首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
Changes in site occupancy across habitat patches have often been attributed to landscape features in fragmented systems, particularly when considering metapopulations. However, failure to include habitat quality of individual patches can mask the relative importance of local scale features in determining distributional changes. We employed dynamic occupancy modeling to compare the strength of local habitat variables and metrics of landscape patterns as drivers of metapopulation dynamics for a vulnerable, high‐elevation species in a naturally fragmented landscape. Repeat surveys of Bicknell's thrush Catharus bicknelli presence/non‐detection were conducted at 88 sites across Vermont, USA in 2006 and 2007. We used an organism‐based approach, such that at each site we measured important local‐scale habitat characteristics and quantified landscape‐scale features using a predictive habitat model for this species. We performed a principal component analysis on both the local and landscape features to reduce dimensionality. We estimated site occupancy, colonization, and extinction probabilities while accounting for imperfect detection. Univariate, additive, and interaction models of local habitat and landscape context were ranked using AICc scores. Both local and landscape scales were important in determining changes in occupancy patterns. An interaction between scales was detected for occupancy dynamics indicating that the relationship of the parameters to local‐scale habitat conditions can change depending on the landscape context and vice versa. An increase in both landscape‐ and local‐scale habitat quality increased occupancy and colonization probability while decreasing extinction risk. Colonization and extinction were both more strongly influenced by local habitat quality relative to landscape patterns. We also identified clear, qualitative thresholds for landscape‐scale features. Conservation of large habitat patches in high‐cover landscapes will help ensure persistence of Bicknell's thrushes, but only if local scale habitat quality is maintained. Our results highlight the importance of incorporating information beyond landscape characteristics when investigating patch occupancy patterns in metapopulations.  相似文献   

2.
Nest predation is the leading cause of reproductive failure for grassland birds of conservation concern. Understanding variation in nest predation rates is complicated by the diverse assemblage of species known to prey on nests. As part of a long‐term study of grassland bird ecology, we monitored populations of predators known to prey on grassland bird nests. We used information theoretic approach to examine the predator community's association with habitat at multiple scales, including local vegetation structure of grassland patches, spatial attributes of grassland patches (size and shape), and landscape composition surrounding grassland patches (land cover within 400 and 1600 m). Our results confirmed that nest predators respond to habitat at multiple scales and different predator species respond to habitat in different ways. The most informative habitat models we selected included variability in local vegetation (CV in the density of forbs), local patch (area and edge‐to‐interior ratio), and landscape within a 1600 m buffer around grasslands (percent of land covered by human structures and development). As a separate question, we asked if models that incorporated information from multiple scales simultaneously might improve the ability to explain variation in the predator community. Multi‐ scale models were not consistently superior to models derived from variables focused at a single spatial scale. Our results suggest that minimizing human development on and surrounding conservation land and the management of the vegetation structure on grassland fragments both may benefit grassland birds by decreasing the risk of nest predation.  相似文献   

3.
In agricultural landscapes, the longleaf pine initiative (LLPI) and the Bobwhite Quail Initiative (BQI) aim to restore longleaf pine forests and early successional habitats, respectively. The early stage of longleaf pine stands and grass and forb vegetation produced by a combination of both restoration programs (LLPI‐BQI) may form habitat conditions favorable to early successional bird species and other birds, increasing avian diversity. We investigated how the LLPI and BQI programs affected taxonomic and functional diversity of birds and abundance of early successional birds (grassland and scrub/shrub species), and what environmental characteristics were associated with the diversity and abundance of birds. Our study was performed at 41 fields in Georgia, United States, during 2001–2002 by considering environmental characteristics at two spatial scales: local‐scale vegetation features and restoration program type (LLPI or LLPI‐BQI) and landscape‐scale vegetation features and landscape heterogeneity. Functional evenness, species richness, and abundance of grassland and scrub/shrub species did not show a clear association with local‐ or landscape‐scale variables. Shannon‐Wiener diversity was slightly influenced by restoration program type (local‐scale variable) with higher value at LLPI‐BQI stands than at LLPI stands despite no significant differences in local vegetation features between those stands. Functional divergence was strongly positively associated with landscape‐scale variables. That is, niche differentiation increased with increasing shrub coverage within a landscape, reducing competition between abundant bird species and others. Our results suggest that although a combination of BQI and LLPI program may have a positive effect on avian taxonomic diversity, it is important to consider shrub vegetation cover within a landscape to improve functional diversity.  相似文献   

