首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Arid and semiarid climates comprise roughly 40% of the earth’s terrestrial surface. Deserts are predicted to be extremely responsive to global change because they are stressful environments where small absolute changes in water availability or use represent large proportional changes. Water and carbon dioxide fluxes are inherently coupled in plant growth. No documented global change has been more substantial or more rapid than the increase in atmospheric CO2. Free Air CO2 Enrichment (FACE) technology permits manipulation of CO2 in intact communities without altering factors such as light intensity or quality, humidity or wind. The Nevada Desert FACE Facility (NDFF) consists of three 491 m2 plots in the Mojave Desert receiving 550 μL L–1 CO2, and six ambient plots to assess both CO2 and fan effects. The shrub community was characterized as a Larrea–Ambrosia–Lycium species complex. Data are reported through 12 months of operation.  相似文献   

3.
Abstract. 1. Populations of creosote bush ( Larrea tridentata (DC) Coville), were studied in Arizona to determine whether associated gallformers (Cecidomyiidae: Asphondylia spp.) were more abundant on water-stressed or nonstressed plants. Gall densities were measured along a steep elevational gradient that extended from mesic, higher elevations to lower elevations in the desert; and in the Grand Canyon where severely water-stressed and relatively unstressed plants occurred adjacently. At the Grand Canyon site, the responses of creosote bush to water stress were also studied.
2. The number and densities of Asphondylia species increased both at lower elevations and locally on water-stressed plants in the Grand Canyon, indicating that climatic and local conditions influence gallformer abundance in the same way.
3. Five of the eight Asphondylia species studied at the Grand Canyon site were more abundant on stressed plants, two species were more abundant on nonstressed plants and one species showed no preference for either plant type.
4. Densities of most species on stressed plants were positively correlated with the number of meristematic terminals per branch, which were more numerous on stressed plants, due to a bushier architecture. Flower gallformers were more abundant on nonstressed plants, which produced more flowers. Gall densities did not correlate with chemistry measurements, although these parameters also varied with level of stress.
5. These results suggest that gallforming species respond variably to plant stress, even within a closely-related lineage, and that there are effects of stress on plants, including architectural changes, that may be more important to herbivores than biochemical effects emphasized by White (1984) and others.  相似文献   

4.
Seedling recruitment is an important determinant of community structure in desert ecosystems. Positive photosynthetic growth and water balance responses to increasing atmospheric carbon dioxide (CO2) concentrations ([CO2]) are predicted to be substantial in desert plants, suggesting that recruitment could be stimulated. However, to date no studies have addressed the response of perennial plant recruitment in natural populations of desert shrubs exposed to elevated [CO2]. In April 1997, we employed Free‐Air Carbon Dioxide Enrichment (FACE) in order to increase atmospheric [CO2] in an undisturbed Mojave Desert ecosystem from ambient (~~ 370 µmol mol?1) to elevated CO2 (~~ 550 µmol mol?1). From 1997 to 2001 we seasonally examined survival, growth, gas exchange and water potential responses of Larrea tridentata and Ambrosia dumosa seedlings that germinated in Fall, 1997. Recruitment densities were not influenced by [CO2] in either species, although a two‐fold higher adult Ambrosia density under elevated [CO2] resulted in two‐fold higher seedling density (0.87 vs 0.40 seedlings m?2). Mortality was greatest for both species during the first summer (1998), despite above‐average rainfall during the previous Winter–Spring. A significant [CO2] × time interaction revealed that early survival was greater under elevated CO2, whereas a significant species time interaction revealed that overall survival was greater for Ambrosia (28%) than for Larrea (15%), regardless of [CO2]. Microsite (understorey or interspace) alone had no significant influence on survival. Significant species, microsite and species × microsite effects on growth (seedling height, stem diameter and canopy size) were found, but elevated CO2 had minimal impact on these parameters. Photosynthetic rates (Asat) for both species were higher at elevated [CO2] during certain seasons, but not consistently so. These results suggest that increased atmospheric [CO2] may enhance carbon (C) assimilation and survival of aridland perennial shrubs during favourable growing conditions, but that it may not counteract the effects of prolonged drought on mortality.  相似文献   

