may put the species at risk in a scenario of uncontrolled harvest of natural populations. Lippia origanoides was sampled along an altitudinal gradient from 365 to 2595 m.a.s.l. throughout Chicamocha River Canyon, a semiarid area in northeastern Colombia. Genetic diversity was assessed by means of AFLP markers. The number of AFLP loci (355) and the number of individuals sampled (173) were sufficient to reliably identify four populations at contrasting altitudes (FST = 0.18, P‐value < 0.0000), two populations in the lower basin, one population in the medium basin, and one population in the upper basin, with a low level of admixture between them. In average, genetic diversity within populations was relatively high (Ht = 0.32; I = 0.48); nevertheless, diversity was significantly reduced at higher altitude, a pattern that may be consistent with a scenario of range expansion toward higher elevations in an environment with more extreme conditions. The differences in altitude among the basins in the Chicamocha River seem to be relevant in determining the genetic structure of this species.  相似文献   

5.
The Antillean manatee (Trichechus manatus manatus) occupies the tropical coastal waters of the Greater Antilles and Caribbean, extending from Mexico along Central and South America to Brazil. Historically, manatees were abundant in Mexico, but hunting during the pre-Columbian period, the Spanish colonization and throughout the history of Mexico, has resulted in the significantly reduced population occupying Mexico today. The genetic structure, using microsatellites, shows the presence of two populations in Mexico: the Gulf of Mexico (GMx) and Chetumal Bay (ChB) on the Caribbean coast, with a zone of admixture in between. Both populations show low genetic diversity (GMx: NA = 2.69; HE = 0.41 and ChB: NA = 3.0; HE = 0.46). The lower genetic diversity found in the GMx, the largest manatee population in Mexico, is probably due to a combination of a founder effect, as this is the northern range of the sub-species of T. m. manatus, and a bottleneck event. The greater genetic diversity observed along the Caribbean coast, which also has the smallest estimated number of individuals, is possibly due to manatees that come from the GMx and Belize. There is evidence to support limited or unidirectional gene flow between these two important areas. The analyses presented here also suggest minimal evidence of a handful of individual migrants possibly between Florida and Mexico. To address management issues we suggest considering two distinct genetic populations in Mexico, one along the Caribbean coast and one in the riverine systems connected to the GMx.  相似文献   

6.

Background  

Helicoverpa armigera and H. zea are amongst the most significant polyphagous pest lepidopteran species in the Old and New Worlds respectively. Separation of H. armigera and H. zea is difficult and is usually only achieved through morphological differences in the genitalia. They are capable of interbreeding to produce fertile offspring. The single species status of H. armigera has been doubted, due to its wide distribution and plant host range across the Old World. This study explores the global genetic diversity of H. armigera and its evolutionary relationship to H zea.  相似文献   

7.
The common vampire bat, Desmodus rotundus, ranges from South America into northern Mexico in North America. This sanguivorous species of bat feeds primarily on medium to large‐sized mammals and is known to rely on livestock as primary prey. Each year, there are hotspot areas of D. rotundus‐specific rabies virus outbreaks that lead to the deaths of livestock and economic losses. Based on incidental captures in our study area, which is an area of high cattle mortality from D. rotundus transmitted rabies, it appears that D. rotundus are being caught regularly in areas and elevations where they previously were thought to be uncommon. Our goal was to investigate demographic processes and genetic diversity at the north eastern edge of the range of D. rotundus in Mexico. We generated control region sequences (441 bp) and 12‐locus microsatellite genotypes for 602 individuals of D. rotundus. These data were analyzed using network analyses, Bayesian clustering approaches, and standard population genetic statistical analyses. Our results demonstrate panmixia across our sampling area with low genetic diversity, low population differentiation, loss of intermediate frequency alleles at microsatellite loci, and very low mtDNA haplotype diversity with all haplotypes being very closely related. Our study also revealed strong signals of population expansion. These results follow predictions from the leading‐edge model of expanding populations and supports conclusions from another study that climate change may allow this species to find suitable habitat within the U.S. border.  相似文献   

