首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Abstract Quediina, a mega‐diverse conventional subtribe of the rove beetle tribe Staphylinini, is remarkably species rich in the north and south temperate regions of the world. Tropical faunas of this group, and the fauna of the entire Afrotropical biogeographical region (= Ethiopian region, = sub‐Saharan Africa), in contrast, are remarkably poor. The taxonomic study of the quediine genera of Staphylinini from the Afrotropical region reveals misidentifications for many of them. Their phylogenetic study demonstrates polyphyly of Quediina and reveals a new evolutionary pattern for the entire tribe Staphylinini. In particular, the formerly quediine genera Euristus Fauvel, 1899 , Ioma Blackwelder, 1952, Natalignathus Solodovnikov, 2005 , all endemic in the Afrotropical region, belong to the non‐related ‘Staphylinina’, ‘Philonthina propria’ and ‘Tanygnathinina sensu novo’ lineages of Staphylinini, respectively. Contrary to earlier records, the genus Quedius Stephens, 1929 does not occur in Africa south of Sahara: Quedius angularis Cameron, 1948 and Quedius cinctipennis Cameron, 1951 are moved to the genus Philonthus Stephens, 1829. The same is established for the Asian genus Algon Sharp, 1874, formerly for a long time associated with Quediina: African species Algon robustus Wendeler, 1928 is moved to the genus Moeocerus Fauvel, 1899 (here in the ‘Philonthina propria’ lineage); and the misidentification of Algon africanus Bernhauer, 1915, a species that probably belongs to a new genus, is discussed. The phylogenetic affiliation of Afroquedius Solodovnikov, 2006 , a South African endemic, is still ambiguous. Overall, the formerly seen bipolar distribution pattern for the ‘Quediina’ is demonstrated to be an artefact, not a reality to explain. Historical biogeographical explanations are proposed for some of the Afrotropical endemics, partly as an attempt to apply biogeography as an external criterion for the evaluation of the new phylogenetic pattern revealed for Staphylinini. The monotypic genera Euristus and Ioma, as well as Heterothops megalops Cameron, 1959 , the only representative of this widespread genus in the Afrotropical region, are redescribed. Limits and synapomorphies of the genus Heterothops are discussed. The following new combinations and new names are proposed: Philonthus cinctipennis ( Cameron, 1951 ) comb.n. (preoccupied by Philonthus cinctipennis Fauvel, 1875), here replaced by Philonthus pseudoquedius Solodovnikov nom.n. ; Philonthus angularis ( Cameron, 1948 ) comb.n. ; Moeocerus robustus ( Wendeler, 1928 ) comb.n. [preoccupied by Moeocerus robustus (Gestro, 1881)], here replaced by Moeocerus wendeleri Solodovnikov nom.n. A lectotype is designated for Heterothops megalops Cameron, 1959 .  相似文献   