5.
Two field experiments were conducted using three dominant perennial species of the Chihuahuan Desert: Hilaria mutica (a tussock grass), Larrea tridentata (a microphyllous shrub) and Opuntia rastrera (a flat-stemmed succulent cactus). Two hypotheses concerning competition in arid plant communities were tested. (1) Marked resource partitioning with no interspecific competition could be expected since the three species belong to different life-forms, and that plant growth in deserts is basically limited by harsh environmental conditions. (2) Alternatively, resource scarcity (particularly water) will result in strong plant competition. In a 1-year removal experiment, water status and plant growth of the three species were monitored in twelve 10 m × 10 m plots randomized in three blocks and assigned to the following treatments: (a) removal of all species, except H. mutica; (b) removal of all species, except L. tridentata; (c) removal of all species, except O. rastrera, and (d) control without any manipulation. In a watering experiment, under two neighbourhood conditions (growing isolated or in associations of plants of the three species in plots of 20 m2), the water status of the three species and the growth of H.mutica and L.tridentata were studied for 32 days after an irrigation equivalent to 30 mm of rain, similar to a strong storm event at the site. In the removal experiment, where plants were free to capture water, no evidence of competition was observed. However, during the watering experiment, in which water was forced into the soil, competitive effects were observed. Associated individuals of L. tridentata had lower xylem water potentials and osmotic potentials (OPs) and produced shorter twigs and less leaves and nodes. Although less pronounced, neighbours also had a negative effect on the OP in O. rastrera. According to these results, the intensity of the interspecific competition for water seems to depend on the level of resource availability in the soil. Thus, the validity of the two hypotheses tested in this study also depends on the level of resources. Competition could be absent or very low in years of low precipitation, as in the year of this study (173 mm against a 25-year average of 264 mm). However, when soil water availability is high, e.g. following heavy rain, the negative interactions between species could be more intense. Received: 3 October 1997 / Accepted: 23 March 1998  相似文献   

6.
Although desert ecosystems are predicted to be the most responsive to elevated CO2, low nutrient availability may limit increases in productivity and cause plants in deserts to allocate more resources to root biomass or activity for increased nutrient acquisition. We measured root respiration of two Mojave Desert shrubs, Ambrosia dumosa and Larrea tridentata, grown under ambient (~375 ppm) and elevated (~517 ppm) CO2 concentrations at the Nevada Desert FACE Facility (NDFF) over five growing seasons. In addition, we grew L. tridentata seedlings in a greenhouse with similar CO2 treatments to determine responses of primary and lateral roots to an increase in CO2. In both field and greenhouse studies, root respiration was not significantly affected by elevated CO2. However, respiration of A. dumosa roots <1 month old was significantly greater than respiration of A. dumosa roots between 1 and 4 months old. For both shrub species, respiration rates of very fine (<1.0 mm diameter) roots were significantly greater than those of fine (1–2 mm diameter) roots, and root respiration decreased as soil water decreased. Because specific root length was not significantly affected by CO2 and because field minirhizotron measurements of root production were not significantly different, we infer that root growth at the NDFF has not increased with elevated CO2. Furthermore, other studies at the NDFF have shown increased nutrient availability under elevated CO2, which reduces the need for roots to increase scavenging for nutrients. Thus, we conclude that A. dumosa and L. tridentata root systems have not increased in size or activity, and increased shoot production observed under elevated CO2 for these species does not appear to be constrained by the plant's root growth or activity.  相似文献   