8.
The Asian citrus psyllid Diaphorina citri Kuwayama is a key pest of citrus as the vector of the bacterium causing the “huanglongbing” disease (HLB). To assess the global mtDNA population genetic structure, and possible dispersal history of the pest, we investigated genetic variation at the COI gene collating newly collected samples with all previously published data. Our dataset consists of 356 colonies from 106 geographic sites worldwide. High haplotype diversity (H‐mean = 0.702 ± 0.017), low nucleotide diversity (π‐mean = 0.003), and significant positive selection (Ka/Ks = 32.92) were observed. Forty‐four haplotypes (Hap) were identified, clustered into two matrilines: Both occur in southeastern and southern Asia, North and South America, and Africa; lineages A and B also occur in eastern and western Asia, respectively. The most abundant haplotypes were Hap4 in lineage A (35.67%), and Hap9 in lineage B (41.29%). The haplotype network identified them as the ancestral haplotypes within their respective lineages. Analysis of molecular variance showed significant genetic structure (FST = 0.62, p < .0001) between the lineages, and population genetic analysis suggests geographic structuring. We hypothesize a southern and/or southeastern Asia origin, three dispersal routes, and parallel expansions of two lineages. The hypothesized first route involved the expansion of lineage B from southern Asia into North America via West Asia. The second, the expansion of some lineage A individuals from Southeast Asia into East Asia, and the third involved both lineages from Southeast Asia spreading westward into Africa and subsequently into South America. To test these hypotheses and gain a deeper understanding of the global history of D. citri, more data‐rich approaches will be necessary from the ample toolkit of next‐generation sequencing (NGS). However, this study may serve to guide such sampling and in the development of biological control programs against the global pest D. citri.  相似文献   

9.
Despite rampant colour pattern diversity in South America, Heliconius erato exhibits a ‘postman’ wing pattern throughout most of Central America. We examined genetic variation across the range of H. erato, including dense sampling in Central America, and discovered a deep genetic break, centred on the mountain range that runs through Costa Rica. This break is characterized by a novel mitochondrial lineage, which is nearly fixed in northern Central America, that branches basal to all previously described mitochondrial diversity in the species. Strong genetic differentiation also appears in Z‐linked and autosomal markers, and it is further associated with a distinct, but subtle, shift in wing pattern phenotype. Comparison of clines in wing phenotype, mtDNA and nuclear markers indicate they are all centred on the mountains dividing Costa Rica, but that cline width differs among data sets. Phylogeographical analyses, accounting for this new diversity, rewrite our understanding of mimicry evolution in this system. For instance, these results suggest that H. erato originated west of the Andes, perhaps in Central America, and as many as 1 million years before its co‐mimic, H. melpomene. Overall our data indicate that neutral genetic markers and colour pattern loci are congruent and converge on the same hypothesis—H. erato originated in northwest South America or Central America with a ‘postman’ phenotype and then radiated into the wealth of colour patterns present today.  相似文献   

10.
We present phylogenetic relationships and phylogeographic patterns of the two species of bulldog bats, genus Noctilio. Using a comprehensive sampling of 118 individuals throughout the species distribution, we investigated the distribution of molecular variation in one nuclear and two mitochondrial markers. Phylogenetic trees do not recover Noctilio albiventris as a monophyletic group and point to three similar‐age intraspecific genetic lineages, suggesting cryptic diversity in this taxon. These lineages correspond to the subspecies previously proposed, and are strongly associated with major river basins in South America. Analyses also suggest a very recent origin for the fishing bat Noctilio leporinus, which probably originates from N. albiventris, with a population expansion corresponding to its invasion in South America. Based on our analysis, the speciation event was dated in the Pleistocene epoch and seems to be associated with the variation of the sea level in the Caribbean islands. The present work indicates how phylogeographic studies support the identification of independent evolutionary lineages, driving new systematic/taxonomic investigations, while at the same time shed light on the role of the Caribbean in shaping Neotropical bat fauna diversity. © 2012 The Linnean Society of London, Biological Journal of the Linnean Society, 2012, ?? , ??–??.  相似文献   