4.
Understanding what factors influence species occupancy in human‐modified landscapes is a central theme in ecology. We examined scale‐dependent habitat relationships and site occupancy in reptiles across three topographically different study areas in south‐eastern Australia. We collected presence–absence data on reptiles from 443 sites associated with three long‐term biodiversity monitoring programs, on four to seven occasions, between 2001 and 2013. We characterised sites by the following four variable domains: 1) field design, 2) topography, 3) local‐scale vegetation attributes and 4) landscape‐scale vegetation cover. We constructed occupancy models for 14 species and used an information‐theoretic approach to compare multiple alternative hypotheses to explain occupancy within and between study areas. We modelled detection probability and used the model with the lowest AIC in subsequent analyses. We then modelled occupancy probability against all subsets of the variable groups (field design, topography, local‐ and landscape‐scale vegetation), as well as a model that held occupancy constant (null model). We found that local‐scale vegetation attributes were important for explaining site occupancy in 12/19 possible models, although, in several cases model fit was improved by the addition of topographic variables or native vegetation cover in the surrounding landscape. Occupancy models for widespread species were broadly congruent across study areas. We demonstrate that topographic variables are important for explaining reptile occupancy in hilly landscapes, and local‐ and landscape‐scale variables are important for explaining reptile occupancy in flat or gently undulating landscapes. Management actions that improve habitat complexity at a site‐level, and encompass entire topographic gradients, will have greater benefit to woodland reptiles than simply increasing vegetation cover in the surrounding landscape.  相似文献   

5.
It is widely accepted that species diversity is contingent upon the spatial scale used to analyze patterns and processes. Recent studies using coarse sampling grains over large extents have contributed much to our understanding of factors driving global diversity patterns. This advance is largely unmatched on the level of local to landscape scales despite being critical for our understanding of functional relationships across spatial scales. In our study on West African bat assemblages we employed a spatially explicit and nested design covering local to regional scales. Specifically, we analyzed diversity patterns in two contrasting, largely undisturbed landscapes, comprising a rainforest area and a forest‐savanna mosaic in Ivory Coast, West Africa. We employed additive partitioning, rarefaction, and species richness estimation to show that bat diversity increased significantly with habitat heterogeneity on the landscape scale through the effects of beta diversity. Within the extent of our study areas, habitat type rather than geographic distance explained assemblage composition across spatial scales. Null models showed structure of functional groups to be partly filtered on local scales through the effects of vegetation density while on the landscape scale both assemblages represented random draws from regional species pools. We present a mixture model that combines the effects of habitat heterogeneity and complexity on species richness along a biome transect, predicting a unimodal rather than a monotonic relationship with environmental variables related to water. The bat assemblages of our study by far exceed previous figures of species richness in Africa, and refute the notion of low species richness of Afrotropical bat assemblages, which appears to be based largely on sampling biases. Biome transitions should receive increased attention in conservation strategies aiming at the maintenance of ecological and evolutionary processes.  相似文献   