7.
8.
Arid ecosystems, which occupy about 35% of the Earth's terrestrial surface area, are believed to be among the most responsive to elevated [CO2]. Net ecosystem CO2 exchange (NEE) was measured in the eighth year of CO2 enrichment at the Nevada Desert Free‐Air CO2 Enrichment (FACE) Facility between the months of December 2003–December 2004. On most dates mean daily NEE (24 h) (μmol CO2 m?2 s?1) of ecosystems exposed to elevated atmospheric CO2 were similar to those maintained at current ambient CO2 levels. However, on sampling dates following rains, mean daily NEEs of ecosystems exposed to elevated [CO2] averaged 23 to 56% lower than mean daily NEEs of ecosystems maintained at ambient [CO2]. Mean daily NEE varied seasonally across both CO2 treatments, increasing from about 0.1 μmol CO2 m?2 s?1 in December to a maximum of 0.5–0.6 μmol CO2 m?2 s?1 in early spring. Maximum NEE in ecosystems exposed to elevated CO2 occurred 1 month earlier than it did in ecosystems exposed to ambient CO2, with declines in both treatments to lowest seasonal levels by early October (0.09±0.03 μmol CO2 m?2 s?1), but then increasing to near peak levels in late October (0.36±0.08 μmol CO2 m?2 s?1), November (0.28±0.03 μmol CO2 m?2 s?1), and December (0.54±0.06 μmol CO2 m?2 s?1). Seasonal patterns of mean daily NEE primarily resulted from larger seasonal fluctuations in rates of daytime net ecosystem CO2 uptake which were closely tied to plant community phenology and precipitation. Photosynthesis in the autotrophic crust community (lichens, mosses, and free‐living cyanobacteria) following rains were probably responsible for the high NEEs observed in January, February, and late October 2004 when vascular plant photosynthesis was low. Both CO2 treatments were net CO2 sinks in 2004, but exposure to elevated CO2 reduced CO2 sink strength by 30% (positive net ecosystem productivity=127±17 g C m?2 yr?1 ambient CO2 and 90±11 g C m?2 yr?1 elevated CO2, P=0.011). This level of net C uptake rivals or exceeds levels observed in some forested and grassland ecosystems. Thus, the decrease in C sequestration seen in our study under elevated CO2– along with the extensive coverage of arid and semi‐arid ecosystems globally – points to a significant drop in global C sequestration potential in the next several decades because of responses of heretofore overlooked dryland ecosystems.  相似文献   

9.
  • 1 A classic biogeographic pattern is the alignment of diploid, tetraploid and hexaploid races of creosote bush (Larrea tridentata) across the Chihuahuan, Sonoran and Mohave Deserts of western North America. We used statistically robust differences in guard cell size of modern plants and fossil leaves from packrat middens to map current and past distributions of these ploidy races since the Last Glacial Maximum (LGM).
  • 2 Glacial/early Holocene (26–10 14C kyr bp or thousands of radiocarbon years before present) populations included diploids along the lower Rio Grande of west Texas, 650 km removed from sympatric diploids and tetraploids in the lower Colorado River Basin of south‐eastern California/south‐western Arizona. Diploids migrated slowly from lower Rio Grande refugia with expansion into the northern Chihuahuan Desert sites forestalled until after ~4.0 14C kyr bp . Tetraploids expanded from the lower Colorado River Basin into the northern limits of the Sonoran Desert in central Arizona by 6.4 14C kyr bp . Hexaploids appeared by 8.5 14C kyr bp in the lower Colorado River Basin, reaching their northernmost limits (~37°N) in the Mohave Desert between 5.6 and 3.9 14C kyr bp .
  • 3 Modern diploid isolates may have resulted from both vicariant and dispersal events. In central Baja California and the lower Colorado River Basin, modern diploids probably originated from relict populations near glacial refugia. Founder events in the middle and late Holocene established diploid outposts on isolated limestone outcrops in areas of central and southern Arizona dominated by tetraploid populations.
  • 4 Geographic alignment of the three ploidy races along the modern gradient of increasingly drier and hotter summers is clearly a postglacial phenomenon, but evolution of both higher ploidy races must have happened before the Holocene. The exact timing and mechanism of polyploidy evolution in creosote bush remains a matter of conjecture.
  相似文献   