11.
The Old World bollworm, Helicoverpa armigera (Hubner) (Lepidoptera: Noctuidae), is a globally distributed agricultural and horticultural insect pest. Despite the economic importance of this insect in Ethiopia, its genetic diversity and demographic history are poorly understood. We examined the nucleotide variation of the mitochondrial cytochrome c oxidase subunit I (COI) gene fragment of 74 H. armigera individuals from six collection sites in Ethiopia. We recorded 15 COI haplotypes in H. armigera, ten globally shared and five exclusive to Ethiopia (HaET15, HaET14, HaET10, HaET7, and HaET4). Haplotype HaET1 was the most widely geographically distributed and frequent (71.62%). Analysis of molecular variance (AMOVA) revealed a high and significant level of variation within H. armigera populations (θST  = −0.0135). Negative values of the neutrality test and nonsignificant index of mismatch distribution supported the demographic expansion of H. armigera populations in Ethiopia; furthermore, this was also supported by the nonsignificant values of the sum of squared deviations (SSD) and raggedness index (r). The high genetic variation and population expansion of H. armigera have immense implications for devising locally adapted management strategies in area‐wide integrated pest management IPM programs. However, a comprehensive study of H. armigera genetic diversity and population structure using various molecular markers is needed for future confirmation.  相似文献   

12.
Range expansions driven by global change and species invasions may have significant genomic, evolutionary, and ecological implications. During range expansions, strong genetic drift characterized by repeated founder events can result in decreased genetic diversity with increased distance from the center of the historic range, or the point of invasion. The invasion of the Indo‐Pacific lionfish, Pterois volitans, into waters off the US East Coast, Gulf of Mexico, and Caribbean Sea provides a natural system to study rapid range expansion in an invasive marine fish with high dispersal capabilities. We report results from 12,759 single nucleotide polymorphism loci sequenced by restriction enzyme‐associated DNA sequencing for nine P. volitans sampling areas in the invaded range, including Florida and other sites throughout the Caribbean, as well as mitochondrial control region D‐loop data. Analyses revealed low to no spatially explicit metapopulation genetic structure, which is partly consistent with previous finding of little structure within ocean basins, but partly divergent from initial reports of between‐basin structure. Genetic diversity, however, was not homogeneous across all sampled sites. Patterns of genetic diversity correlate with invasion pathway. Observed heterozygosity, averaged across all loci within a population, decreases with distance from Florida while expected heterozygosity is mostly constant in sampled populations, indicating population genetic disequilibrium correlated with distance from the point of invasion. Using an FST outlier analysis and a Bayesian environmental correlation analysis, we identified 256 and 616 loci, respectively, that could be experiencing selection or genetic drift. Of these, 24 loci were shared between the two methods.  相似文献   

13.
Helicoverpa armigera (Hübner) is one of the most prominent polyphagous species of the Heliothinae pest complex that inflicts severe damage to a wide range of crops in India. Knowledge regarding the population structure of the pest species, whether morphological or genetic, is considered as an essential tool in making effective management decisions. Thus here, we performed the phenotypic characterization of H. armigera populations collected from varied geographic locations across India. Studied populations differed significantly for several external morphometric traits studied at larval, pupal and adult stages. Significant differences were also observed with respect to the intensity of black pigmentation on larval body as well as adult eye and forewing colour patterns. Besides external phenotypic traits, the length of genital organs like aedeagus and valva in males, and bursa copulatrix and bursa seminalis in females also differed significantly amongst populations. The dendrogram based on selected traits showed clear cut differentiation of studied populations into two major groups, one including all the South Zone populations and the other having populations from North and Central Zones. Differences based on phenotyping in the present study indicate the possibility of the existence of different subspecies within the Indian populations of H. armigera.  相似文献   

