共查询到20条相似文献,搜索用时 0 毫秒
1.
Roberto Tarazi Alexandre M. Sebbenn Paulo Y. Kageyama Roland Vencovsky 《Ecology and evolution》2013,3(4):1003-1015
Savannas are highly diverse and dynamic environments that can shift to forest formations due to protection policies. Long‐distance dispersal may shape the genetic structure of these new closed forest formations. We analyzed eight microsatellite loci using a single‐time approach to understand contemporary pollen and effective seed dispersal of the tropical tree, Copaifera langsdorffii Desf. (Fabaceae), occurring in a Brazilian fire‐ and livestock‐protected savanna. We sampled all adult trees found within a 10.24 ha permanent plot, young trees within a subplot of 1.44 ha and open‐pollinated seeds. We detected a very high level of genetic diversity among the three generations in the studied plot. Parentage analysis revealed high pollen immigration rate (0.64) and a mean contemporary pollen dispersal distance of 74 m. In addition, half‐sib production was 1.8 times higher than full‐sibs in significant higher distances, indicating foraging activity preference for different trees at long distances. There was a significant and negative correlation between diameter at breast height (DBH) of the pollen donor with the number of seeds (r = ?0.640, P‐value = 0.032), suggesting that pollen donor trees with a higher DBH produce less seeds. The mean distance of realized seed dispersal (recruitment kernel) was 135 m due to the large home range dispersers (birds and mammals) in the area. The small magnitude of spatial genetic structure found in young trees may be a consequence of overlapping seed shadows and increased tree density. Our results show the positive side of closed canopy expansion, where animal activities regarding pollination and seed dispersal are extremely high. 相似文献
2.
M. Kotilínek T. Titelov J. Konar P. Fibich L. Hemrov P. Koutecký Z. Münzbergov J. Jerskov 《Plant biology (Stuttgart, Germany)》2020,22(3):522-532
- Species with vast production of dust‐like windborne seeds, such as orchids, should not be limited by seed dispersal. This paradigm, however, does not fit recent studies showing that many sites suitable for orchids are unoccupied and most seeds land close to their maternal plant. To explore this issue, we studied seed dispersal and gene flow of two forest orchid species, Epipactis atrorubens and Cephalanthera rubra, growing in a fragmented landscape of forested limestone hills in southwest Bohemia, Czech Republic.
- We used a combination of seed trapping and plant genotyping methods (microsatellite DNA markers) to quantify short‐ and long‐distance dispersal, respectively. In addition, seed production of both species was estimated.
- We found that most seeds landed very close to maternal plants (95% of captured seeds were within 7.2 m) in both species, and dispersal distance was influenced by forest type in E. atrorubens. In addition, C. rubra showed clonal reproduction (20% of plants were of clonal origin) and very low fruiting success (only 1.6% of plants were fruiting) in comparison with E. atrorubens (25.7%). Gene flow was frequent up to 2 km in C. rubra and up to 125 km in E. atrorubens, and we detected a relatively high dispersal rate among regions in both species.
- Although both species occupy similar habitats and have similar seed dispersal abilities, C. rubra is notably rarer in the study area. Considerably low fruiting success in this species likely limits its gene flow to longer distances and designates it more sensitive to habitat loss and fragmentation.
3.
4.