2.
Aim Grasslands and savannas, which make up > 75% of Madagascar’s land area, have long been viewed as anthropogenically derived after people settled on the island c. 2 ka. We investigated this hypothesis and an alternative – that the grasslands are an insular example of the post‐Miocene spread of C4 grassy biomes world‐wide. Location Madagascar, southern Africa, East Africa. Methods We compared the number of C4 grass genera in Madagascar with that in southern and south‐central African floras. If the grasslands are recent we would expect to find fewer species and genera in Madagascar relative to Africa and for these species and genera to have very wide distribution ranges in Madagascar. Secondly, we searched Madagascan floras for the presence of endemic plant species or genera restricted to grasslands. We also searched for evidence of a grassland specialist fauna with species endemic to Madagascar. Plant and animal species endemic to C4 grassy biomes would not be expected if these are of recent origin. Results Madagascar has c. 88 C4 grass genera, including six endemic genera. Excluding African genera with only one or two species, Madagascar has 86.6% of southern Africa’s and 89.4% of south‐central Africa’s grass genera. C4 grass species make up c. 4% of the flora of both Madagascar and southern Africa and species : genus ratios are similar (4.3 and 5.1, respectively). Turnover of grasses along geographical gradients follows similar patterns to those in South Africa, with Andropogoneae dominating in mesic biomes and Chlorideae in semi‐arid grassy biomes. At least 16 monocot genera have grassland members, many of which are endemic to Madagascar. Woody species in frequently burnt savannas include both Madagascan endemics and African species. A different woody flora, mostly endemic, occurs in less frequently burnt grasslands in the central highlands, filling a similar successional niche to montane C4 grasslands in Africa. Diverse vertebrate and invertebrate lineages have grassland specialists, including many endemic to Madagascar (e.g. termites, ants, lizards, snakes, birds and mammals). Grassland use of the extinct fauna is poorly known but carbon isotope analysis indicates that a hippo, two giant tortoises and one extinct lemur ate C4 or CAM (crassulacean acid metabolism) plants. Main conclusions The diversity of C4 grass lineages in Madagascar relative to that in Africa, and the presence of plant and animal species endemic to Madagascan grassy biomes, does not fit the view that these grasslands are anthropogenically derived. We suggest that grasslands invaded Madagascar after the late Miocene, part of the world‐wide expansion of C4 grassy biomes. Madagascar provides an interesting test case for biogeographical analysis of how these novel biomes assembled, and the sources of the flora and fauna that now occupy them. A necessary part of such an analysis would be to establish the pre‐settlement extent of the C4 grassy biomes. Carbon isotope analysis of soil organic matter would be a feasible method for doing this.  相似文献   

3.
Eulophiinae comprise c. 270 species divided into nine genera, with the species‐rich terrestrial genus Eulophia representing 60% of this diversity. Remarkable ecological and morphological variation, and an absence of clear diagnostic characters have led to uncertain generic delimitation in the subtribe. Using a combination of new and previously published DNA sequences, we created a dataset representing 122 taxa and all genera of Eulophiinae and inferred a complete generic‐level phylogeny for the subtribe for the first time. Our sampling focused on analysing Afro‐Madagascan taxa and therefore included representatives of the four mostly epiphytic Madagascan endemic genera, the near Madagascan endemic Oeceoclades and additional sampling of the predominantly African genera Eulophia and Orthochilus. In total, 104 new accessions were collected for this study in Zambia and Madagascar (88 of which represented 36 Eulophia spp. and 12 Oeceoclades spp.). Independent plastid and nuclear phylogenetic trees were inferred using Bayesian and maximum‐likelihood algorithms, which recovered strong support for a monophyletic Eulophiinae, the first‐branching position of the mostly epiphytic Madagascan endemic genera, and increased support for recognition of the terrestrial genera Oeceoclades and Orthochilus. Eulophia, the largest genus in the group, was recovered as polyphyletic, but with implications for its classification and that of Geodorum, that was nested in the main Eulophia clade. Although relationships among several genera were resolved with some confidence, the positions of the South African endemic genus Acrolophia and the epiphytic Madagascan endemic Paralophia require further work. Taxon sampling of Asian Eulophia is a priority for future work on the systematics of this group. © 2015 The Linnean Society of London, Botanical Journal of the Linnean Society, 2015, 179 , 43–56.  相似文献   

4.
The Platypleurini is a large group of charismatic cicadas distributed from Cape Agulhas in South Africa, through tropical Africa, Madagascar, India and eastern Asia to Japan, with generic diversity concentrated in equatorial and southern Africa. This distribution suggests the possibility of a Gondwanan origin and dispersal to eastern Asia from Africa or India. We used a four‐gene (three mitochondrial) molecular dataset, fossil calibrations and molecular clock information to explore the phylogenetic relationships of the platypleurine cicadas and the timing and geography of their diversification. The earliest splits in the tribe were found to separate forest genera in Madagascar and equatorial Africa from the main radiation, and all of the Asian/Indian species sampled formed a younger clade nested well within the African taxa. The tribe appears to have diversified during the Cenozoic, beginning c. 50–32 Ma, with most extant African lineages originating in the Miocene or later, well after the breakup of the Gondwanan landmass. Biogeographical analysis suggests an African origin for the tribe and a single dispersal event founding the Asian platypleurines, although additional taxon sampling and genetic data will be needed to confirm this pattern because key nodes in the tree are still weakly supported. Two Platypleurini genera from Madagascar (Pycna Amyot & Audinet‐Serville, Yanga Distant) are found to have originated by late Miocene dispersal of a single lineage from Africa. The genus Platypleura is recovered as polyphyletic, with Platypleura signifera Walker from South Africa and many Asian/Indian species apparently requiring assignment to different genera, and a new Platypleura concept is proposed with the synonymization of Azanicada Villet syn.n. The genera Orapa Distant and Hamza Distant, currently listed within separate tribes but suspected of platypleurine affinity, are nested deeply within the Platypleurini radiation. The tribe Orapini syn.n . is here synonymized while the tribe Hamzini is pending a decision of the ICZN to preserve nomenclatorial stability.  相似文献   