14.
Tobacco blue mold, caused by Peronospora tabacina, is an oomycete plant pathogen that causes yearly epidemics in tobacco (Nicotiana tabacum) in the United States and Europe. The genetic structure of P. tabacina was examined to understand genetic diversity, population structure and patterns of migration. Two nuclear loci, Igs2 and Ypt1, and one mitochondrial locus, cox2, were amplified, cloned and sequenced from fifty‐four isolates of P. tabacina from the United States, Central America–Caribbean–Mexico (CCAM), Europe and the Middle East (EULE). Cloned sequences from the three genes showed high genetic variability across all populations. Nucleotide diversity and the population mean mutation parameter per site (Watterson's theta) were higher in EULE and CCAM and lower in U.S. populations. Neutrality tests were significant and the equilibrium model of neutral evolution was rejected, indicating an excess of recent mutations or rare alleles. Hudson's Snn tests were performed to examine population subdivision and gene flow among populations. An isolation‐with‐migration analysis (IM) supported the hypothesis of long‐distance migration of P. tabacina from the Caribbean region, Florida and Texas into other states in the United States. Within the European populations, the model documented migration from North Central Europe into western Europe and Lebanon, and migration from western Europe into Lebanon. The migration patterns observed support historical observations about the first disease introductions and movement in Europe. The models developed are applicable to other aerial dispersed emerging pathogens and document that high‐evolutionary‐risk plant pathogens can move over long distances to cause disease due to their large effective population size, population expansion and dispersal.  相似文献   

15.
Large‐scale anthropogenic changes in the environment are reshaping global biodiversity and the evolutionary trajectory of many species. Evolutionary mechanisms that allow organisms to thrive in this rapidly changing environment are just beginning to be investigated (Hoffmann & Sgrò 2011 ; Colautti & Barrett 2013 ). Weedy and invasive species represent ‘success stories’ for how species can cope with human modified environments. As introduced species have spread within recent times, they provide the unique opportunity to track the genetic consequences of rapid range expansion through time and space using historic DNA samples. Using modern collections and herbarium specimens dating back to 1873, Martin et al. ( 2014 ) have provided a more complete understanding of the population history of the invasive, agricultural weed, common ragweed (Ambrosia artemisiifolia; Fig.  1 ) in its native range with surprising results. They find that the recent population explosion of common ragweed in North America coincided with substantial shifts in population genetic structure with implications for invasion.  相似文献   

16.
Aim Predictive models of species’ distributions use occurrence records and environmental data to produce a model of the species’ requirements and a map of its potential distribution. To determine regions of suitable environmental conditions and assess biogeographical questions regarding their ranges, we modelled the potential geographical distributions of two spiny pocket mice (Rodentia: Heteromyidae) in north‐western South America. Location North‐western South America. Methods We used the Genetic Algorithm for Rule‐Set Prediction (GARP), environmental data from GIS maps and georeferenced collection localities from a recent systematic review of Heteromys australis and H. anomalus to produce the models. Results GARP models indicate the potential presence of H. australis throughout mesic montane regions of north‐western South America, as well as in some lowland regions of moderately high precipitation. In contrast, H. anomalus is predicted to occur primarily in drier areas of the Caribbean coast and rain‐shadowed valleys of the Andes. Conclusions The models support the disjunct status of the population of H. australis in the Cordillera de Mérida, but predict a continuous distribution between known populations of H. anomalus in the upper Magdalena Valley and the Caribbean coast. Regions of suitable environmental conditions exist disjunct from known distributional areas for both species, suggesting possible historical restrictions to their ranges. This technique holds wide application to other study systems.  相似文献   

17.
Helicoverpa armigera has recently invaded South and Central America, and appears to be spreading rapidly. We update a previously developed potential distribution model to highlight the global invasion threat, with emphasis on the risks to the United States. The continued range expansion of H. armigera in Central America is likely to change the invasion threat it poses to North America qualitatively, making natural dispersal from either the Caribbean islands or Mexico feasible. To characterise the threat posed by H. armigera, we collated the value of the major host crops in the United States growing within its modelled potential range, including that area where it could expand its range during favourable seasons. We found that the annual value of crops that would be exposed to H. armigera totalled approximately US$78 billion p.a., with US$843 million p.a. worth growing in climates that are optimal for the pest. Elsewhere, H. armigera has developed broad-spectrum pesticide resistance; meaning that if it invades the United States, protecting these crops from significant production impacts could be challenging. It may be cost-effective to undertake pre-emptive biosecurity activities such as slowing the spread of H. armigera throughout the Americas, improving the system for detecting H. armigera, and methods for rapid identification, especially distinguishing between H. armigera, H. zea and potential H. armigera x H. zea hybrids. Developing biological control programs, especially using inundative techniques with entomopathogens and parasitoids could slow the spread of H. armigera, and reduce selective pressure for pesticide resistance. The rapid spread of H. armigera through South America into Central America suggests that its spread into North America is a matter of time. The likely natural dispersal routes preclude aggressive incursion responses, emphasizing the value of preparatory communication with agricultural producers in areas suitable for invasion by H. armigera.  相似文献   

