首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this article, we describe ednaoccupancy , an r package for fitting Bayesian, multiscale occupancy models. These models are appropriate for occupancy surveys that include three nested levels of sampling: primary sample units within a study area, secondary sample units collected from each primary unit and replicates of each secondary sample unit. This design is commonly used in occupancy surveys of environmental DNA (eDNA). ednaoccupancy allows users to specify and fit multiscale occupancy models with or without covariates, to estimate posterior summaries of occurrence and detection probabilities, and to compare different models using Bayesian model‐selection criteria. We illustrate these features by analysing two published data sets: eDNA surveys of a fungal pathogen of amphibians and eDNA surveys of an endangered fish species.  相似文献   

2.
Controlling for imperfect detection is important for developing species distribution models (SDMs). Occupancy‐detection models based on the time needed to detect a species can be used to address this problem, but this is hindered when times to detection are not known precisely. Here, we extend the time‐to‐detection model to deal with detections recorded in time intervals and illustrate the method using a case study on stream fish distribution modeling. We collected electrofishing samples of six fish species across a Mediterranean watershed in Northeast Portugal. Based on a Bayesian hierarchical framework, we modeled the probability of water presence in stream channels, and the probability of species occupancy conditional on water presence, in relation to environmental and spatial variables. We also modeled time‐to‐first detection conditional on occupancy in relation to local factors, using modified interval‐censored exponential survival models. Posterior distributions of occupancy probabilities derived from the models were used to produce species distribution maps. Simulations indicated that the modified time‐to‐detection model provided unbiased parameter estimates despite interval‐censoring. There was a tendency for spatial variation in detection rates to be primarily influenced by depth and, to a lesser extent, stream width. Species occupancies were consistently affected by stream order, elevation, and annual precipitation. Bayesian P‐values and AUCs indicated that all models had adequate fit and high discrimination ability, respectively. Mapping of predicted occupancy probabilities showed widespread distribution by most species, but uncertainty was generally higher in tributaries and upper reaches. The interval‐censored time‐to‐detection model provides a practical solution to model occupancy‐detection when detections are recorded in time intervals. This modeling framework is useful for developing SDMs while controlling for variation in detection rates, as it uses simple data that can be readily collected by field ecologists.  相似文献   

3.
Occupancy modeling is important for exploring species distribution patterns and for conservation monitoring. Within this framework, explicit attention is given to species detection probabilities estimated from replicate surveys to sample units. A central assumption is that replicate surveys are independent Bernoulli trials, but this assumption becomes untenable when ecologists serially deploy remote cameras and acoustic recording devices over days and weeks to survey rare and elusive animals. Proposed solutions involve modifying the detection‐level component of the model (e.g., first‐order Markov covariate). Evaluating whether a model sufficiently accounts for correlation is imperative, but clear guidance for practitioners is lacking. Currently, an omnibus goodness‐of‐fit test using a chi‐square discrepancy measure on unique detection histories is available for occupancy models (MacKenzie and Bailey, Journal of Agricultural, Biological, and Environmental Statistics, 9, 2004, 300; hereafter, MacKenzie–Bailey test). We propose a join count summary measure adapted from spatial statistics to directly assess correlation after fitting a model. We motivate our work with a dataset of multinight bat call recordings from a pilot study for the North American Bat Monitoring Program. We found in simulations that our join count test was more reliable than the MacKenzie–Bailey test for detecting inadequacy of a model that assumed independence, particularly when serial correlation was low to moderate. A model that included a Markov‐structured detection‐level covariate produced unbiased occupancy estimates except in the presence of strong serial correlation and a revisit design consisting only of temporal replicates. When applied to two common bat species, our approach illustrates that sophisticated models do not guarantee adequate fit to real data, underscoring the importance of model assessment. Our join count test provides a widely applicable goodness‐of‐fit test and specifically evaluates occupancy model lack of fit related to correlation among detections within a sample unit. Our diagnostic tool is available for practitioners that serially deploy survey equipment as a way to achieve cost savings.  相似文献   