5.
The cryptic ground-dwelling castianeirine genus Copa Simon, 1885 (Araneae: Corinnidae) is revised in the continental Afrotropical Region. The type species of the genus, Copa flavoplumosa Simon, 1885, is redescribed and considered a senior synonym of Copa benina Strand, 1916 syn. n. and Copa benina nigra Lessert, 1933 syn. n. It is widespread throughout the Afrotropical Region but has not been introduced to any of the associated regional islands. A new species, Copa kei sp. n., is described from South Africa. Copa agelenina Simon, 1910, originally described from a subadult female from southern Botswana, is considered a nomen dubium. Copa flavoplumosa is a characteristic species of leaf litter spider assemblages and is particularly prevalent in savanna habitats on the continent, but also occurs in various forest types, grasslands, fynbos and semi-arid Nama Karoo habitats. In contrast, Copa kei sp. n. has only been recorded from Afromontane and coastal forests in south-eastern South Africa.  相似文献   

6.
A phylogenetic analysis of selected oestroid taxa based on 66 morphological traits and sequences from three nuclear protein‐coding genes (CAD, MAC, MCS) resolved the composition and phylogenetic position of the former subfamily Polleniinae of the Calliphoridae – here resurrected at family rank as Polleniidae Brauer & Bergenstamm, 1889 stat. rev. Six species are transferred from the family Rhinophoridae to the Polleniidae: the Palaearctic genus Alvamaja Rognes, along with its single species Alvamaja chlorometallica Rognes, and five Afrotropical species comprising the carinata‐group formerly in the genus Phyto Robineau‐Desvoidy but here assigned to genus Morinia Robineau‐Desvoidy, i.e. M. carinata (Pape, 1987) comb.n. , M. lactineala (Pape, 1997) comb.n. , M. longirostris (Crosskey, 1977) comb.n. , M. royi (Pape, 1997) comb.n. and M. stuckenbergi (Crosskey, 1977) comb.n. The Polleniidae are monophyletic and, in agreement with most recent phylogenetic reconstructions, sister to the Tachinidae. The female of A. chlorometallica and a new species of Morinia of the carinata‐group (Morinia tsitsikamma sp.n. from South Africa) are described. This published work has been registered in ZooBank, http://zoobank.org/urn:lsid:zoobank.org:pub:25B0C220‐DEE4‐4B0C‐88EA‐35FDE298EBC5 .  相似文献   

