首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Recently, activating mutations of the full length ALK receptor, with two hot spots at positions F1174 and R1275, have been characterized in sporadic cases of neuroblastoma. Here, we report similar basal patterns of ALK phosphorylation between the neuroblastoma IMR-32 cell line, which expresses only the wild-type receptor (ALK(WT)), and the SH-SY5Y cell line, which exhibits a heterozygous ALK F1174L mutation and expresses both ALK(WT) and ALK(F1174L) receptors. We demonstrate that this lack of detectable increased phosphorylation in SH-SY5Y cells is a result of intracellular retention and proteasomal degradation of the mutated receptor. As a consequence, in SH-SY5Y cells, plasma membrane appears strongly enriched for ALK(WT) whereas both ALK(WT) and ALK(F1174L) were present in intracellular compartments. We further explored ALK receptor trafficking by investigating the effect of agonist and antagonist mAb (monoclonal antibodies) on ALK internalization and down-regulation, either in SH-SY5Y cells or in cells expressing only ALK(WT). We observe that treatment with agonist mAbs resulted in ALK internalization and lysosomal targeting for receptor degradation. In contrast, antagonist mAb induced ALK internalization and recycling to the plasma membrane. Importantly, we correlate this differential trafficking of ALK in response to mAb with the recruitment of the ubiquitin ligase Cbl and ALK ubiquitylation only after agonist stimulation. This study provides novel insights into the mechanisms regulating ALK trafficking and degradation, showing that various ALK receptor pools are regulated by proteasome or lysosome pathways according to their intracellular localization.  相似文献   

2.
BACKGROUND: Anaplastic lymphoma kinase (ALK) inhibitor crizotinib has proven to be effective in the treatment of ALK-mutated neuroblastoma, but crizotinib resistance was commonly observed in patients. We aimed to overcome crizotinib resistance by combining with the MEK inhibitor trametinib or low-dose metronomic (LDM) topotecan in preclinical neuroblastoma models. METHODS: We selected a panel of neuroblastoma cell lines carrying various ALK genetic aberrations to assess the therapeutic efficacy on cell proliferation in vitro. Downstream signals of ALK activation, including phosphorylation of ERK1/2, Akt as well as HIF-1α expression were evaluated under normoxic and hypoxic conditions. Tumor growth inhibition was further assessed in NOD/SCID xenograft mouse models. RESULTS: All NBL cell lines responded to crizotinib treatment but at variable ED50 levels, ranging from 0.25 to 5.58 μM. ALK-mutated cell lines SH-SY5Y, KELLY, LAN-5, and CHLA-20 are more sensitive than ALK wild-type cell lines. In addition, we demonstrated that under hypoxic conditions, all NBL cell lines showed marked decrease of ED50s when compared to normoxia except for KELLY cells. Taking into consideration the hypoxia sensitivity to crizotinib, combined treatment with crizotinib and LDM topotecan demonstrated a synergistic effect in ALKF1174L-mutated SH-SY5Y cells. In vivo, single-agent crizotinib showed limited antitumor activity in ALKF1174L-mutated SH-SY5Y and KELLY xenograft models; however, when combined with topotecan, significantly delayed tumor development was achieved in both SH-SY5Y and KELLY tumor models. CONCLUSIONS: Oral metronomic topotecan reversed crizotinib drug resistance in the ALKF1174L-mutated neuroblastoma preclinical model.  相似文献   

3.
Crizotinib is the most effective and the only drug that has been approved for the treatment of anaplastic lymphoma kinase (ALK)-positive lung cancer. Reports suggest that there is a development of an acquired resistance against crizotinib action due to the emergence of several mutations in the ALK gene and F1174L is one such mutation. In this study, we used molecular docking and molecular dynamics (MD) approach to decipher the effect of F1174L mutation in drug–target binding. Docking results suggest that crizotinib was found to adopt the most promising conformations to the native-type ALK by identifying the M1199 residue as a prospective partner for making a hydrogen bond as compared to the mutant-type ALK. MD results showed that the average atom, especially atoms of the native-type ALK-crizotinib complex, movements were less, displayed less fluctuation, fast convergence of energy, and changes in geometry. This shows the stable binding of crizotinib with the native-type ALK in comparison to the mutant-type ALK. We believe that this study could be useful for the logical design of stronger, more selective, and more consistent ALK inhibitor against drug-resistant F1174L mutation.  相似文献   