Runping Mao Thi Lan Thi Nguyen Olusegun O. Osunkoya Steve W. Adkins 《Austral ecology》2019,44(7):1111-1122
Parthenium hysterophorus L. (Asteraceae) utilises multiple mechanisms to facilitate its dispersal. It has been speculated that the cypsela, the propagule of this species, can be dispersed by water under varying environmental conditions. Four experiments were conducted to test this hypothesis, using simulated shaking and immersion to test floating ability and viability of the propagule in water. The influence of the acidity of the immersion medium on cypsela viability was also examined. Our results revealed that the freshly harvested cypselae could float on river water for at least 20 days, although around 80% sank within a week if moderate or severe turbulence was applied. Sinkage was observed to be more rapid in naked seeds (within a day) than in cypsela (within a week). On still water surfaces, germination occurred within a week but extended to 1.5 weeks under turbulent conditions due to sinkage. In river water, initial germination of floating cypselae was greater (70%) under illuminated conditions as compared to dark conditions (20%). The viability of immersed cypselae was found to remain high in distilled water for 45 days, when immersion was in cool conditions (10 or 15°C). However, in moderate (20 and 24°C) or warm (25 and 30°C) conditions, the rate of viability loss increased, and at 34°C, around 50% of the cypselae died after 20 days of immersion. Similar trends for cypselae longevity were observed in studies using river and pond water; viability loss was faster, especially in pond water. In summary, a proportion of cypselae will float in turbulent water and could be carried significant distances in river systems. Immersed cypselae can remain viable for weeks and can germinate on contact with soil. Water bodies or floods are therefore considered as important pathways in parthenium weed dispersal; hence, post‐flood monitoring is strongly recommended to minimise its spread. 相似文献
5.
Dioecy allows separation of female and male functions and therefore facilitates separate co‐evolutionary pathways with pollinators and seed dispersers. In monoecious figs, pollinators' offspring develop inside the syconium by consuming some of the seeds. Flower‐stage syconia must attract pollinators, then ripen and attract seed dispersers. In dioecious figs, male (“gall”) figs produce pollen but not viable seeds, as the pollinators' larvae eat all seeds, while female (“seed”) figs produce mostly viable seeds, as pollinators cannot oviposit in the ovules. Hence, gall and seed figs are under selection to attract pollinators, but only seed figs must attract seed dispersers. We test the hypothesis that seed and gall syconia at the flower stage will be similar, while at the fruiting stage they will differ. Likewise, monoecious syconia will be more similar to seed than gall figs because they must attract both pollinators and seed dispersers. We quantified syconium characteristics for 24 dioecious and 11 monoecious fig species and recorded frugivore visits. We show that seed and gall syconia are similar at the flower stage but differ at the fruit stage; monoecious syconia are more similar to seed syconia than they are to gall syconia; seed and gall syconia differentiate through their ontogeny from flower to fruit stages; and frugivores visit more monoecious and seed syconia than gall syconia. We suggest that similarity at the flower stage likely enhances pollination in both seed and gall figs and that differentiation after pollination likely enhances attractiveness to seed dispersers of syconia containing viable seeds. These ontogenetic differences between monoecious and dioecious species provide evidence of divergent responses to selection by pollinators and seed dispersers. 相似文献
6.
Gregor M. Unger Myriam Heuertz Giovanni G. Vendramin Juan J. Robledo‐Arnuncio 《Evolutionary Applications》2016,9(2):367-380
Gene flow from plantations of nonlocal (genetically exotic) tree provenances into natural stands of the same species is probably a widespread phenomenon, but its effects remain largely unexamined. We investigated early fitness consequences of intraspecific exotic gene flow in the wild by assessing differences in survival among native, nonlocal, and F1 intraspecific hybrid seedlings naturally established within two native pine relicts (one of Pinus pinaster and the other of P. sylvestris) surrounded by nonlocal plantations. We obtained broad‐scale temporally sequential genotypic samples of a cohort of recruits in each pine relict, from seeds before dispersal to established seedlings months after emergence, tracking temporal changes in the estimated proportion of each parental cross‐type. Results show significant proportions of exotic male gametes before seed dispersal in the two pine relicts. Subsequently to seedling establishment, the frequency of exotic male gametes became nonsignificant in P. pinaster, and dropped by half in P. sylvestris. Exotic zygotic gene flow was significantly different from zero among early recruits for P. sylvestris, decreasing throughout seedling establishment. Seedling mortality resulted in small late sample sizes, and temporal differences in exotic gene flow estimates were not significant, so we could not reject the null hypothesis of invariant early viability across parental cross types in the wild. 相似文献
7.