7.
The globally distributed avian family Motacillidae consists of five to seven genera (Anthus, Dendronanthus, Tmetothylacus, Macronyx and Motacilla, and depending on the taxonomy followed, Amaurocichla and Madanga) and 66–68 recognized species, of which 32 species in four genera occur in sub‐Saharan Africa. The taxonomy of the Motacillidae has been contentious, with variable numbers of genera, species and subspecies proposed and some studies suggesting greater taxonomic diversity than currently recognized (five genera and 67 species). Using one nuclear (Mb) and two mitochondrial (cyt b and CO1) gene regions amplified from DNA extracted from contemporary and museum specimens, we investigated the taxonomic status of 56 of the currently recognized motacillid species and present the most taxonomically complete and expanded phylogeny of this family to date. Our results suggest that the family comprises six clades broadly reflecting continental distributions: sub‐Saharan Africa (two clades), the New World (one clade), Palaearctic (one clade), a widespread large‐bodied Anthus clade, and a sixth widespread genus, Motacilla. Within the Afrotropical region, our phylogeny further supports recognition of Wood Pipit Anthus nyassae as a valid species, and the treatment of Long‐tailed Pipit Anthus longicaudatus and Kimberley Pipit Anthus pseudosimilis as junior subjective synonyms of Buffy Pipit Anthus vaalensis and African Pipit Anthus cinnamomeus, respectively. As the disjunct populations of Long‐billed Pipit Anthus similis in southern and East Africa are genetically distinct and geographically separated, we propose a specific status for the southern African population under the earliest available name, Nicholson's Pipit Anthus nicholsoni. Further, as our analyses indicate that Yellow‐breasted Pipit Anthus chloris and Golden Pipit Tmetothylacus tenellus are both nested within the Macronyx longclaws, we propose transferring these species to the latter genus.  相似文献   

8.
The Old World bat family Miniopteridae comprises only the genus Miniopterus, which includes 20 currently recognized species from the Afrotropical realm and 15 species from Eurasia and Australasia. Since 2003, the number of recognized Miniopterus species has grown from 19 to 35, with most newly described species endemic to Madagascar and the Comoros Archipelago. We investigated genetic variation, phylogenetic relationships and clade membership in Miniopterus focusing on Afrotropical taxa. We generated mitochondrial cytochrome-b (cyt-b) and nuclear intron data (five genes) from 352 vouchered individuals collected at 78 georeferenced localities. Including 99 additional mitochondrial sequences from GenBank, we analysed a total of 25 recognized species. Mitochondrial genetic distances among cyt-b-supported clades averaged 9.3%, representing as many as five undescribed species. Multilocus coalescent delimitation strongly supported the genetic isolation of eight of nine tested unnamed clades. A large number of sampled clades in sub-Saharan Africa are distributed wholly or partly in East Africa (nine of 13 clades), suggesting that Miniopterus diversity has been grossly underestimated. Although 25 of 27 cyt-b and 23 of 25 nuclear gene tree lineages from the Afrotropics were strongly supported as monophyletic, a majority of deep nodes were poorly resolved in phylogenetic analyses. Long terminal branches subtending short backbone internodes in the phylogenetic analyses suggest a rapid radiation model of diversification. This hypothesis needs to be tested using more phylogenetically informative data.  相似文献   

9.
The tribe Colpopterini Gnezdilov, 2003 is revised, upgraded to the subfamily Colpopterinae, stat. n., and transferred from the family Issidae Spinola to Nogodinidae Melichar. The tribe Colpopterini is recorded from the Afrotropical Region for the first time—Bumerangum deckerti gen. et sp. n. is described from Southern Africa. The tribe Colpopterini s. str. comprises 6 genera: Bumerangum gen. n., Caudibeccus Gnezdilov et O’Brien, 2008, Colpoptera Burmeister, 1835, Jamaha Gnezdilov et O’Brien, 2008, Neocolpoptera Dozier, 1931, and Ugoa Fennah, 1945. The genera Cheiloceps Uhler, 1895, Tempsa Stål, 1866, Eupilis Walker, 1857, and Gabaloeca Walker, 1870 are transferred to the tribe Issini Spinola of the family Issidae. Issus longulus Lethierry, 1890 is transferred to the genus Colpoptera Burmeister. A key to the genera and a list of the species of the tribe Colpopterini are given. Morphological data confirming independent evolution of similar ovipositor types in the families Issidae and Nogodinidae are provided. The term “styletization” is suggested for describing the transformation of the ovipositor from a rounded to an elongate type.  相似文献   