10.
Two stick-like acridids (Orthoptera: Proscopiidae) from Argentina, Anchocoema bidentata Mello-Leitao and Astroma saltense Mello-Leitao, were evaluated as potential biological control agents of creosote bush (Larrea tridentata (DC.) Coville) in the southwestern United States. Their biology, behavior and geographic distribution of those species were studied. The host plant ranges for both insects were established through nymph feeding preference and development tests in the laboratory and in the field. A total of 33 species of plants belonging to 13 families were tested. Anchocoema bidentata and A. saltense are mimetic species, having as many as three generations a year, and exhibit strong sexual dimorphism; females are larger and less mobile than males. In both species, females laid egg masses in the soil. First instars appeared in the field at the end of the spring, the second generation at mid-summer, and a third at the end of the summer. Adults of A. bidentata and A. saltense appeared in the field at the beginning of the spring. The laboratory multiple-choice feeding test showed that A. bidentata preferred Larrea divaricata Cav., whereas A. saltense preferred L. divaricata and L. cuneifolia Cav. In the nymph development test (no choice), A. bidentata was able to complete its development only on L. divaricata and L. cuneifolia, while Astroma saltense completed its development on six plant species: L divaricata, L. cuneifolia, Bulnesia retama (Gillies ex Hooker et Arnott), B. schickendantzi Hieron (all Zygophyllaceae), Zuccagnia punctata Cav., and Prosopis torquata (Cav. Ap. Lag.) (both Fabaseae). We concluded that A. bidentata could be a biocontrol agent for L. tridentata because the first instar can complete its development only on Larrea spp. Regarding A. saltense, this species showed a wide host range and should not be considered as a biological control agent of L. tridentata.  相似文献   

11.
Maximum and minimum soil temperatures affect belowground processes. In the past 50 years in arid regions, measured reductions in the daily temperature range of air (DTRair) most likely generated similar reductions in the unmeasured daily temperature range of soil (DTRsoil). However, the role of DTRsoil in regulating microbial and plant processes has not been well described. We experimentally reduced DTRsoil in the Chihuahuan Desert at Big Bend National Park over 3 years. We used shade cloth that effectively decreased DTRsoil by decreasing daily maximum temperature and increasing nighttime minimum temperature. A reduction in DTRsoil generated on average a twofold increase in soil microbial biomass carbon, a 42% increase in soil CO2 efflux and a 16% reduction in soil NO3?–N availability; soil available NH4+–N was reduced by 18% in the third year only. Reductions in DTRsoil increased soil moisture up to 15% a few days after a substantial rainfall. Increased soil moisture contributed to higher soil CO2 efflux, but not microbial biomass carbon, which was significantly correlated with DTRsoil. Net photosynthetic rates at saturating light (Asat) in Larrea tridentata were not affected by reductions in DTRsoil over the 3 year period. Arid ecosystems may become greater sources of C to the atmosphere with reduced DTRsoil, resulting in a positive feedback to rising global temperatures, if increased C loss is not eventually balanced by increased C uptake. Ultimately, ecosystem models of N and C fluxes will need to account for these temperature‐driven processes.  相似文献   

