共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Inequality in male and female numbers may affect population dynamics and extinction probabilities and so has significant conservation implications. We previously demonstrated that Brown‐headed Cowbird Molothrus ater brood parasitism of Song Sparrows Melospiza melodia results in a 50% reduction in the proportion of female host offspring by day 6 post‐hatch and at fledging, which modelling demonstrated is as significant as nest predation in affecting demography. Many avian brood parasites possess special adaptations to parasitize specific hosts so this sex‐ratio effect could be specific to the interaction between these two species. Alternatively, perturbations associated with brood parasitism per se (e.g. the addition of an extra, larger, unrelated nestling), rather than a Cowbird nestling specifically, may be responsible. We experimentally eliminated the effects of Cowbird‐specific traits by parasitizing nests with a conspecific nestling rather than a Cowbird, while otherwise emulating the circumstances of Cowbird parasitism by adding an extra, larger (2‐day‐older), unrelated Song Sparrow nestling to Song Sparrow nests. Our parasitism treatment led to few host offspring deaths and no evidence of male‐biased sex ratios by day 6 post‐hatch. However, after day 6, female nestling mortality rates increased significantly in experimentally parasitized nests, resulting in a 60% reduction in the proportion of females fledging. Cowbird‐specific traits are thus not necessary to cause female‐biased host nestling mortality and far more general features associated with Cowbird parasitism instead appear responsible. Our results suggest, however, that Cowbird‐specific traits may help accelerate the pace of female host deaths. The conservation implications of our results could be wide reaching. Cowbirds are unrelated to all their hosts, are larger than the great majority, and a Cowbird nestling's presence can mean there is an extra mouth to feed. Thus, sex‐biased mortality in parasitized nests could be occurring across a range of host species. 相似文献
3.
Abstract Patterns of reproductive and vegetative biomass allocation were compared in male and female plants of the alpine herb Aciphylla simplicifolia. Male and female plants had similar vegetative biomass but differed in the pattern of resource allocation. Inflorescences of males and females were similar in weight at the time of flowering, but differed in biomass allocation to some structures within the inflorescences, particularly those associated with ovule production and pollinator attraction (number and size of flowers). At the time of fruit production, female inflorescences were 2.6 times heavier than at flowering with developing fruit six times heavier than flowers. In addition to the increase in biomass allocated to structures associated with the provisioning and dissemination of seed, support structures (main and side stalks) were also heavier. As a result of this additional investment of resources at the time of fruit production, the reproductive effort (RE) of female plants was much higher than that of males: 37% of above ground biomass compared with 21% for males. Differences in RE did not change with plant size; however, allocation to reproduction appeared to be a constant proportion of biomass over nearly all plant sizes sampled. These results show that sex‐specific resource allocation can be a complex of temporal and morphological patterns. 相似文献
4.
Chlorinated phenols have been intensively investigated from an eco-toxicological point of view, however almost nothing is known about toxicity of tetrachlorophenol (TeCP) to higher terrestrial plants. This article applied the willow tree acute toxicity test to study the toxicity of 2,3,5,6-TeCP to willows Salix viminalis (S. viminalis) at neutral and acidic conditions (roughly pH 7 and 4) with inhibition of transpiration as toxic endpoint. At neutral pH the EC50 was >10 mg L?1 while the EC50 at acidic conditions was 0.32 ± 0.17 mg L?1, clearly indicating that toxicity is exerted by the non-ionic chemical fraction. Standard tests running at neutral pH are therefore not capturing the full toxicity of weak acids and bases. 相似文献
5.
A.R. McCracken L. Walsh P.J. Moore M. Lynch P. Cowan M. Dawson S. Watson 《The Annals of applied biology》2011,159(2):229-243
Salix spp. genotypes were grown in random intimate mixtures comprising 5, 10, 15 and 20 components at 3 planting densities (10 000, 15 000 and 20 000 cuttings ha?1). Planted in 1994/95, plots were harvested every 3 years in 1998/99 (previously reported), 2001/02, 2004/05 and 2007/08. Each individual stool in both mono‐ and mixture plots was weighed. The total yield from mixture plots was consistently higher than the mean of the components in mono‐plots and with only limited exceptions higher than the yield of any of the individual components grown in mono‐plots. This occurred despite the loss of a number of disease‐susceptible genotypes. When a stool died the remaining plants were able to colonise the vacant space and compensate for the loss. There was no clear benefit in increasing the number of components from 10 to 15 or 20 although host diversity is considered to be an important contributor to the effectiveness of a mixture both in disease reduction and yield enhancement. It is argued that the use of Salix spp. mixtures is highly advantageous, even in the absence of any disease pressure, and that mixtures increase the sustainability of a willow plantation. 相似文献
6.