Ten microsatellite loci were used to investigate the impact of human activity on the spatial and temporal genetic structure of Vitellaria paradoxa (Sapotaceae), a parkland tree species in agroforestry systems in southern Mali. Two stands (forest and fallow) and three cohorts (adults, juveniles and natural regeneration) in each stand were studied to: (i) compare their levels of genetic diversity (gene diversity, HE; allelic richness, Rs; and inbreeding, FIS); (ii) assess their genetic differentiation (FST); and (iii) compare their levels of spatial genetic structuring. Gene diversity parameters did not vary substantially among stands or cohorts, and tests for bottleneck events were nonsignificant. The inbreeding coefficients were not significantly different from zero in most cases (FIS = -0.025 in forest and 0.045 in fallow), suggesting that the species is probably outbreeding. There was a weak decrease in F(IS) with age, suggesting inbreeding depression. Differentiation of stands within each cohort was weak (FST = 0.026, 0.0005, 0.010 for adults, juveniles and regeneration, respectively), suggesting extensive gene flow. Cohorts within each stand were little differentiated (FST = -0.001 and 0.001 in forest and fallow, respectively). The spatial genetic structure was more pronounced in fallow than in forest where adults showed no spatial structuring. In conclusion, despite the huge influence of human activity on the life cycle of Vitellaria paradoxa growing in parkland systems, the impact on the pattern of genetic variation at microsatellite loci appears rather limited, possibly due to the buffering effect of extensive gene flow between unmanaged and managed populations. 相似文献
8.
Alberto García‐Álvarez Casper H. A. van Leeuwen Carlos J. Luque Andreas Hussner Alberto Vélez‐Martín Andrés Pérez‐Vázquez Andy J. Green Eloy M. Castellanos 《Freshwater Biology》2015,60(7):1316-1329
- Alien plant species are rapidly spreading in aquatic ecosystems around the world, causing major ecological effects. They are typically introduced by humans, after which natural vectors facilitate their further spread. Migratory waterbirds have long been recognised as important dispersal vectors for native and aquatic plants, yet little is known about their role in the spread of alien species.
- We determined experimentally the potential for long‐distance dispersal of native and alien wetland plants in Europe by two abundant waterfowl: mallards Anas platyrhynchos and greylag geese Anser anser. We fed seeds from two plants alien to Europe and two native plants to 10 individuals of each bird species, testing for the effects of bird and plant species on the potential for dispersal.
- Intact seeds were retrieved from faeces for up to 4 days after ingestion. The proportion of seeds retrieved intact varied significantly between plant, but not bird, species. Retrieval was highest for the invasive water primrose Ludwigia grandiflora (>35% of ingested seeds), lowest for the invasive cordgrass Spartina densiflora (<3%) and intermediate for the native glasswort Arthrocnemum macrostachyum and seablite Suaeda vera (5–10%).
- Seed retrieval patterns over time varied between both plant and bird species. Contrary to expectations, seeds were retained in the gut for longer in the smaller mallards. No Spartina seeds germinated after retention for over 8 h, whereas some seeds of the other species germinated even after retention for 72 h. Germinability was reduced by gut passage for Ludwigia and Arthrocnemum seeds. Ludwigia seeds recovered from geese were more likely to germinate than those recovered from mallards. Time to germination was reduced by gut passage for Spartina and Ludwigia, but increased with retention time.
- Ducks and geese evidently have the potential for long‐distance transport of alien and native plant seeds, with maximal dispersal distances of well over 1000 km. The much greater potential of Ludwigia than Spartina for dispersal by waterfowl is consistent with its faster expansion across Europe. Maximum retention times of wetland seeds have been underestimated in previous experimental studies that lasted only 1–2 days. Contrary to previous studies, wetland plants with large seeds, such as Ludwigia, can still show high potential for long‐distance dispersal. More attention should be paid to the role of waterbirds as vectors of alien plants and to the role of migratory geese as vectors of plants in general.