12.
13.
The photosynthetic response of Larrea tridentata Cav., an evergreen Mojave Desert shrub, to elevated atmospheric CO2 and drought was examined to assist in the understanding of how plants from water-limited ecosystems will respond to rising CO2. We hypothesized that photosynthetic down-regulation would disappear during periods of water limitation, and would, therefore, likely be a seasonally transient event. To test this we measured photosynthetic, water relations and fluorescence responses during periods of increased and decreased water availability in two different treatment implementations: (1) from seedlings exposed to 360, 550, and 700 μmol mol–1 CO2 in a glasshouse; and (2) from intact adults exposed to 360 and 550 μmol mol–1 CO2 at the Nevada Desert FACE (Free Air CO2 Enrichment) Facility. FACE and glasshouse well-watered Larrea significantly down-regulated photosynthesis at elevated CO2, reducing maximum photosynthetic rate (Amax), carboxylation efficiency (CE), and Rubisco catalytic sites, whereas droughted Larrea showed a differing response depending on treatment technique. Amax and CE were lower in droughted Larrea compared with well-watered plants, and CO2 had no effect on these reduced photosynthetic parameters. However, Rubisco catalytic sites decreased in droughted Larrea at elevated CO2. Operating Ci increased at elevated CO2 in droughted plants, resulting in greater photosynthetic rates at elevated CO2 as compared with ambient CO2. In well-watered plants, the changes in operating Ci, CE and Amax resulted in similar photosynthetic rates across CO2 treatments. Our results suggest that drought can diminish photosynthetic down-regulation to elevated CO2 in Larrea, resulting in seasonally transient patterns of enhanced carbon gain. These results suggest that water status may ultimately control the photosynthetic response of desert systems to rising CO2.  相似文献   

14.
15.
The genetic population structure of the postfire ascomycete Daldinia loculata was studied to test for differentiation on a continental scale. Ninety-six samples of spore families, each comprising mycelia from six to 10 spores originating from single perithecia, were sampled from one Russian and six Fennoscandian forest sites. Allelic distribution was assayed for six nuclear gene loci by restriction enzyme analyses of polymerase chain reaction (PCR)-amplified gene fragments. In addition, the full sequence of the gene fragment was analysed for a subset of haploid single-ascospore isolates in a multiallelic approach. A third data set was generated by using arbitrary-primed PCR with the core sequence of the phage M13 as primer. Although there was a reduction in heterozygosity in the total population from what would have been expected at random mating, the levels of genetic differentiation among the Eurasian subpopulations of D. loculata were low. All subpopulations were found to be in Hardy-Weinberg equilibrium and gametic equilibrium was observed between all investigated nuclear gene loci. The results obtained by the different markers were consistent; we confirmed low levels of genetic differentiation among the Eurasian subpopulations of D. loculata. The differentiation did not increase with distance; the Russian subpopulation, sampled more than 7000 km from the Fennoscandian subpopulations, was only moderately differentiated from the others (FST = 0.00-0.14). In contrast, one of the Swedish populations was the most highly differentiated from the others, with FST and GST values of 0.10-0.16. The results suggest that D. loculata consists of a long-lived background Eurasian population of latent mycelia in nonburned forests, established by sexual ascospores dispersed from scattered burned forest sites. Local differentiation is probably due to founder effects of populations in areas with low fire frequency. A tentative life cycle of D. loculata is presented.  相似文献   

16.
Leaf-level CO2 assimilation (A(area)) can largely be predicted from stomatal conductance (g(s)), leaf morphology (SLA) and nitrogen (N) content (N(area)) in species across biomes and functional groups. The effects of simulated global change scenarios, increased summer monsoon rain (+H2O), N deposition (+N) and the combination (+H2O +N), were hypothesized to affect leaf trait-photosynthesis relationships differently in the short- and long-term for the desert shrub Larrea tridentata. During the spring, +H2O and +H2O +N plants had lower A(area) and g(s), but similar shoot water potential (Psi(shoot)) compared with control and +N plants; differences in A(area) were attributed to lower leaf N(area) and g(s). During the summer, +H2O and +H2O +N plants displayed higher A(area) than control and +N plants, which was attributed to higher Psi(shoot), g(s) and SLA. Throughout the year, A(area) was strongly correlated with g(s) but weakly correlated with leaf N(area) and SLA. We concluded that increased summer monsoon had a stronger effect on the performance of Larrea than increased N deposition. In the short term, the +H2O and +H2O +N treatments were associated with increasing A(area) in summer, but also with low leaf N(area) and lower A(area) in the long term the following spring.  相似文献   