6.
Understanding the regional dynamics of plant communities is crucial for predicting the response of plant diversity to habitat fragmentation. However, for fragmented landscapes the importance of regional processes, such as seed dispersal among isolated habitat patches, has been controversially debated. Due to the stochasticity and rarity of among‐patch dispersal and colonization events, we still lack a quantitative understanding of the consequences of these processes at the landscape‐scale. In this study, we used extensive field data from a fragmented, semi‐arid landscape in Israel to parameterize a multi‐species incidence‐function model. This model simulates species occupancy pattern based on patch areas and habitat configuration and explicitly considers the locations and the shapes of habitat patches for the derivation of patch connectivity. We implemented an approximate Bayesian computation approach for parameter inference and uncertainty assessment. We tested which of the three types of regional dynamics – the metacommunity, the mainland‐island, or the island communities type – best represents the community dynamics in the study area and applied the simulation model to estimate the extinction debt in the investigated landscape. We found that the regional dynamics in the patch‐matrix study landscape is best represented as a system of highly isolated ‘island’ communities with low rates of propagule exchange among habitat patches and consequently low colonization rates in local communities. Accordingly, the extinction rates in the local communities are the main drivers of community dynamics. Our findings indicate that the landscape carries a significant extinction debt and in model projections 33–60% of all species went extinct within 1000 yr. Our study demonstrates that the combination of dynamic simulation models with field data provides a promising approach for understanding regional community dynamics and for projecting community responses to habitat fragmentation. The approach bears the potential for efficient tests of conservation activities aimed at mitigating future losses of biodiversity.  相似文献   

7.
Factors relevant to resource selection in carnivores may vary across spatial and temporal scales, both in magnitude and rank. Understanding relationships among carnivore occupancy, prey presence, and habitat characteristics, as well as their interactions across multiple scales, is necessary to improve our understanding of resource selection and predict population changes. We used a multi-scale dynamic hierarchical co-occurrence model with camera data to study bobcat and snowshoe hare occupancy in the Upper Peninsula of Michigan during winter 2012–2013. Bobcat presence was influenced at the local scale by snowshoe hare presence, and by road density at the local and larger scale when hare were absent. Hare distribution was related primarily to vegetation cover types, and detectability varied in space and time. Bobcat occupancy dynamics were influenced by different factors depending on the spatial scale considered and the resource availability context. Moreover, considering observed co-occurrence, we suggest that bobcat presence had a greater effect on hare occupancy than hare presence on bobcat occupancy. Our results highlight the importance of studying carnivore distributions in the context of predator-prey relationships and its interactions with environmental covariates at multiple spatial scales. Our approach can be applied to other carnivore species to provide insights beneficial for management and conservation.  相似文献   

8.
Changes in land use patterns and vegetation can trigger ecological change in occupancy and community composition. Among the potential ecological consequences of land use change is altered susceptibility to occupancy by invasive species. We investigated the responses of three introduced mammals (red deer, Cervus elaphus; wild boar, Sus scrofa; and European hare, Lepus europaeus) to replacement of native vegetation by exotic pine plantations in the Patagonian forest‐steppe ecotone using camera‐trap surveys (8633 trap‐days). We used logistic regression models to relate species presence with habitat variables at stand and landscape scales. Red deer and wild boar used pine plantations significantly more frequently than native vegetation. In contrast, occurrence of European hares did not differ between pine plantations and native vegetation, although hares were recorded more frequently in firebreaks than in plantations or native vegetation. Presence of red deer and wild boar was positively associated with cover of pine plantations at the landscape scale, and negatively associated with mid‐storey cover and diversity at the stand scale. European hares preferred sites with low arboreal and mid‐storey cover. Our results suggest that pine plantations promote increased abundances of invasive species whose original distributions are associated with woodlands (red deer and wild boar), and could act as source or pathways for invasive species to new areas.  相似文献   

9.
Aim A better understanding of the processes driving local species richness and of the scales at which they operate is crucial for conserving biodiversity in cultivated landscapes. Local species richness may be controlled by ecological processes acting at larger spatial scales. Very little is known about the effect of landscape variables on soil biota. The aim of our study was to partly fill this gap by relating the local variation of surface‐dwelling macroarthropod species richness to factors operating at the habitat scale (i.e. land use and habitat characteristics) and the landscape scale (i.e. composition of the surrounding matrix). Location An agricultural landscape with a low‐input farming system in Central Hesse, Germany. Methods We focused on five taxa significantly differing in mobility and ecological requirements: ants, ground beetles, rove beetles, woodlice, and millipedes. Animals were caught with pitfall traps in fields of different land use (arable land, grassland, fallow land) and different habitat conditions (insolation, soil humidity). Composition of the surrounding landscape was analysed within a radius of 250 m around the fields. Results Factors from both scales together explained a large amount of the local variation in species richness, but the explanatory strength of the factors differed significantly among taxa. Land use particularly affected ground beetles and woodlice, whereas ants and rove beetles were more strongly affected by habitat characteristics, namely by insolation and soil characteristics. Local species richness of diplopods depended almost entirely on the surrounding landscape. In general, the composition of the neighbouring landscape had a lower impact on the species richness of most soil macroarthropod taxa than did land use and habitat characteristics. Main conclusions We conclude that agri‐environment schemes for the conservation of biodiversity in cultivated landscapes have to secure management for both habitat quality and heterogeneous landscape mosaics.  相似文献   