4.
Correlated binary response data with covariates are ubiquitous in longitudinal or spatial studies. Among the existing statistical models, the most well-known one for this type of data is the multivariate probit model, which uses a Gaussian link to model dependence at the latent level. However, a symmetric link may not be appropriate if the data are highly imbalanced. Here, we propose a multivariate skew-elliptical link model for correlated binary responses, which includes the multivariate probit model as a special case. Furthermore, we perform Bayesian inference for this new model and prove that the regression coefficients have a closed-form unified skew-elliptical posterior with an elliptical prior. The new methodology is illustrated by an application to COVID-19 data from three different counties of the state of California, USA. By jointly modeling extreme spikes in weekly new cases, our results show that the spatial dependence cannot be neglected. Furthermore, the results also show that the skewed latent structure of our proposed model improves the flexibility of the multivariate probit model and provides a better fit to our highly imbalanced dataset.  相似文献   

5.
6.
Regional monitoring strategies frequently employ a nested sampling design where a finite set of study areas from throughout a region are selected and intensive sampling occurs within a subset of sites within the individual study areas. This sampling protocol naturally lends itself to a hierarchical analysis to account for dependence among subsamples. Implementing such an analysis using a classic likelihood framework is computationally challenging when accounting for detection errors in species occurrence models. Bayesian methods offer an alternative approach for fitting models that readily allows for spatial structure to be incorporated. We demonstrate a general approach for estimating occupancy when data come from a nested sampling design. We analyzed data from a regional monitoring program of wood frogs (Lithobates sylvaticus) and spotted salamanders (Ambystoma maculatum) in vernal pools using static and dynamic occupancy models. We analyzed observations from 2004 to 2013 that were collected within 14 protected areas located throughout the northeast United States. We use the data set to estimate trends in occupancy at both the regional and individual protected area levels. We show that occupancy at the regional level was relatively stable for both species. However, substantial variation occurred among study areas, with some populations declining and some increasing for both species. In addition, When the hierarchical study design is not accounted for, one would conclude stronger support for latitudinal gradient in trends than when using our approach that accounts for the nested design. In contrast to the model that does not account for nesting, the nested model did not include an effect of latitude in the 95% credible interval. These results shed light on the range‐level population status of these pond‐breeding amphibians, and our approach provides a framework that can be used to examine drivers of local and regional occurrence dynamics.  相似文献   

7.
Aim Spatial autocorrelation is a frequent phenomenon in ecological data and can affect estimates of model coefficients and inference from statistical models. Here, we test the performance of three different simultaneous autoregressive (SAR) model types (spatial error = SARerr, lagged = SARlag and mixed = SARmix) and common ordinary least squares (OLS) regression when accounting for spatial autocorrelation in species distribution data using four artificial data sets with known (but different) spatial autocorrelation structures. Methods We evaluate the performance of SAR models by examining spatial patterns in model residuals (with correlograms and residual maps), by comparing model parameter estimates with true values, and by assessing their type I error control with calibration curves. We calculate a total of 3240 SAR models and illustrate how the best models [in terms of minimum residual spatial autocorrelation (minRSA), maximum model fit (R2), or Akaike information criterion (AIC)] can be identified using model selection procedures. Results Our study shows that the performance of SAR models depends on model specification (i.e. model type, neighbourhood distance, coding styles of spatial weights matrices) and on the kind of spatial autocorrelation present. SAR model parameter estimates might not be more precise than those from OLS regressions in all cases. SARerr models were the most reliable SAR models and performed well in all cases (independent of the kind of spatial autocorrelation induced and whether models were selected by minRSA, R2 or AIC), whereas OLS, SARlag and SARmix models showed weak type I error control and/or unpredictable biases in parameter estimates. Main conclusions SARerr models are recommended for use when dealing with spatially autocorrelated species distribution data. SARlag and SARmix might not always give better estimates of model coefficients than OLS, and can thus generate bias. Other spatial modelling techniques should be assessed comprehensively to test their predictive performance and accuracy for biogeographical and macroecological research.  相似文献   

8.
The BGLR-R package implements various types of single-trait shrinkage/variable selection Bayesian regressions. The package was first released in 2014, since then it has become a software very often used in genomic studies. We recently develop functionality for multitrait models. The implementation allows users to include an arbitrary number of random-effects terms. For each set of predictors, users can choose diffuse, Gaussian, and Gaussian–spike–slab multivariate priors. Unlike other software packages for multitrait genomic regressions, BGLR offers many specifications for (co)variance parameters (unstructured, diagonal, factor analytic, and recursive). Samples from the posterior distribution of the models implemented in the multitrait function are generated using a Gibbs sampler, which is implemented by combining code written in the R and C programming languages. In this article, we provide an overview of the models and methods implemented BGLR’s multitrait function, present examples that illustrate the use of the package, and benchmark the performance of the software.  相似文献   