Artificial selection on ant female caste ratio uncovers a link between female‐biased sex ratios and infection by Wolbachia endosymbionts 下载免费PDF全文
L. Pontieri A. M. Schmidt R. Singh J. S. Pedersen T. A. Linksvayer 《Journal of evolutionary biology》2017,30(2):225-234
Social insect sex and caste ratios are well‐studied targets of evolutionary conflicts, but the heritable factors affecting these traits remain unknown. To elucidate these factors, we carried out a short‐term artificial selection study on female caste ratio in the ant Monomorium pharaonis. Across three generations of bidirectional selection, we observed no response for caste ratio, but sex ratios rapidly became more female‐biased in the two replicate high selection lines and less female‐biased in the two replicate low selection lines. We hypothesized that this rapid divergence for sex ratio was caused by changes in the frequency of infection by the heritable bacterial endosymbiont Wolbachia, because the initial breeding stock varied for Wolbachia infection, and Wolbachia is known to cause female‐biased sex ratios in other insects. Consistent with this hypothesis, the proportions of Wolbachia‐infected colonies in the selection lines changed rapidly, mirroring the sex ratio changes. Moreover, the estimated effect of Wolbachia on sex ratio (~13% female bias) was similar in colonies before and during artificial selection, indicating that this Wolbachia effect is likely independent of the effects of artificial selection on other heritable factors. Our study provides evidence for the first case of endosymbiont sex ratio manipulation in a social insect. 相似文献
7.
Lasse Asmyhr Tomas Willebrand Maria Hörnell-Willebrand 《The Journal of wildlife management》2012,76(5):940-943
Age and sex ratios in bag records are frequently used as indices of population composition for harvested populations. However, vulnerability to harvest may differ by age and sex thereby producing bias in population estimates. We assessed whether age and sex affected vulnerability to harvest for willow grouse (Lagopus lagopus) where adult density and brood size were known in the harvested populations. We collected bag records during 2 days of controlled hunting in 4 areas in 2 years (2007 and 2008) in Jämtland county, Sweden. We found that vulnerability to harvest was different for chicks and adults, but not between male and female adults. Hunters encountered broods at a higher rate than single birds compared to personnel conducting pre-harvest counts along line transects. Furthermore, the probability of shooting a grouse was higher in encounters of broods than individual grouse. Proportionally, we calculated about a 50% probability of a hunter shooting either a chick or an adult independent of encountering a single bird or broods of 2–10 grouse. Increasing adult density also increased the vulnerability to harvest for adults relative to chicks, independent of the chick to adult ratio in the pre-harvest population. The different vulnerability of adults and chicks to harvest observed in this study will dampen variation in age classes in bag records compared to the population, and we caution against extrapolation of age ratios in bag records to harvested populations. © 2012 The Wildlife Society. 相似文献
8.
Emily G. Butka Steven Freedberg 《Evolution; international journal of organic evolution》2019,73(1):99-110
Spatial structure has been shown to favor female‐biased sex allocation, but current theory fails to explain male biases seen in many taxa, particularly those with environmental sex determination (ESD). We present a theory and accompanying individual‐based simulation model that demonstrates how population structure leads to male‐biased population sex ratios under ESD. Our simulations agree with earlier work showing that the high productivity of female‐producing habitats creates a net influx of sex‐determining alleles into male‐producing habitats, causing larger sex ratio biases, and lower productivity in male‐producing environments (Harts et al. 2014). In contrast to previous findings, we show that male‐biasing habitats disproportionately impact the global sex ratio, resulting in stable male‐biased population sex ratios under ESD. The failure to detect a male bias in earlier work can be attributed to small subpopulation sizes leading to local mate competition, a condition unlikely to be met in most ESD systems. Simulations revealed that consistent male biases are expected over a wide range of population structures, environmental conditions, and genetic architectures of sex determination, with male excesses as large as 30 percent under some conditions. Given the ubiquity of genetic structure in natural populations, we predict that modest, enduring male biased allocation should be common in ESD species, a pattern consistent with reviews of ESD sex ratios. 相似文献
9.