10.
Aim This study addresses how species resolve environmental differences into biological habitats at multiple, interacting spatial scales. How do patterns of local habitat use change along an elevation gradient? How do patterns of local habitat partitioning interact with partitioning at a landscape scale? Location Northern and southern Lesser Antilles islands, West Indies. Methods We document how Anolis Daudin, 1802 lizards partition habitat locally at sites along a landscape‐scale elevation gradient. We examine habitat partitioning both with and without interspecific interactions in the predominately flat northern Lesser Antilles islands and in the more mountainous southern islands. Results Anoles partition local habitat along perch‐height and microclimate axes. Northern‐group sympatric anoles partition local habitat by perch height and have overlapping distributions at the landscape scale. Southern‐group sympatric anoles partition local habitat by microclimate and specialize in particular habitats at the landscape scale. In both the northern and southern groups, species use different perch heights and microclimates only in areas of species overlap along the elevation gradient. Main conclusions We demonstrate the interaction between local‐ and landscape‐scale habitat partitioning. In the case of microclimate partitioning, the interaction results from the use of thermal physiology to partition habitat at multiple scales. This interaction prompts the question of whether habitat partitioning developed ‘local‐out’ or ‘landscape‐in’. We pose this dichotomy and present a framework for its resolution.  相似文献   

11.
Aim Urbanization is a leading threat to global biodiversity, yet little is known about how the spatial arrangement and composition of biophysical elements – buildings and vegetation – within a metropolitan area influence habitat selection. Here, we ask: what is the relative importance of the structure and composition of these elements on bird species across multiple spatial scales? Location The temperate metropolitan area of Cincinnati, Ohio, USA. Methods We surveyed breeding birds on 71 plots along an urban gradient. We modelled relative density for 48 bird species in relation to local woody vegetation composition and structure and to tree cover, grass cover and building density within 50–1000 m of each plot. We used an information‐theoretic approach to compare models and variables. Results At the proximate scale, native tree and understory stem frequency were the most important vegetation variables explaining bird distributions. Species’ responses to landscape biophysical features and spatial scales varied. Most native species responded positively to vegetation measures and negatively to building density. Models combining both local vegetation and landscape information represented best or competitive models for the majority of species, while models containing only local vegetation characteristics were rarely competitive. Smaller spatial scales (≤ 500 m) were most important for 36 species, and eight species had best models at larger scales (> 500 m); however, several species had competitive models across multiple scales. Main conclusions Habitat selection by birds within the urban matrix is the result of a combination of factors operating at both proximate and broader spatial scales. Efforts to manage and design urban areas to benefit native birds require both fine‐scale (e.g., individual landowners and landscape design) and larger landscape actions (e.g., regional comprehensive planning).  相似文献   

12.
The role of habitat selection behaviour in the assembly of natural communities is an increasingly important theme in ecology. At the same time, ecologists and conservation biologists are keenly interested in scale and how processes at scales from local to regional interact to determine species distributions and patterns of biodiversity. How important is habitat selection in generating observed patterns of distribution and diversity at multiple spatial scales? In theory, habitat selection in response to interacting species can generate both positive and negative covariances among species distributions and create the potential to link processes of community assembly across multiple scales. Here I demonstrate that habitat selection by treefrogs in response to the distribution of fish predators functions at both the regional scale among localities and the local scale among patches within localities, implicating habitat selection as a critical link between local communities and the regional dynamics of metacommunities in complex landscapes.  相似文献   