9.
dm Lovas‐Kiss Orsolya Vincze Erik Kleyheeg Gbor Sramk Levente Laczk Rka Fekete Attila Molnr V. Andy J. Green 《Ecology and evolution》2020,10(3):1413-1424
Field studies have shown that waterbirds, especially members of the Anatidae family, are major vectors of dispersal by endozoochory for a broad range of plants lacking a fleshy fruit, yet whose propagules can survive gut passage. Widely adopted dispersal syndromes ignore this dispersal mechanism, and we currently have little understanding of what traits determine the potential of angiosperms for endozoochory by waterbirds. Results from previous experimental studies have been inconsistent as to how seed traits affect seed survival and retention time in the gut and have failed to control for the influence of plant phylogeny. Using 13 angiosperm species from aquatic and terrestrial habitats representing nine families, we examined the effects of seed size, shape, and hardness on the proportion of seeds surviving gut passage through mallards (Anas platyrhynchos) and their retention time within the gut. We compiled a molecular phylogeny for these species and controlled for the nonindependence of taxa due to common descent in our analyses. Intact seeds from all 13 species were egested, but seed survival was strongly determined by phylogeny and by partial effects of seed mass and hardness (wet load): species with seeds harder than expected from their size, and smaller than expected from their loading, had greater survival. Once phylogeny was controlled for, a positive partial effect of seed roundness on seed survival was also revealed. Species with seeds harder than expected from their size had a longer mean retention time, a result retained after controlling for phylogeny. Our study is the first to demonstrate that seed shape and phylogeny are important predictors of seed survival in the avian gut. Our results demonstrate that the importance of controlling simultaneously for multiple traits and relating single traits (e.g., seed size) alone to seed survival or retention time is not a reliable way to detect important patterns, especially when phylogenetic effects are ignored. 相似文献
10.
Stephanie Dreier John W. Redhead Ian A. Warren Andrew F. G. Bourke Matthew S. Heard William C. Jordan Seirian Sumner Jinliang Wang Claire Carvell 《Molecular ecology》2014,23(14):3384-3395
Land‐use changes have threatened populations of many insect pollinators, including bumble bees. Patterns of dispersal and gene flow are key determinants of species' ability to respond to land‐use change, but have been little investigated at a fine scale (<10 km) in bumble bees. Using microsatellite markers, we determined the fine‐scale spatial genetic structure of populations of four common Bombus species (B. terrestris, B. lapidarius, B. pascuorum and B. hortorum) and one declining species (B. ruderatus) in an agricultural landscape in Southern England, UK. The study landscape contained sown flower patches representing agri‐environment options for pollinators. We found that, as expected, the B. ruderatus population was characterized by relatively low heterozygosity, number of alleles and colony density. Across all species, inbreeding was absent or present but weak (FIS = 0.01–0.02). Using queen genotypes reconstructed from worker sibships and colony locations estimated from the positions of workers within these sibships, we found that significant isolation by distance was absent in B. lapidarius, B. hortorum and B. ruderatus. In B. terrestris and B. pascuorum, it was present but weak; for example, in these two species, expected relatedness of queens founding colonies 1 m apart was 0.02. These results show that bumble bee populations exhibit low levels of spatial genetic structure at fine spatial scales, most likely because of ongoing gene flow via widespread queen dispersal. In addition, the results demonstrate the potential for agri‐environment scheme conservation measures to facilitate fine‐scale gene flow by creating a more even distribution of suitable habitats across landscapes. 相似文献
11.