9.
Occupancy models are often used to analyze long‐term monitoring data to better understand how and why species redistribute across dynamic landscapes while accounting for incomplete capture. However, this approach requires replicate detection/non‐detection data at a sample unit and many long‐term monitoring programs lack temporal replicate surveys. In such cases, it has been suggested that surveying subunits within a larger sample unit may be an efficient substitution (i.e., space‐for‐time substitution). Still, the efficacy of fitting occupancy models using a space‐for‐time substitution has not been fully explored and is likely context dependent. Herein, we fit occupancy models to Delta Smelt (Hypomesus transpacificus) and Longfin Smelt (Spirinchus thaleichthys) catch data collected by two different monitoring programs that use the same sampling gear in the San Francisco Bay‐Delta, USA. We demonstrate how our inferences concerning the distribution of these species changes when using a space‐for‐time substitution. Specifically, we found the probability that a sample unit was occupied was much greater when using a space‐for‐time substitution, presumably due to the change in the spatial scale of our inferences. Furthermore, we observed that as the spatial scale of our inferences increased, our ability to detect environmental effects on system dynamics was obscured, which we suspect is related to the tradeoffs associated with spatial grain and extent. Overall, our findings highlight the importance of considering how the unique characteristics of monitoring programs influences inferences, which has broad implications for how to appropriately leverage existing long‐term monitoring data to understand the distribution of species.  相似文献   

10.
The survival of large carnivores is increasingly precarious due to extensive human development that causes the habitat loss and fragmentation. Habitat selection is influenced by anthropogenic as well as environmental factors, and understanding these relationships is important for conservation management. We assessed the environmental and anthropogenic variables that influence site use of clouded leopard Neofelis nebulosa in Bhutan, estimated their population density, and used the results to predict the species’ site use across Bhutan. We used a large camera‐trap dataset from the national tiger survey to estimate for clouded leopards, for the first time in Bhutan, (1) population density using spatially explicit capture–recapture models and (2) site‐use probability using occupancy models accounting for spatial autocorrelation. Population density was estimated at (0.10 SD) and (0.12 SE) per 100 km2. Clouded leopard site use was positively associated with forest cover and distance to river while negatively associated with elevation. Mean site‐use probability (from the Bayesian spatial model) was (0.076 SD). When spatial autocorrelation was ignored, the probability of site use was overestimated, (0.066 SD). Predictive mapping allowed us to identify important conservation areas and priority habitats to sustain the future of these elusive, ambassador felids and associated guilds. Multiple sites in the south, many of them outside of protected areas, were identified as habitats suitable for this species, adding evidence to conservation planning for clouded leopards in continental South Asia.  相似文献   

11.
Habitat occupancy by territorial animals is expected to depend on the distribution of critical resources. Knowledge on female territoriality is scarce, but it has been suggested as a mechanism to defend limited resources for reproduction. A previous study showed female intrasexual aggression to be associated with territorial behaviour in the strawberry poison frog Oophaga pumilio, a diurnal aposematic species with complex maternal care. Here, we investigate the link between spatial distribution of resources important for reproduction and female distribution and behaviour. We observed focal females in their natural habitat in Costa Rica, and recorded the distribution of ecological predictor variables in a grid system. We used the data for calculating home range and territory sizes and for connecting female habitat use to the distribution of potential resources by computing spatial habitat occupancy models. Even though we found females to occupy large home ranges, they were highly aggressive towards other females only inside a small part of their home range, here termed core area. Among the ecological factors, the sustained abundance of ants (main food item of the frogs), the presence of leaf litter and suitable rearing sites for tadpoles predicted female site occupancy patterns. The number of ants per grid was twice as high in the core areas compared to the rest of the female home ranges. Our results suggest that female spacing behaviour is principally driven by the spatial distribution of its main food resource, but that hiding places (leaf litter) and tadpole‐rearing sites also play a role. The defence of areas with sustainably high abundance of ants could be relevant, as egg production and maternal care are energetically highly demanding in this prolonged‐breeding species. Regarding the link between resource defence and maternal care, the reproductive strategy of female strawberry poison frogs resembles that of the females of small mammals comprising same‐sex competition for food and high investment in producing and rearing young.  相似文献   

12.