4.
Anaplastic lymphoma kinase (ALK) is a receptor tyrosine kinase that, when genetically altered by mutation, amplification, chromosomal translocation or inversion, has been shown to play an oncogenic role in certain cancers. Small molecule inhibitors targeting the kinase activity of ALK have proven to be effective therapies in certain ALK-driven malignancies and one such inhibitor, crizotinib, is now approved for the treatment of EML4-ALK-driven, non-small cell lung cancer. In neuroblastoma, activating point mutations in the ALK kinase domain can drive disease progression, with the two most common mutations being F1174L and R1275Q. We report here crystal structures of the ALK kinase domain containing the F1174L and R1275Q mutations. Also included are crystal structures of ALK in complex with novel small molecule ALK inhibitors, including a classic type II inhibitor, that stabilize previously unobserved conformations of the ALK activation loop. Collectively, these structures illustrate a different series of activation loop conformations than has been observed in previous ALK crystal structures and provide insight into the activating nature of the R1275Q mutation. The novel active site topologies presented here may also aid the structure-based drug design of a new generation of ALK inhibitors.  相似文献   

5.
Neuroblastoma is the most common childhood solid tumor, yet current treatment approaches have not been able to effectively control this cancer. Amplification and overexpression of MYCN have been shown to be closely related with high risk and poor prognosis in neuroblastoma. This suggests that MYCN is an important target for the antitumor therapy. Recently, vector-based RNA interference (RNAi) systems have been successfully used to eliminate gene expression, but knockdown of MYCN by vector-based RNAi as a therapeutic model for neuroblastoma has not been fully established.In this study, we used a lentivirus vector-based RNAi approach which expresses short hairpin RNA (shRNA) to knockdown MYCN in neuroblastoma cell lines IMR-32 and LAN-1. Western blotting analysis showed that expressions of MYCN were efficiently downregulated after infection with MYCN shRNA expression vector. The stable suppression of MYCN expression induced differentiation and apoptosis in neuroblastoma cell lines. Furthermore, we demonstrated that these changes were associated with caspase-3 activation, p27 upregulation as well as Bcl-2 and MDM2 downregulation. Finally, we demonstrated that downregulation of MYCN expression significantly reduced colony formation in vitro and tumor growth in nude mice.Our data indicate that lentivirus vector-mediated silencing of MYCN in neuroblastoma cells could efficiently and significantly inhibit tumor growth both in vitro and in vivo. Therefore we demonstrate the therapeutic potential of lentivirus-delivered shRNA as a novel approach for treatment of neuroblastoma and other malignant tumors with MYCN overexpression.  相似文献   

6.
Mutations in the kinase domain of ALK (anaplastic lymphoma kinase) have recently been shown to be important for the progression of the childhood tumour neuroblastoma. In the present study we investigate six of the putative reported constitutively active ALK mutations, in positions G1128A, I1171N, F1174L, R1192P, F1245C and R1275Q. Our analyses were performed in cell-culture-based systems with both mouse and human ALK mutant variants and subsequently in a Drosophila melanogaster model system. Our investigation addressed the transforming potential of the putative gain-of-function ALK mutations as well as their signalling potential and the ability of two ATP-competitive inhibitors, Crizotinib (PF-02341066) and NVP-TAE684, to abrogate the activity of ALK. The results of the present study indicate that all mutations tested are of an activating nature and thus are implicated in tumour initiation or progression of neuroblastoma. Importantly for neuroblastoma patients, all ALK mutations used in the present study can be blocked by the inhibitors, although some mutants exhibited higher levels of drug sensitivity than others.  相似文献   

7.
Neuroblastoma, a tumor of the peripheral sympathetic nervous system, is the most common and deadly extracranial tumor of childhood. The majority of high-risk neuroblastoma exhibit amplification of the MYCN proto-oncogene and increased neoangiogenesis. Both MYCN protein stabilization and angiogenesis are regulated by signaling through receptor tyrosine kinases (RTKs). Therefore, inhibitors of RTKs have a potential as a treatment option for high-risk neuroblastoma. We used receptor tyrosine kinase antibody arrays to profile the activity of membrane-bound RTKs in neuroblastoma and found the multi-RTK inhibitor sunitinib to tailor the activation of RTKs in neuroblastoma cells. Sunitinib inhibited several RTKs and demonstrated potent antitumor activity on neuroblastoma cells, through induction of apoptosis and cell cycle arrest. Treatment with sunitinib decreased MYCN protein levels by inhibition of PI3K/AKT signaling and GSK3β. This effect correlates with a decrease in VEGF secretion in neuroblastoma cells with MYCN amplification. Sunitinib significantly inhibited the growth of established, subcutaneous MYCN-amplified neuroblastoma xenografts in nude mice and demonstrated an anti-angiogenic effect in vivo with a reduction of tumor vasculature and a decrease of MYCN expression. These results suggest that sunitinib should be tested as a treatment option for high risk neuroblastoma patients.  相似文献   