Fabin A. Rubalcava‐Castillo Joaquín Sosa‐Ramírez Jos J. Luna‐Ruíz Arturo G. Valdivia‐Flores Vicente Díaz‐Núez Luis I. Íiguez‐Dvalos 《Ecology and evolution》2020,10(6):2991-3003
Some carnivorous mammals ingest fruit and disperse seeds of forest plant species capable of colonizing disturbed areas in ecosystems. The objective of the present study was to evaluate the dissemination of Arctostaphylos pungens and Juniperus deppeana seeds by the gray fox (Urocyon cinereoargenteus), coyote (Canis latrans), and other carnivores in the Protected Natural Area Sierra Fría, in Aguascalientes, Mexico. Scat collection was undertaken via transects using the direct search method, while the seasonal phenology of A. pungens and J. deppeana was evaluated by recording flower and fruit abundance on both the plant and the surrounding forest floor ground. Seed viability was assessed by optical densitometry via X‐ray and a germination test. It was found that the gray fox, coyote, ringtail (Bassariscus astutus), and bobcat (Lynx rufus) disseminated seeds of A. pungens (212 ± 48.9 seeds/scat) and J. deppeana (23.6 ± 4.9 seeds/scat), since a large proportion of the collected scat of these species contained seeds (28/30 = 93.33%, 12/43 = 27.9%, 6/12 = 50% and 7/25 = 28% respectively). The gray fox, coyote, ringtail, and bobcat presented an average of seed dispersion of both plant species of 185.4 ± 228.7, 4.0 ± 20.0, 12.1 ± 30.4, and 0.8 ± 1.5 per scat; the seed proportions in the gray fox, coyote, ringtail, and bobcat were 89.6/10.4%, 82.3/17.7%, 90.4/9.6%, and 38.1/61.9% for A. pungens and J. deppeana, respectively. The phenology indicated a finding related to the greater abundance of ripe fruit in autumn and winter (p < .01). This coincided with the greater abundance of seeds found in scats during these seasons. Endozoochory and diploendozoochory enhanced the viability and germination of the seeds (p > .05), except in those of A. pungens dispersed by coyote. These results suggest that carnivores, particularly the gray fox, the coyote, and the bobcat, play an important role in forest seed dissemination, and thus forest regeneration, by making both a quantitative and qualitative contribution to the dispersal of the two pioneer species under study. 相似文献
12.
《Biotropica》2017,49(2):170-176
In seed predation studies, removal of a seed is only the first step of a dynamic process that may result in dispersal rather than seed death. This process, termed seed fate, has received little attention in African forests, particularly in Central Africa. We experimentally assessed the initial steps of seed fate for two tree species—the large‐seeded Pentaclethra macrophylla and the relatively small‐seeded Gambeya lacourtiana—in northeastern Gabon. Specifically, we evaluated whether seed size and seed consumer identity are important determinants of seed fate. We established experimental stations under conspecific fruiting trees, each comprising three seeds fitted with telemetric thread tags to facilitate their recovery, and a motion‐sensitive camera to identify visiting mammals. In total, animals removed 76 tagged seeds from experimental stations. Small Murid rats and mice primarily removed small Gambeya seeds, whereas large‐bodied rodents and mandrills primarily removed large Pentaclethra seeds. Gambeya seeds were carried shorter distances than Pentaclethra seeds and were less likely to be cached. The two large‐bodied rodents handled seeds differently: Cricetomys emini larderhoarded nearly all (N = 15 of 16) encountered Pentaclethra seeds deep in burrows, while Atherurus africanus cached all (N = 5 of 5) encountered Pentaclethra seeds singly under 1–3 cm of leaf litter and soil, at an average distance of 24.2 m and a maximum distance of 46.3 m from experimental stations. This study supports the hypothesis that seed fate varies based on seed size and seed consumer identity, and represents the first telemetric experimental evidence of larderhoarding and scatterhoarding in the region. 相似文献
13.
Océane Liehrmann Flore Jégoux Marie‐Alice Guilbert Francis Isselin‐Nondedeu Sonia Saïd Yann Locatelli Christophe Baltzinger 《Ecology and evolution》2018,8(3):1582-1594
The transport phase of the animal‐mediated plant dispersal process is critical to dispersal effectiveness as it determines the spatial distribution of the diaspores released and their chance for further recruitment. Assessing this specific phase of the dispersal process generally requires combining diaspore retention times with the associated distances covered. Here, we specifically tested the effect of grooming behavior, interindividual contacts and ungulate fur on diaspore retention times and associated dispersal distances for the hooked diaspores of Xanthium strumarium L. experimentally attached to tamed individuals of three ungulate species. We used a comparative approach based on differing fur quality on different body zones of these three ungulates. During 6‐hr sessions, we monitored for grooming and social interactions that may induce intended or inadvertent diaspore detachment. Additionally, we proposed innovative approaches to directly assessing diaspore dispersal distances by red deer in situ. Fat‐tailed functions fitted diaspore retention time, highlighting the potential for long‐distance dispersal events. The longer the hair, the higher the retention capacity of diaspores in the animal's fur. As predicted, donkey retained diaspores longer than red deer and dwarf goat; and we also confirmed that diaspores attached to the short hair of the head fell off more quickly than did those on the other body zones. Dwarf goat groomed more often than both red deer and donkey, but also when it carried diaspores. Up to 14% of the diaspores detached from animal fur after specific grooming behavior. We observed, in controlled conditions, for the first time and for each ungulate species, interindividual transfers of diaspores, representing 5% of the diaspores attached to animals’ fur. Our results militate for incorporating animal behavior into plant dispersal modeling approaches. 相似文献
14.