17.
18.
We assessed the impacts of co‐occurring invasive plant species on fire regimes and postfire native communities in the Mojave Desert, western USA. We analyzed the distribution and co‐occurrence patterns of three invasive annual grasses (Bromus rubens, Bromus tectorum, and Schismus spp.) known to alter fuel conditions and community structure, and an invasive forb (Erodium cicutarium) which dominates postfire sites. We developed species distribution models (SDMs) for each of the four taxa and analyzed field plot data to assess the relationship between invasives and fire frequency, years postfire, and the impacts on postfire native herbaceous diversity. Most of the Mojave Desert is highly suitable for at least one of the four invasive species, and 76% of the ecoregion is predicted to have high or very high suitability for the joint occurrence of B. rubens and B. tectorum and 42% high or very high suitability for the joint occurrence of the two Bromus species and E. cicutarium. Analysis of cover from plot data indicated two or more of the species occurred in 77% of the plots, with their cover doubling with each additional species. We found invasive cover in burned plots increased for the first 20 years postfire and recorded two to five times more cover in burned than unburned plots. Analysis also indicated that native species diversity and evenness as negatively associated with higher levels of relative cover of the four invasive taxa. Our findings revealed overlapping distributions of the four invasives; a strong relationship between the invasives and fire frequency; and significant negative impacts of invasives on native herbaceous diversity in the Mojave. This suggests predicting the distributions of co‐occurring invasive species, especially transformer species, will provide a better understanding of where native‐dominated communities are most vulnerable to transformations following fire or other disturbances.  相似文献   

19.
Population-level variation in the leaf carbon isotope discrimination () values was examined in Encelia farinosa, a common Sonoran Desert shrub. There was approximately a 2 range in values among different plants. These differences in values among neighboring plants were maintained through time, both under conditions when neighbors were present and after neighbors had been removed. Individuals with high values were found to have an accelerated growth rate when these plants were released from competition for water. Individuals with low values were better able to persist through long-term drought. These data suggest possible tradeoffs between conditions favoring high- and low--value plants within a natural population. Given the temporal variability in precipitation between years and spatial variability in microhabitat quality in the Sonoran Desert, variation in values among E. farinosa plants will be maintained within a population.  相似文献   

20.
Summary The performance of coastal and desert species of Encelia (Asteraceae) were evaluated through common garden growth observations. The obectives of the study were to evaluate the roles of leaf features, thought to be of adaptive value (increased leaf reflectance and/or transpirational cooling), on plant growth in the hot, arid, desert garden versus their impact on growth under cooler, relatively more moist coastal garden conditions. E. californica native to the coast of southern California and E. farinosa, and E. frutescens, interior desert species, were grown in common gardens at coastal (Irvine, California) and interior (Phoenix, Arizona) sites under both irrigated and natural conditions. Although all species survived in both gardens during the two and a half year study period, there were large differences in their sizes. In the desert garden, leaf conductance and leaf water potential were both lower than at the coastal site. E. californica shrubs were leafless much of the time under natural conditions in the desert garden and had the smallest size there as well. Under natural conditions, E. farinosa, with its reflective leaf surface, was able to maintain lower leaf temperatures and attained a large size than the other two species in the desert garden. The green-leaved species (E. californica and E. frutescens) were not able to maintain leaves into the drought periods in the desert garden, with the exception of the irrigated E. frutescens which did maintain its leaf area if provided with supplemental watering to maintain transpirational leaf cooling. In the coastal garden, all species survived and there were few clear differences in the physiological characteristics among the three species. E. californica, the coastal native, attained a larger size in the coastal garden when compared with either of the two desert species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号