8.
Neuroblastoma (NB) is a pediatric cancer. New therapies for high-risk NB aim to induce cell differentiation and to inhibit MYCN and ALK signaling in NB. The vasoactive intestinal peptide (VIP) and the pituitary adenylate cyclase-activating polypeptide (PACAP) are 2 related neuropeptides sharing common receptors. The level of VIP increases with NB differentiation. Here, the effects of VIP and PACAP analogs developed for therapeutic use were studied in MYCN-amplified NB SK-N-DZ and IMR-32 cells and in Kelly cells that in addition present the F1174L ALK mutation. As previously reported by our group in IMR-32 cells, VIP induced neuritogenesis in SK-N-DZ and Kelly cells and reduced MYCN expression in Kelly but not in SK-N-DZ cells. VIP decreased AKT activity in the ALK-mutated Kelly cells. These effects were PKA-dependent. IMR-32, SK-NDZ and Kelly cells expressed the genes encoding the 3 subtypes of VIP and PACAP receptors, VPAC1, VPAC2 and PAC1. In parallel to its effect on MYCN expression, VIP inhibited invasion in IMR-32 and Kelly cells. Among the 3 PACAP analogs tested, [Hyp2]PACAP-27 showed higher efficiency than VIP in Kelly cells. These results indicate that VIP and PACAP analogs act on molecular and cellular processes that could reduce aggressiveness of high-risk NB.  相似文献   

9.
Targeted expression of MYCN causes neuroblastoma in transgenic mice.   总被引:10,自引:0,他引:10       下载免费PDF全文
The proto-oncogene MYCN is often amplified in human neuroblastomas. The assumption that the amplification contributes to tumorigenesis has never been tested directly. We have created transgenic mice that overexpress MYCN in neuroectodermal cells and develop neuroblastoma. Analysis of tumors by comparative genomic hybridization revealed gains and losses of at least seven chromosomal regions, all of which are syntenic with comparable abnormalities detected in human neuroblastomas. In addition, we have shown that increases in MYCN dosage or deficiencies in either of the tumor suppressor genes NF1 or RB1 can augment tumorigenesis by the transgene. Our results provide direct evidence that MYCN can contribute to the genesis of neuroblastoma, suggest that the genetic events involved in the genesis of neuroblastoma can be tumorigenic in more than one chronological sequence, and offer a model for further study of the pathogenesis and therapy of neuroblastoma.  相似文献   

10.
11.
12.
13.
14.
ALK is an established causative oncogenic driver in neuroblastoma, and is likely to emerge as a routine biomarker in neuroblastoma diagnostics. At present, the optimal strategy for clinical diagnostic evaluation of ALK protein, genomic and hotspot mutation status is not well-studied. We evaluated ALK immunohistochemical (IHC) protein expression using three different antibodies (ALK1, 5A4 and D5F3 clones), ALK genomic status using single-color chromogenic in situ hybridization (CISH), and ALK hotspot mutation status using conventional Sanger sequencing and a next-generation sequencing platform (Ion Torrent Personal Genome Machine (IT-PGM)), in archival formalin-fixed, paraffin-embedded neuroblastoma samples. We found a significant difference in IHC results using the three different antibodies, with the highest percentage of positive cases seen on D5F3 immunohistochemistry. Correlation with ALK genomic and hotspot mutational status revealed that the majority of D5F3 ALK-positive cases did not possess either ALK genomic amplification or hotspot mutations. Comparison of sequencing platforms showed a perfect correlation between conventional Sanger and IT-PGM sequencing. Our findings suggest that D5F3 immunohistochemistry, single-color CISH and IT-PGM sequencing are suitable assays for evaluation of ALK status in future neuroblastoma clinical trials.  相似文献   