Abstract. 1. Extremely female-biased sex ratios are known in the social spider mite species, Stigmaeopsis longus and S. miscanthi . Whether Hamilton's local mate competition (LMC) theory can explain such sex ratios was investigated.
2. Significant changes of the progeny sex ratios in the direction predicted by the LMC model were found in both species when the foundress number changed. Therefore, LMC can partly explain the skewed sex ratios in these species.
3. When the foundress number increased, the progeny sex ratio was still female biased and significantly different from the prediction of the LMC model for haplodiploidy. Relatedness between foundresses could not fully explain the female-biased sex ratios. Therefore, these results suggest that there are factors other than LMC skewing the sex ratios of these species toward female. 相似文献
2. Significant changes of the progeny sex ratios in the direction predicted by the LMC model were found in both species when the foundress number changed. Therefore, LMC can partly explain the skewed sex ratios in these species.
3. When the foundress number increased, the progeny sex ratio was still female biased and significantly different from the prediction of the LMC model for haplodiploidy. Relatedness between foundresses could not fully explain the female-biased sex ratios. Therefore, these results suggest that there are factors other than LMC skewing the sex ratios of these species toward female. 相似文献
10.
J. P. Sinclair Y. Kameyama A. Shibata G. Kudo 《Plant biology (Stuttgart, Germany)》2016,18(5):859-867
Gynodioecy, a state where female and hermaphrodite plants coexist in populations, has been widely proposed an intermediate stage in the evolutionary pathway from hermaphroditism to dioecy. In the gynodioecy–dioecy pathway, hermaphrodites may gain most of their fitness through male function once females invade populations. To test this prediction, comprehensive studies on sex ratio variation across populations and reproductive characteristics of hermaphrodite and female phenotypes are necessary. This study examined the variation in sex ratio, sex expression, flower and fruit production and sexual dimorphism of morphological traits in a gynodioecious shrub, Daphne jezoensis, over multiple populations and years. Population sex ratio (hermaphrodite:female) was close to 1:1 or slightly hermaphrodite‐biased. Sex type of individual plants was largely fixed, but 15% of plants changed their sex during a 6‐year census. Hermaphrodite plants produced larger flowers and invested 2.5 times more resources in flower production than female plants, but they exhibited remarkably low fruit set (proportion of flowers setting fruits). Female plants produced six times more fruits than hermaphrodite plants. Low fruiting ability of hermaphrodite plants was retained even when hand‐pollination was performed. Fruit production of female plants was restricted by pollen limitation under natural conditions, irrespective of high potential fecundity, and this minimised the difference in resources allocated to reproduction between the sexes. Negative effects of previous flower and fruit production on current reproduction were not apparent in both sexes. This study suggests that gynodioecy in this species is functionally close to a dioecious mating system: smaller flower production with larger fruiting ability in female plants, and larger flower production with little fruiting ability in hermaphrodite plants. 相似文献
11.
Chang S. Han 《Ecology and evolution》2020,10(17):9514-9521
In wing‐polymorphic insects, wing morphs differ not only in dispersal capability but also in life history traits because of trade‐offs between flight capability and reproduction. When the fitness benefits and costs of producing wings differ between males and females, sex‐specific trade‐offs can result in sex differences in the frequency of long‐winged individuals. Furthermore, the social environment during development affects sex differences in wing development, but few empirical tests of this phenomenon have been performed to date. Here, I used the wing‐dimorphic water strider Tenagogerris euphrosyne to test how rearing density and sex ratio affect the sex‐specific development of long‐winged dispersing morphs (i.e., sex‐specific macroptery). I also used a full‐sib, split‐family breeding design to assess genetic effects on density‐dependent, sex‐specific macroptery. I reared water strider nymphs at either high or low densities and measured their wing development. I found that long‐winged morphs developed more frequently in males than in females when individuals were reared in a high‐density environment. However, the frequency of long‐winged morphs was not biased according to sex when individuals were reared in a low‐density environment. In addition, full‐sib males and females showed similar macroptery incidence rates at low nymphal density, whereas the macroptery incidence rates differed between full‐sib males and females at high nymphal density. Thus complex gene‐by‐environment‐by‐sex interactions may explain the density‐specific levels of sex bias in macroptery, although this interpretation should be treated with some caution. Overall, my study provides empirical evidence for density‐specific, sex‐biased wing development. My findings suggest that social factors as well as abiotic factors can be important in determining sex‐biased wing development in insects. 相似文献
12.