13.
The influence of habitat quality and population density on occupancy dynamics may surpass that of traditional metrics of area and isolation, but often this is not considered explicitly in studies of spatially structured populations. In landscapes that are not easily characterized as binary habitat/non‐habitat (e.g. variegated landscapes), this influence may be even more important and occur at both local and landscape levels. It follows that occupancy dynamics may be driven by disparate processes depending on how extinction or colonization relate to habitat quality and population density. We examined the relative influence of area, structural isolation, habitat quality, local population density, and neighborhood population density (i.e. population density in the landscape around a site) on the probability of extinction and colonization of snowshoe hare Lepus americanus across an expansive forest mosaic landscape (encompassing the northern third of Idaho). Habitat quality and population density were highly influential in determining extinction and colonization, whereas patch area and isolation were much less important. Sites with heavier vegetative cover at the site or landscape‐level were more likely to be colonized and less likely to go extinct, and sites with greater local population density in the previous time step had lower probability of extinction. Sites embedded in high density neighborhoods also were less likely to go extinct, but not more likely to be colonized. We found a significant interaction between local and neighborhood population density on extinction in 1 yr, suggesting that the strength of demographic rescue may vary dependent on local site densities. Our results add to a growing literature showing that factors outside of structural metrics of area and isolation are important drivers of occupancy dynamics. Given the multi‐scaled influence of habitat quality and population density on occupancy dynamics, our work also indicates that research on snowshoe hare must extend beyond simply assessing local factors to understand the spatial dynamics of populations.  相似文献   

14.
The processes which determine the structure of plant communities vary across spatial and temporal scales. Climatic factors are more likely to influence community structure at a regional scale with more transient environmental effects such as disturbance or demographic interactions having a greater influence at local scales. Understanding these differences is important for managing communities at a landscape scale. Triodia spp. grasslands are the most extensive plant community in Australia, covering 1.4 million km2, and yet little is known about the processes which structure these communities. We collected data on six sympatric Triodia spp. at the regional, landscape and local scale across the 325 000 ha property, Mornington Wildlife Sanctuary, in the Kimberley region of northern Western Australia to investigate the processes which structure this community. Regionally we looked for correlations between species distributions and substrate or rainfall. At the landscape scale we collected data on substrate, drainage and vegetation type and at the local scale we determined the extent to which individuals form mono‐specific stands both along and across the contour gradient. Only one species, T. aeria, was found to be substrate specific and only T. epactia was restricted to the drier southern end of the property. The other species were not restricted by substrate or rainfall at the regional scale and were found to be habitat generalists at the landscape scale. All species grew in mono‐specific stands with little to no mixing at shared boundaries. However, this pattern broke down when crossing the contour gradient on hillsides. The results suggest rainfall may influence the distribution of some Triodia spp. at a regional scale with interspecific competition, due to differences in post‐fire regeneration niches, structuring the community at the local scale. At the landscape scale community structure appears to be influenced by feedback mechanisms involving differences in the post‐fire regeneration strategies of sympatric species and subsequent competition for establishment microsites.  相似文献   

15.
Urbanisation modifies landscapes at multiple scales, impacting the local climate and changing the extent and quality of natural habitats. These habitat modifications significantly alter species distributions and can result in increased abundance of select species which are able to exploit novel ecosystems. We examined the effect of urbanisation at local and landscape scales on the body size, lipid reserves and ovary weight of Nephila plumipes, an orb weaving spider commonly found in both urban and natural landscapes. Habitat variables at landscape, local and microhabitat scales were integrated to create a series of indexes that quantified the degree of urbanisation at each site. Spider size was negatively associated with vegetation cover at a landscape scale, and positively associated with hard surfaces and anthropogenic disturbance on a local and microhabitat scale. Ovary weight increased in higher socioeconomic areas and was positively associated with hard surfaces and leaf litter at a local scale. The larger size and increased reproductive capacity of N.plumipes in urban areas show that some species benefit from the habitat changes associated with urbanisation. Our results also highlight the importance of incorporating environmental variables from multiple scales when quantifying species responses to landscape modification.  相似文献   