15.
Dendritic morphology is a critical determinant of neuronal connectivity, and in postganglionic sympathetic neurons, tonic activity correlates directly with the size of the dendritic arbor. Thus, identifying signaling mechanisms that regulate dendritic arborization of sympathetic neurons is important to understanding how functional neural circuitry is established and maintained in the sympathetic nervous system. Bone morphogenetic proteins (BMPs) promote dendritic growth in sympathetic neurons; however, downstream signaling events that link BMP receptor activation to dendritic growth are poorly characterized. We previously reported that BMP7 upregulates p75NTR mRNA in cultured sympathetic neurons. This receptor is implicated in controlling dendritic growth in central neurons but whether p75NTR regulates dendritic growth in peripheral neurons is not known. Here, we demonstrate that BMP7 increases p75NTR protein in cultured sympathetic neurons, and this effect is blocked by pharmacologic inhibition of signaling via BMP type I receptor. BMP7 does not trigger dendritic growth in sympathetic neurons dissociated from superior cervical ganglia (SCG) of p75NTR nullizygous mice, and overexpression of p75NTR in p75NTR?/? neurons is sufficient to cause dendritic growth even in the absence of BMP7. Morphometric analyses of SCG from wild‐type versus p75NTR nullizygous mice at 3, 6, and 12 to 16 weeks of age indicated that genetic deletion of p75NTR does not prevent dendritic growth but does stunt dendritic maturation in sympathetic neurons. These data support the hypotheses that p75NTR is involved in downstream signaling events that mediate BMP7‐induced dendritic growth in sympathetic neurons, and suggest that p75NTR signaling positively modulates dendritic complexity in sympathetic neurons in vivo. © 2016 Wiley Periodicals, Inc. Develop Neurobiol 76: 1003–1013, 2016  相似文献   

16.
The rearrangement of pre-existing genes has long been thought of as the major mode of new gene generation. Recently, de novo gene birth from non-genic DNA was found to be an alternative mechanism to generate novel protein-coding genes. However, its functional role in human disease remains largely unknown. Here we show that NCYM, a cis-antisense gene of the MYCN oncogene, initially thought to be a large non-coding RNA, encodes a de novo evolved protein regulating the pathogenesis of human cancers, particularly neuroblastoma. The NCYM gene is evolutionally conserved only in the taxonomic group containing humans and chimpanzees. In primary human neuroblastomas, NCYM is 100% co-amplified and co-expressed with MYCN, and NCYM mRNA expression is associated with poor clinical outcome. MYCN directly transactivates both NCYM and MYCN mRNA, whereas NCYM stabilizes MYCN protein by inhibiting the activity of GSK3β, a kinase that promotes MYCN degradation. In contrast to MYCN transgenic mice, neuroblastomas in MYCN/NCYM double transgenic mice were frequently accompanied by distant metastases, behavior reminiscent of human neuroblastomas with MYCN amplification. The NCYM protein also interacts with GSK3β, thereby stabilizing the MYCN protein in the tumors of the MYCN/NCYM double transgenic mice. Thus, these results suggest that GSK3β inhibition by NCYM stabilizes the MYCN protein both in vitro and in vivo. Furthermore, the survival of MYCN transgenic mice bearing neuroblastoma was improved by treatment with NVP-BEZ235, a dual PI3K/mTOR inhibitor shown to destabilize MYCN via GSK3β activation. In contrast, tumors caused in MYCN/NCYM double transgenic mice showed chemo-resistance to the drug. Collectively, our results show that NCYM is the first de novo evolved protein known to act as an oncopromoting factor in human cancer, and suggest that de novo evolved proteins may functionally characterize human disease.  相似文献   

17.
18.
19.
20.
Utilizing a recently identified Sox10 distal enhancer directing Cre expression, we report S4F:Cre, a transgenic mouse line capable of inducing recombination in oligodendroglia and all examined neural crest derived tissues. Assayed using R26R:LacZ reporter mice expression was detected in neural crest derived tissues including the forming facial skeleton, dorsal root ganglia, sympathetic ganglia, enteric nervous system, aortae, and melanoblasts, consistent with Sox10 expression. LacZ reporter expression was also detected in non‐neural crest derived tissues including the oligodendrocytes and the ventral neural tube. This line provides appreciable differences in Cre expression pattern from other transgenic mouse lines that mark neural crest populations, including additional populations defined by the expression of other SoxE proteins. The S4F:Cre transgenic line will thus serve as a powerful tool for lineage tracing, gene function characterization, and genome manipulation in these populations. genesis 47:765–770, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号