Aim

Assessing the threat status of declining but yet widespread species poses a challenge to applied ecologists. Previous studies using a common metric to describe the spatial aggregation of occurrences across multiple scales, the fractal dimension Dij, have suggested that species’ distributional trends may be deduced from readily understandable spatial patterns: Expanding species are expected to show more aggregated spatial distributions (higher value of Dij) than declining species (lower value of Dij). Here, we revisited these predictions using a large‐scale empirical dataset on Finnish butterflies.

Location

Finland.

Methods

For each butterfly species (n = 97) and across three spatial scales (grid squares of 10 km, 50 km and 100 km), we calculated the area of occupancy (AOOi) as the sum of occupied grid squares. We employed values of AOOi to derive the Dij for each butterfly species. We then used these metrics to compare the changes in spatial patterns of distribution (?AOOi and ?Dij) between two time periods, 2000–2002 and 2009–2011.

Results

Majority of the studied butterfly species showed declining areas of occupancy (at the scale of 10 km, ?AOO10) and fractal dimensions (across the scales from 10 km to 100 km, ?D10–100) between the two study periods. In contrast to predictions, AOO10 and D10–100 showed negative impacts on the ?AOO10, an observation that may be explained by the high proportion of declining species in our data. Butterfly species with the greatest fractal dimensions at regional scales (D10–100) in the years 2000–2002 showed both positive long‐term distributional trends and most notable northern recent range limit shifts.

Main conclusions

Our results were in most cases congruent with the prediction of higher fractal dimension values in expanding compared to declining species. As a novel observation, many butterflies expanded northwards in spite of their occurrences getting simultaneously more scattered, particularly in southern Finland.
  相似文献   

13.
Long-distance migration allows many bird species to overcome the severe climatic changes that occur in seasonal environments. Migration is highly demanding, and given its cyclical nature, we currently know that it has substantial effects on the population parameters of migratory birds during both breeding and wintering seasons. However, the potential effects of the presence of migratory birds in their wintering grounds on populations of resident birds have remain largely unexplored. Here, we propose the hypothesis that migratory birds negatively affect the habitat occupancy and population abundance of resident birds because of the arrival of numerous individuals during the most limiting months of the year. Here, we studied different species of migratory and resident birds that coexist during winter in an urban ecological reserve located within Mexico City. We used single-species multiseason occupancy models, two-species occupancy models, and distance sampling techniques to evaluate changes in occupancy and population density of resident bird species during three consecutive winters. We found an aggregation pattern between two resident species (Psaltriparus minimus and Thryomanes bewickii) with three migratory warblers (Cardellina pusilla, Setophaga coronata and Setophaga townsendi). Thus, our results provide evidence of the formation of mixed-species flocks in our study area. We also conclude that resident birds experience different demographic and behavioral processes during winter that not necessarily result from interspecific interactions with migratory birds.  相似文献   

14.
Multispecies occupancy models can estimate species richness from spatially replicated multispecies detection/non‐detection survey data, while accounting for imperfect detection. A model extension using data augmentation allows inferring the total number of species in the community, including those completely missed by sampling (i.e., not detected in any survey, at any site). Here we investigate the robustness of these estimates. We review key model assumptions and test performance via simulations, under a range of scenarios of species characteristics and sampling regimes, exploring sensitivity to the Bayesian priors used for model fitting. We run tests when assumptions are perfectly met and when violated. We apply the model to a real dataset and contrast estimates obtained with and without predictors, and for different subsets of data. We find that, even with model assumptions perfectly met, estimation of the total number of species can be poor in scenarios where many species are missed (>15%–20%) and that commonly used priors can accentuate overestimation. Our tests show that estimation can often be robust to violations of assumptions about the statistical distributions describing variation of occupancy and detectability among species, but lower‐tail deviations can result in large biases. We obtain substantially different estimates from alternative analyses of our real dataset, with results suggesting that missing relevant predictors in the model can result in richness underestimation. In summary, estimates of total richness are sensitive to model structure and often uncertain. Appropriate selection of priors, testing of assumptions, and model refinement are all important to enhance estimator performance. Yet, these do not guarantee accurate estimation, particularly when many species remain undetected. While statistical models can provide useful insights, expectations about accuracy in this challenging prediction task should be realistic. Where knowledge about species numbers is considered truly critical for management or policy, survey effort should ideally be such that the chances of missing species altogether are low.  相似文献   