16.
Animal community dynamics in changing landscapes are primarily driven by changes in vegetation structure and ultimately by how species respond to these changes and at which spatial scale. We consider two major components of local community dynamics, species colonisation and extinction. We hypothesise that (1) the optimal spatial extent needed to accurately predict them will differ between these two processes; (2) it will also likely differ from species to species as a result of life history traits differences related to differences in habitat selection and (3) that a species' primary habitat will determine the spatial extent at which it perceives change in vegetation structure. We used data collected over 25 yr in a changing Mediterranean landscape to study bird species local colonisation and extinction patterns in two groups of species typical from two habitats: open farmland and woodland. Vegetation changes were measured at spatial extents ranging from 0.2 to 79 ha. Local species colonisation and extinction estimates were computed using a method accounting for heterogeneity in detection probability among species. We built linear models between local species colonisation/extinction estimates and vegetation changes and examined variations in model quality with respect to the spatial extent at which vegetation changes had been measured. Models for open habitat species showed that colonisation processes operated at the landscape scale (79 ha), while extinction was more tightly linked to local habitat requirements (0.2 ha). Models for woodland species presented a low and constant model quality whatever the spatial extent considered. Our results suggest that the dynamics of the woodland species considered responded to a combination of vegetation changes at several scales and, in particular, to changes in the vertical structure of the vegetation. We highlight the need to explicitly consider spatial extent in studies of habitat selection and of habitat and population dynamics to improve our understanding of the biological consequences of land use changes and guide more effective conservation efforts.  相似文献   

17.
Habitat loss and fragmentation are key processes causing biodiversity loss in human‐modified landscapes. Knowledge of these processes has largely been derived from measuring biodiversity at the scale of ‘within‐habitat’ fragments with the surrounding landscape considered as matrix. Yet, the loss of variation in species assemblages ‘among’ habitat fragments (landscape‐scale) may be as important a driver of biodiversity loss as the loss of diversity ‘within’ habitat fragments (local‐scale). We tested the hypothesis that heterogeneity in vegetation cover is important for maintaining alpha and beta diversity in human‐modified landscapes. We surveyed bird assemblages in eighty 300‐m‐long transects nested within twenty 1‐km2 vegetation ‘mosaics’, with mosaics assigned to four categories defined by the cover extent and configuration of native eucalypt forest and exotic pine plantation. We examined bird assemblages at two spatial scales: 1) within and among transects, and 2) within and among mosaics. Alpha diversity was the mean species diversity within‐transects or within‐mosaics and beta diversity quantified the effective number of compositionally distinct transects or mosaics. We found that within‐transect alpha diversity was highest in vegetation mosaics defined by continuous eucalypt forest, lowest in mosaics of continuous pine plantation, and at intermediate levels in mosaics containing eucalypt patches in a pine matrix. We found that eucalypt mosaics had lower beta diversity than other mosaic types when ignoring relative abundances, but had similar or higher beta diversity when weighting with species abundances. Mosaics containing both pine and eucalypt forest differed in their bird compositional variation among transects, despite sharing a similar suite of species. This configuration effect at the mosaic scale reflected differences in vegetation composition among transects. Maintaining heterogeneity in vegetation cover could help to maintain variation among bird assemblages across landscapes, thus partially offsetting local‐scale diversity losses due to fragmentation. Critical to this is the retention of remnant native vegetation.  相似文献   

18.
Spatial and Temporal Considerations in Restoring Habitat for Wildlife   总被引:2,自引:0,他引:2  
An accumulated body of theory and empirical evidence suggests that habitat selection by animals is a scale‐dependent, hierarchical process. Hierarchy theory predicts that habitat suitability is influenced by the interaction of factors at multiple spatial scales from the microsite to the landscape and that higher‐order factors impose constraints at lower levels. For instance, large‐scale factors such as landscape context may make a site unsuitable for a species even if the vegetation structure and composition are appropriate. In addition, the spatial arrangement of habitat elements at all scales must be considered when planning restoration efforts. For example, the presence of snags does not ensure that the site will be suitable for snag‐dependent species. The size, age, and spacing of snags and their juxtaposition to other habitat elements must also be considered. Finally, all habitats are dynamic, and therefore the ecological processes that contribute to those dynamics must be maintained or suitable substitutes included in the recovery plan. When considering restoring habitat for wildlife, we recommend that managers: (1) identify the wildlife species they want to target for restoration efforts, (2) consider the size and landscape context of the restoration site and whether it is appropriate for the target species, (3) identify the habitat elements that are necessary for the target species, (4) develop a strategy for restoring those elements and the ecological processes that maintain them, and (5) implement a long‐term monitoring program to gauge the success of the restoration efforts.  相似文献   