13.
Phenotypic correlations and quantitative trait loci (QTL) for important growth traits and a surrogate of intrinsic water-use efficiency (leaf delta(13)C) were analysed in a willow pedigree of 92 full-sibling clones grown under two water regimes. The major objective was to examine the genetic basis of the phenotypic correlations. Cuttings of Salix were glasshouse-grown during one growing season. The relative growth rate (RGR) and underlying traits were assessed. QTL analysis was conducted based on an available linkage map for Salix. Leaf area productivity and leaf nitrogen productivity were more important in determining RGR than leaf area ratio and specific leaf area. However, phenotypic correlations among growth traits partly varied between the two environments. QTL were detected for most growth traits, among them many common QTL for different traits. The QTL pattern reflected the phenotypic correlation pattern. None of the QTL for the complex traits was consistent across the different environments. The results demonstrate a genetic basis for phenotypic correlations among growth traits in Salix, and provide evidence for the existence of 'master switches' regulating some of the traits. 相似文献
14.
Buschini, M.L.T. and Bergamaschi, A.C.B. 2009. Strongly female‐biased sex allocation in a trivoltine population of Trypoxylon (Trypargilum) opacum Brèthes (Hymenoptera, Crabronidae). —Acta Zoologica (Stockholm) 91 : 433–439. This study was carried in southern Brazil from December 2001 to December 2004. The aim of this paper is to provide additional information on the life‐history and sex allocation of this little known species. This wasp’s species has two alternative life histories: either they pupated immediately and emerged as adults later in the same season (direct development) or they entered diapause, overwintering and pupating the following spring (delayed development). The numerical sex ratio of overwintering and of direct developing wasps were strongly female biased in 2002, 2003 and 2004. 相似文献
15.
Slow evolution of sex‐biased genes in the reproductive tissue of the dioecious plant Salix viminalis 下载免费PDF全文
The relative rate of evolution for sex‐biased genes has often been used as a measure of the strength of sex‐specific selection. In contrast to studies in a wide variety of animals, far less is known about the molecular evolution of sex‐biased genes in plants, particularly in dioecious angiosperms. Here, we investigate the gene expression patterns and evolution of sex‐biased genes in the dioecious plant Salix viminalis. We observe lower rates of sequence evolution for male‐biased genes expressed in the reproductive tissue compared to unbiased and female‐biased genes. These results could be partially explained by the lower codon usage bias for male‐biased genes leading to elevated rates of synonymous substitutions compared to unbiased genes. However, the stronger haploid selection in the reproductive tissue of plants, together with pollen competition, would also lead to higher levels of purifying selection acting to remove deleterious variation. Future work should focus on the differential evolution of haploid‐ and diploid‐specific genes to understand the selective dynamics acting on these loci. 相似文献
16.
Korpelainen H 《Molecular ecology》2002,11(10):2151-2156
The perennial dioecious weed, Rumex acetosa, possesses sex chromosomes (XX in females, XY1Y2 in males). Yet, the operational sex ratios are female-biased. Until now, sex ratio studies in R. acetosa, as in most plants, have relied on data obtained at sexual maturity. To resolve gender among the seeds and nonflowering plants of R. acetosa, a genetic method involving a DNA marker located on both Y chromosomes has now been developed and applied. The results suggest that the sex ratios are about 1 : 1 in the whole seed pool, but that a significant female bias develops by the time of flowering. Since the age of sexually mature plants is two years or more, the time frame during which the female bias present at sexual maturity develops can be several years. It appears that male seeds germinate at a lower rate and males suffer from a greater mortality during the years-long lifespan of R. acetosa. However, there are no considerable sex-related differences in vegetative vigour. 相似文献
17.