15.
  1. Neighborhood competition models are powerful tools to measure the effect of interspecific competition. Statistical methods to ease the application of these models are currently lacking.
  2. We present the forestecology package providing methods to (a) specify neighborhood competition models, (b) evaluate the effect of competitor species identity using permutation tests, and (cs) measure model performance using spatial cross‐validation. Following Allen and Kim (PLoS One, 15, 2020, e0229930), we implement a Bayesian linear regression neighborhood competition model.
  3. We demonstrate the package''s functionality using data from the Smithsonian Conservation Biology Institute''s large forest dynamics plot, part of the ForestGEO global network of research sites. Given ForestGEO’s data collection protocols and data formatting standards, the package was designed with cross‐site compatibility in mind. We highlight the importance of spatial cross‐validation when interpreting model results.
  4. The package features (a) tidyverse‐like structure whereby verb‐named functions can be modularly “piped” in sequence, (b) functions with standardized inputs/outputs of simple features sf package class, and (c) an S3 object‐oriented implementation of the Bayesian linear regression model. These three facts allow for clear articulation of all the steps in the sequence of analysis and easy wrangling and visualization of the geospatial data. Furthermore, while the package only has Bayesian linear regression implemented, the package was designed with extensibility to other methods in mind.
  相似文献   

16.
Patch occupancy of two hemipterans sharing a common host plant   总被引:5,自引:0,他引:5  
Aim Two hemipteran species were chosen as a study system for the comparative analysis of patch occupancy and spatial population structure of insects sharing a common host plant. This study tested whether (1) the incidence in the host plant patches differed between the two species, and (2) the two species exhibited a different spatial population structure, i.e. were they affected differentially by isolation and area of the host plant patches. Location The porphyry landscape north of Halle (Saale) in Germany comprising 506 patches of the host plant Brachypodium pinnatum. Methods The host plant patches were surveyed for the two hemipterans. To assess the influence of patch quality on species occurrence the patches were characterized by mean cover abundance of B. pinnatum, type of subsoil, slope, exposure, and shading. The spatial configuration of the patches was considered by patch area and isolation. The influence of the habitat factors and the spatial configuration on the occupancy of the two species was analysed by logistic regression. Results Adarrus multinotatus was found in 441 patches, while Neophilaenus albipennis was found in only 90 patches. While A. multinotatus showed virtually no relationship to the habitat factors, the occupancy of N. albipennis was influenced by subsoil type, cover abundance, and shading. The effects of area and isolation on occupancy of the patches also differed between the two species. The occupancy of N. albipennis was determined largely by area and isolation, whereas in A. multinotatus no considerable effect of spatial configuration was found. Main conclusions The study revealed a marked difference between the two hemipteran species in respect of spatial population structure. Adarrus multinotatus built up a ‘patchy population’, whereas N. albipennis showed a ‘metapopulation’ structure within the same set of patches in the same landscape. Spatial population structure was found to be not only a function of spatial configuration of habitat patches, but population structure differed between the habitat generalist A. multinotatus and the habitat specialist N. albipennis.  相似文献   

17.
Detection-nondetection data are often used to investigate species range dynamics using Bayesian occupancy models which rely on the use of Markov chain Monte Carlo (MCMC) methods to sample from the posterior distribution of the parameters of the model. In this article we develop two Variational Bayes (VB) approximations to the posterior distribution of the parameters of a single-season site occupancy model which uses logistic link functions to model the probability of species occurrence at sites and of species detection probabilities. This task is accomplished through the development of iterative algorithms that do not use MCMC methods. Simulations and small practical examples demonstrate the effectiveness of the proposed technique. We specifically show that (under certain circumstances) the variational distributions can provide accurate approximations to the true posterior distributions of the parameters of the model when the number of visits per site (K) are as low as three and that the accuracy of the approximations improves as K increases. We also show that the methodology can be used to obtain the posterior distribution of the predictive distribution of the proportion of sites occupied (PAO).  相似文献   