Pierre Feutry Oliver Berry Peter M. Kyne Richard D. Pillans Richard M. Hillary Peter M. Grewe James R. Marthick Grant Johnson Rasanthi M. Gunasekera Nicholas J. Bax Mark Bravington 《Molecular ecology》2017,26(2):444-456
Measuring population connectivity is a critical task in conservation biology. While genetic markers can provide reliable long‐term historical estimates of population connectivity, scientists are still limited in their ability to determine contemporary patterns of gene flow, the most practical time frame for management. Here, we tackled this issue by developing a new approach that only requires juvenile sampling at a single time period. To demonstrate the usefulness of our method, we used the Speartooth shark (Glyphis glyphis), a critically endangered species of river shark found only in tropical northern Australia and southern Papua New Guinea. Contemporary adult and juvenile shark movements, estimated with the spatial distribution of kin pairs across and within three river systems, was contrasted with historical long‐term connectivity patterns, estimated from mitogenomes and genome‐wide SNP data. We found strong support for river fidelity in juveniles with the within‐cohort relationship analysis. Male breeding movements were highlighted with the cross‐cohort relationship analysis, and female reproductive philopatry to the river systems was revealed by the mitogenomic analysis. We show that accounting for juvenile river fidelity and female philopatry is important in population structure analysis and that targeted sampling in nurseries and juvenile aggregations should be included in the genomic toolbox of threatened species management. 相似文献
15.
Dorset W. Trapnell J. L. Hamrick Caitlin D. Ishibashi Tyler R. Kartzinel 《Molecular ecology》2013,22(14):3680-3692
Colonization of vacant habitat is a fundamental ecological process that affects the ability of species to persist and undergo range modifications in continually shifting landscapes. Thus, understanding factors that affect and limit colonization has important ecological and conservation implications. Epiphytic orchids are increasingly threatened by various factors, including anthropogenic habitat disturbance. As cleared areas (e.g. pastures) are recolonized by suitable host trees, the establishment and genetic composition of epiphytic orchid populations are likely a function of their colonization patterns. We used genetic analyses to infer the prevailing colonization pattern of the epiphytic orchid, Brassavola nodosa. Samples from three populations (i.e. individuals within a tree) from each of five pastures in the dry forest of Costa Rica were genotyped with neutral nuclear and chloroplast markers. Spatial autocorrelation and hierarchical genetic structure analyses were used to assess the relatedness of individuals within populations, among populations within pastures and among populations in different pastures. The results showed significant relatedness within populations (mean r = 0.166) and significant but lower relatedness among populations within a pasture (mean r = 0.058). Our data suggest that colonization of available habitats is by few individuals with subsequent population expansion resulting from in situ reproduction, and that individuals within a tree are not a random sample of the regional seed pool. Furthermore, populations within a pasture were likely colonized by seeds produced by founders of a neighbouring population within that pasture. These results have important ramifications for understanding conservation measures needed for this species and other epiphytic orchids. 相似文献
16.
17.