The evolution of the primary sex ratio, the proportion of male births in an individual's offspring production strategy, is a frequency‐dependent process that selects against the more common sex. Because reproduction is shaped by the entire life cycle, sex ratio theory would benefit from explicitly two‐sex models that include some form of life cycle structure. We present a demographic approach to sex ratio evolution that combines adaptive dynamics with nonlinear matrix population models. We also determine the evolutionary and convergence stability of singular strategies using matrix calculus. These methods allow the incorporation of any population structure, including multiple sexes and stages, into evolutionary projections. Using this framework, we compare how four different interpretations of sex‐biased offspring costs affect sex ratio evolution. We find that demographic differences affect evolutionary outcomes and that, contrary to prior belief, sex‐biased mortality after parental investment can bias the primary sex ratio (but not the corresponding reproductive value ratio). These results differ qualitatively from the widely held conclusions of previous models that neglect demographic structure. 相似文献
18.
We report the development of seven microsatellite markers from a library enriched with [CA]15, [GA]15, [AAG]8 and [ATG]8. The library was constructed from Icelandic Salix lanata leaf DNA, and seven highly polymorphic single locus products were tested on a range of Scottish and Icelandic S. lanata samples. These seven loci also amplify polymorphic products when tested for cross amplification in a range of Scottish and Icelandic samples of two other subarctic willows (Salix lapponum and Salix herbacea). The microsatellites developed in this study will provide the framework for comparisons with other ecosystem components, and will ultimately inform conservation strategies. 相似文献
19.
Beyhan Y. Amichev Werner A. Kurz Carolyn Smyth Ken C. J. Van Rees 《Global Change Biology Bioenergy》2012,4(1):70-87
Afforestation with short‐rotation coppice (SRC) willow plantations for the purpose of producing bioenergy feedstock was contemplated as one potential climate change mitigation option. The objectives of this study were to assess the magnitude of this mitigation potential by addressing: (i) the land area potentially available for SRC systems in the province of Saskatchewan, Canada; (ii) the potential biomass yields of SRC plantations; and (iii) the carbon implications from such a large‐scale afforestation program. Digital soils and land‐use data were used to identify, map, and group into clusters of similar polygons 2.12 million hectares (Mha) of agriculturally marginal land that was potentially suitable for willow in the Boreal Plains and Prairies ecozones in Saskatchewan. The Physiological Principles in Predicting Growth (3PG) model was calibrated with data from SRC experiments in Saskatchewan, to quantify potential willow biomass yields, and the Carbon Budget Model of the Canadian Forest Sector (CBM‐CFS3), was used to simulate stand and landscape‐level C fluxes and stocks. Short‐rotation willow plantations managed in 3 year rotations for seven consecutive harvests (21 years) after coppicing at Year 1 produced about 12 Mg ha?1 yr?1 biomass. The more significant contribution to the C cycle was the cumulative harvest. After 44 years, the potential average cumulative harvested biomass C in the Prairies was 244 Mg C ha?1 (5.5 Mg C ha?1 yr?1) about 20% higher than the average for the Boreal Plains, 203 Mg C ha?1 (4.6 Mg C ha?1 yr?1). This analysis did not consider afforestation costs, rate of establishment of willow plantations, and other constraints, such as drought and disease effects on biomass yield. The results must therefore be interpreted as a biophysical mitigation potential with the technical and economic potential being both lower than our estimates. Nevertheless, short‐rotation bioenergy plantations offer one potential mitigation option to reduce the rate of CO2 accumulation in the earth's atmosphere and further research is needed to operationalise such a mitigation effort. 相似文献
20.
Yukimaru Sugiyama 《Evolutionary anthropology》2017,26(4):172-180
Some anthropologists and primatologists have argued that, judging by extant chimpanzees and humans, which are female‐biased dispersers, the common ancestors of humans and chimpanzees were also female‐biased dispersers. It has been thought that sex‐biased dispersal patterns have been genetically transmitted for millions of years. However, this character has changed many times with changes in environment and life‐form during human evolution and historical times. I examined life‐form and social organization of nonhuman primates, among them gatherers (foragers), hunter‐gatherers, agriculturalists, industrialists, and modern and extant humans. I conclude that dispersal patterns changed in response to environmental conditions during primate and human evolution. 相似文献