18.
Simulated data were used to investigate the influence of the choice of priors on estimation of genetic parameters in multivariate threshold models using Gibbs sampling. We simulated additive values, residuals and fixed effects for one continuous trait and liabilities of four binary traits, and QTL effects for one of the liabilities. Within each of four replicates six different datasets were generated which resembled different practical scenarios in horses with respect to number and distribution of animals with trait records and availability of QTL information. (Co)Variance components were estimated using a Bayesian threshold animal model via Gibbs sampling. The Gibbs sampler was implemented with both a flat and a proper prior for the genetic covariance matrix. Convergence problems were encountered in > 50% of flat prior analyses, with indications of potential or near posterior impropriety between about round 10 000 and 100 000. Terminations due to non-positive definite genetic covariance matrix occurred in flat prior analyses of the smallest datasets. Use of a proper prior resulted in improved mixing and convergence of the Gibbs chain. In order to avoid (near) impropriety of posteriors and extremely poorly mixing Gibbs chains, a proper prior should be used for the genetic covariance matrix when implementing the Gibbs sampler.  相似文献   

19.
Improved efficiency of Markov chain Monte Carlo facilitates all aspects of statistical analysis with Bayesian hierarchical models. Identifying strategies to improve MCMC performance is becoming increasingly crucial as the complexity of models, and the run times to fit them, increases. We evaluate different strategies for improving MCMC efficiency using the open‐source software NIMBLE (R package nimble) using common ecological models of species occurrence and abundance as examples. We ask how MCMC efficiency depends on model formulation, model size, data, and sampling strategy. For multiseason and/or multispecies occupancy models and for N‐mixture models, we compare the efficiency of sampling discrete latent states vs. integrating over them, including more vs. fewer hierarchical model components, and univariate vs. block‐sampling methods. We include the common MCMC tool JAGS in comparisons. For simple models, there is little practical difference between computational approaches. As model complexity increases, there are strong interactions between model formulation and sampling strategy on MCMC efficiency. There is no one‐size‐fits‐all best strategy, but rather problem‐specific best strategies related to model structure and type. In all but the simplest cases, NIMBLE's default or customized performance achieves much higher efficiency than JAGS. In the two most complex examples, NIMBLE was 10–12 times more efficient than JAGS. We find NIMBLE is a valuable tool for many ecologists utilizing Bayesian inference, particularly for complex models where JAGS is prohibitively slow. Our results highlight the need for more guidelines and customizable approaches to fit hierarchical models to ensure practitioners can make the most of occupancy and other hierarchical models. By implementing model‐generic MCMC procedures in open‐source software, including the NIMBLE extensions for integrating over latent states (implemented in the R package nimbleEcology), we have made progress toward this aim.  相似文献   

20.
Aim The study of the spatial dynamics of invasive species is a key issue in invasion ecology. While mathematical models are useful for predicting the extent of population expansions, they are not suitable for measuring and characterizing spatial patterns of invasion unless the probability of detection is homogeneous across the distribution range. Here, we apply recently developed statistical approaches incorporating detection uncertainty to characterize the spatial dynamics of an invasive bird species, the Eurasian collared dove (Streptopelia decaocto). Location France. Methods Data on presence/absence of doves were recorded from 1996 to 2004 over 1045 grid cells (28 × 20 km) covering the entire country. Each grid cell included five point counts spaced along a route, which was visited twice a year, allowing for an estimation of detection probability. Each route was assigned to one of six geographical regions. We used robust design occupancy analysis to assess spatial and temporal variation in parameters related to the spatial dynamics of the species. These parameters included occupancy rate, colonization and local extinction probabilities. Our inference approach was based on the selection of the most parsimonious model among competitive models parametrized with conditional probabilities. Results The probability of detecting the presence of doves on a given route was high. However, we found evidence to incorporate detection uncertainty in inference processes about spatial dynamics, since detection probability was neither perfect (i.e. it was < 1), nor constant over space and time. Results showed a clear positive trend in occupancy rate over the study period, increasing from 55% in 1996 to 76% in 2004. In addition, occupancy rate differed among regions (range: 37–79%) and further analysis showed that colonization probability by region was positively related to occupancy rate. Finally, local extinction probability was lower than colonization probability and showed a tendency to decrease over the study period. Main conclusions Our results emphasize the importance of estimating detection probabilities in order to draw proper inferences about the spatial and temporal dynamics of the invasion pattern of the collared dove. In contrast to the perceived spatial dynamics from national atlas surveys, we provide evidence that the range of this species is currently increasing in France. Other results, such as regional specificity in colonization probabilities and time variation in local extinction are consistent with expectations from invasion and metapopulation theory.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号