Moshe Jasper Thomas L. Schmidt Nazni W. Ahmad Steven P. Sinkins Ary A. Hoffmann 《Molecular ecology resources》2019,19(5):1254-1264
Understanding past dispersal and breeding events can provide insight into ecology and evolution and can help inform strategies for conservation and the control of pest species. However, parent–offspring dispersal can be difficult to investigate in rare species and in small pest species such as mosquitoes. Here, we develop a methodology for estimating parent–offspring dispersal from the spatial distribution of close kin, using pairwise kinship estimates derived from genome‐wide single nucleotide polymorphisms (SNPs). SNPs were scored in 162 Aedes aegypti (yellow fever mosquito) collected from eight close‐set, high‐rise apartment buildings in an area of Malaysia with high dengue incidence. We used the SNPs to reconstruct kinship groups across three orders of kinship. We transformed the geographical distances between all kin pairs within each kinship category into axial standard deviations of these distances, then decomposed these into components representing past dispersal events. From these components, we isolated the axial standard deviation of parent–offspring dispersal and estimated neighbourhood area (91 m), median parent–offspring dispersal distance (38 m) and oviposition dispersal radius within a gonotrophic cycle (25 m). We also analysed genetic structure using distance‐based redundancy analysis and linear regression, finding isolation by distance both within and between buildings and estimating neighbourhood size at 268 individuals. These findings indicate the scale required to suppress local outbreaks of arboviral disease and to target releases of modified mosquitoes for mosquito and disease control. Our methodology is readily implementable for studies of other species, including pests and species of conservation significance. [Correction added on 09 October 2020, after first online publication: 129 m corrected to 91 m; 75 m to 38 m; 36 m to 25 m.] 相似文献
18.
Anthony Chasar Ryan J. Harrigan Kimberly M. Holbrook Thomas V. Dietsch Trevon L. Fuller Martin Wikelski Thomas B. Smith 《Biotropica》2014,46(6):763-770
Tropical forest conservation and restoration require an understanding of the movements and habitat preferences of important seed dispersers. With forests now being altered at an unprecedented rate, avian frugivores are becoming increasingly vital for forest regeneration. Seed movement, however, is highly dependent on the behavioral characteristics of their dispersers. Here, we examined the movements, habitat preferences, and range sizes of two African frugivores: the Black‐casqued (Ceratogymna atrata) and the White‐thighed (Bycanistes albotibialis) Hornbill, in the lowland rain forests of southern Cameroon. Using satellite transmitters, we tracked eight hornbills for 3 yr to characterize their movements and relate them to environmental landscape features. Hornbill movements differed significantly, with B. albotibialis ranging over larger areas (mean = 20,274 ha) than C. atrata (mean = 5604 ha), and females of both species covering over 15 times the area of males. Evidence suggests that movements are irruptive during particular periods, perhaps driven by low resource availability. In addition, hornbills often returned to the same localities within a year, although movements were not characterized as migratory. Both species displayed significant differences in habitat preference, with B. albotibialis utilizing disturbed habitat more frequently than C. atrata (t = ?22.04, P = 2.2 × 10?16). Major roads were found to act as barriers for C. atrata, but not for B. albotibialis. The ability of both hornbill species to move large distances suggests hornbills will play a vital role in the maintenance and regeneration of rain forests in Central Africa as forest fragmentation increases and terrestrial vertebrates decline in numbers. 相似文献
19.
20.
Monitoring contemporary gene flow from widespread exotic plantations is becoming an important problem in forest conservation genetics. In plants, where both seed and pollen disperse, three components of exotic gene flow with potentially unequal consequences should be, but have not been, explicitly distinguished: zygotic, male gametic and female gametic. Building on a previous model for estimating contemporary rates of zygotic and male gametic gene flow among plant populations, we present here an approach that additionally estimates the third (female gametic) gene flow component, based on a combination of uni‐ and biparentally inherited markers. Using this method and a combined set of chloroplast and nuclear microsatellites, we estimate gene flow rates from exotic plantations into two Iberian relict stands of maritime pine (Pinus pinaster) and Scots pine (Pinus sylvestris). Results show neither zygotic nor female gametic gene flow but moderate (6–8%) male gametic introgression for both species, implying significant dispersal of pollen, but not of seeds, from exotic plantations into native stands shortly after introduced trees reached reproductive maturity. Numerical simulation results suggest that the model yields reasonably accurate estimates for our empirical data sets, especially for larger samples. We discuss conservation management implications of observed levels of exposure to nonlocal genes and identify research needs to determine potentially associated hazards. Our approach should be useful for plant ecologists and ecosystem managers interested in the vectors of contemporary genetic connectivity among discrete plant populations. 相似文献