19.
S.J. McCauley 《Oikos》2007,116(1):121-133
Despite the importance of community-structuring processes operating at both local and regional scales, there is relatively little work examining both forces within a single system. I used a combination of observational and experimental approaches to examine the processes structuring larval dragonfly distributions in lentic habitats that encompass a gradient of both permanence and top predator type. I compared the relative vulnerability of species to predators from different portions of this gradient to assess the role of predation as a local force structuring communities. I also assessed the role of regional processes on species' distributions by examining species' propensity to disperse to and colonize artificial ponds distributed across a landscape. In both studies I contrasted habitat specialist species, which had larvae restricted to permanent lakes, with habitat generalist species, which had larvae that occur broadly across the habitat permanence and top predator transition. Results from this work suggest that dispersal and colonization behavior were critical mechanisms restricting the distributions of habitat specialist species, but that predation may act to reinforce this pattern. The habitat specialists dispersed less frequently, colonized artificial ponds less often when they did reach them, and most moved shorter distances than the habitat generalist species. Habitat specialists were also more vulnerable than habitat generalists to an invertebrate top predator with which they do not co-exist. Results from these studies suggest that species distributions can be shaped by processes operating at both regional and local spatial scales. The role of dispersal and recruitment limitation may be generally underestimated as a force shaping species distributions and community structure across habitat gradients in which there is a transition in both the biotic interactions and the disturbance interval across that gradient.  相似文献   

20.
Numerous hypotheses have been proposed to explain the shape of occupancy frequency distributions (distributions of the numbers of species occupying different numbers of areas). Artefactual effects include sampling characteristics, whereas biological mechanisms include organismal, niche-based and meta-population models. To date, there has been little testing of these models. In addition, although empirically derived occupancy distributions encompass an array of taxa and spatial scales, comparisons between them are often not possible because of differences in sampling protocol and method of construction. In this paper, the effects of sampling protocol (grain, sample number, extent, sampling coverage and intensity) on the shape of occupancy distributions are examined, and approaches for minimising artefactual effects recommended. Evidence for proposed biological determinants of the shape of occupancy distributions is then examined. Good support exists for some mechanisms (habitat and environmental heterogeneity), little for others (dispersal ability), while some hypotheses remain untested (landscape productivity, position in geographic range, range size frequency distributions), or are unlikely to be useful explanations for the shape of occupancy distributions 'species specificity and adaptation to habitat, extinction-colonization dynamics). The presence of a core (class containing species with the highest occupancy) mode in occupancy distributions is most likely to be associated with larger sample units, and small homogenous sampling areas positioned well within and towards the range centers of a sufficient proportion of the species in the assemblage. Satellite (class with species with the lowest occupancy) modes are associated with sampling large, heterogeneous areas that incorporate a large proportion of the assemblage range. However, satellite modes commonly also occur in the presence of a core mode, and rare species effects are likely to contribute to the presence of a satellite mode at most sampling scales. In most proposed hypotheses, spatial scale is an important determinant of the shape of the observed occupancy distribution. Because the attributes of the mechanisms associated with these hypotheses change with spatial scale, their predictions for the shape of occupancy distributions also change. To understand occupancy distributions and the mechanisms underlying them, a synthesis of pattern documentation and model testing across scales is thus needed. The development of null models, comparisons of occupancy distributions across spatial scales and taxa, documentation of the movement of individual species between occupancy classes with changes in spatial scale, as well as further testing of biological mechanisms are all necessary for an improved understanding of the distribution of species and assemblages within their geographic ranges.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号