18.
Phylogeographic forces driving evolution of sea‐dispersed plants are often influenced by regional and species characteristics, although not yet deciphered at a large spatial scale for many taxa like the mangrove species Heritiera littoralis. This study aimed to assess geographic distribution of genetic variation of this widespread mangrove in the Indo‐West Pacific region and identify the phylogeographic factors influencing its present‐day distribution. Analysis of five chloroplast DNA fragments’ sequences from 37 populations revealed low genetic diversity at the population level and strong genetic structure of H. littoralis in this region. The estimated divergence times between the major genetic lineages indicated that glacial level changes during the Pleistocene epoch induced strong genetic differentiation across the Indian and Pacific Oceans. In comparison to the strong genetic break imposed by the Sunda Shelf toward splitting the lineages of the Indian and Pacific Oceans, the genetic differentiation between Indo‐Malesia and Australasia was not so prominent. Long‐distance dispersal ability of H. littoralis propagules helped the species to attain transoceanic distribution not only across South East Asia and Australia, but also across the Indian Ocean to East Africa. However, oceanic circulation pattern in the South China Sea was found to act as a barrier creating further intraoceanic genetic differentiation. Overall, phylogeographic analysis in this study revealed that glacial vicariance had profound influence on population differentiation in H. littoralis and caused low genetic diversity except for the refugia populations near the equator which might have persisted through glacial maxima. With increasing loss of suitable habitats due to anthropogenic activities, these findings therefore emphasize the urgent need for conservation actions for all populations throughout the distribution range of H. littoralis.  相似文献   

19.
Spatial patterns of genetic diversity provide insight into the demography and history of species. Morphologically similar but genetically distinct “cryptic” species are increasingly being recognized in marine organisms through molecular analyses. Such species are, on closer inspection, often discovered to display contrasting life histories or occasionally minor morphological differences; molecular tools can thus be useful indicators of diversity. Bostrychia intricata, a marine red alga, is widely distributed throughout the Southern Hemisphere and comprises many cryptic species. We used mitochondrial cytochrome c oxidase I gene sequences to assess the genetic variation, population genetic structure, and demographic history of B. intricata in New Zealand. Our results supported the existence of three cryptic species of B. intricata (N2, N4, and N5) in New Zealand. Cryptic species N4, which was found throughout New Zealand, showed a higher genetic diversity and wider distribution than the other two species, which were only found in the North Island and northern South Island. Our analyses showed low to moderate genetic differentiation among eastern North Island populations for cryptic species N2, but high differentiation among North and South Island populations for N4, suggesting different population structure between these cryptic species. Data also indicated that N2 has recently undergone population expansion, probably since the Last Glacial Maximum (LGM), while the higher genetic diversity in N4 populations suggests persistence in situ through the LGM. The contrasting population structures and inferred demographic histories of these species highlight that life history can vary greatly even among morphologically indistinguishable taxa.  相似文献   

20.
The seagrass Halophila stipulacea Forsskål, native to the Red Sea, is an invasive species in the Mediterranean that was recently observed offshore Grenada, in the Caribbean. Here, we document the presence of this seagrass in Dominica and St. Lucia, demonstrating it has spread across part of the eastern Caribbean. H. stipulacea in Dominica was present in seven locations along the west coast covering more than 22.9 ha of the benthos, at depths from 2 to 18 m. Populations were concentrated in or adjacent to bays frequented by recreational or commercial boats, likely vectors for the introduction. Morphological features varied from bed to bed, with depth being the predominant driving factor. H. stipulacea had a rapid mean lateral bed expansion rate of 0.5 cm d−1, with a maximum rate of >6 cm d−1. H. stipulacea patches often occurred exclusive of the otherwise dominant seagrasses of the Caribbean. The potential for the expansion of H. stipulacea, combined with its tolerance for a wide spectrum of environmental conditions, positions it as a potential threat to local and regional biodiversity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号