10.
Phylogenetic relationships among genera of African colubrids were evaluated using estimates of divergence among serum albumins compared by microcomplement fixation. Representatives of about half of the extant genera of African colubrids, as well as the Elapidae, Atractaspis and the Madagascan colubrid Leioheterodon, were analysed. The tree of best fit to the data has an unresolved basal polychotomy comprising at least five lineages of colubrids, as well as Elapidae and Atractaspis; thus, colubrids were not demonstrably monophyletic with these data. Two cosmopolitan clades, colubrines and natricines, are represented in Africa by series of closely related genera, but divergence among other genera is relatively great. Rate tests show that this is apparently not due to higher rates of albumin evolution in these, relative to other colubrids. Among the other associations supported by the immunological data are: (1) Psammophis-(Rhamphiophis-Dipsina)-Malpolon-Psammophylax; (2) Amblyodipsas-Macrelaps; (3) (Lycodonomorphus-Lamprophis)-Mehelya; and (4) Colubrinae-Natricinae. Grayia is questionably associated with the colubrine-natricine lineage. Prosymna and Lycodon are clearly members of the colubrine clade, and Amplorhinus possibly associates with Leioheterodon. Gonionotophis, Duherria, Lycophidion and Pseudaspis show no strong association with any other genera, and represent other basal or near-basal clades within the colubrid/elapid radiation. The immunological data do not support a clade comprising the Elapidae, Atractaspis and some ‘aparallactines’ relative to Viperidae and other colubrids. The basal colubrid-elapid-Atractaspis divergence occurred more than 30 Myr ago, and the fossil record of colubrids in Africa greatly underestimates both the age and clade diversity of this group. In contrast to the pattern of radiation in the neotropics, where most colubrids belong to one of three major clades, in Africa only the colubrine lineage comprises a substantial portion of the extant generic diversity; most other genera stem from relatively ancient cladogenetic events and have few living representatives.  相似文献   

11.
Cloeodes Traver is atypical among Baetidae (Ephemeroptera) because it seems to possess a unique Pantropical distribution. Thirty‐nine species have been described to date, 26 from the Neotropics, four from the Southern Nearctic, seven from the Afrotropics and two from the Oriental region. Several genera have been considered related to Cloeodes during the last decades, of which the following remain valid: Crassabwa Lugo‐Ortiz & McCafferty, Dabulamanzia Lugo‐Ortiz & McCafferty (both Afrotropical), Bungona Harker (Australasian) and Chopralla Waltz & McCafferty (Oriental). Despite their supposed relationship, a phylogenetic analysis between all of these genera has never been performed. In the present paper, based on an extensive analysis of all genera that have been considered related to Cloeodes, a phylogenetic analysis using morphological characters (continuous and discrete) was performed in order to address the monophyly of the genus Cloeodes within the Cloeodes complex of genera. According to our results, Cloeodes and the complex are paraphyletic. Based on this, Cloeodes is restricted to the New World, Potamocloeon is revalidated to include most representatives of Afrotropical Cloeodes and is divided into two subgenera: Potamocloeon (Africa) and the new Aquaediva (Madagascar). In addition, the concept of Bungona is expanded to include Australasian and Oriental taxa – namely the subgenera Chopralla and the revalidated Centroptella – and finally the new genus Crassolus is established to include C. inzingae comb.n. from Africa. This published work has been registered in ZooBank, http://zoobank.org/urn:lsid:zoobank.org:pub:C416090E-C43D-481A-9A3D-F3B1EEE41176 .  相似文献   

12.
13.

Background  

Butterflies of the subtribe Mycalesina (Nymphalidae: Satyrinae) are important model organisms in ecology and evolution. This group has radiated spectacularly in the Old World tropics and presents an exciting opportunity to better understand processes of invertebrate rapid radiations. However, the generic-level taxonomy of the subtribe has been in a constant state of flux, and relationships among genera are unknown. There are six currently recognized genera in the group. Mycalesis, Lohora and Nirvanopsis are found in the Oriental region, the first of which is the most speciose genus among mycalesines, and extends into the Australasian region. Hallelesis and Bicyclus are found in mainland Africa, while Heteropsis is primarily Madagascan, with a few species in Africa. We infer the phylogeny of the group with data from three genes (total of 3139 bp) and use these data to reconstruct events in the biogeographic history of the group.  相似文献   

14.
Three new species of the genus Aeschnosoma are briefly described and illustrated. A. pseudoforcipula n. sp. and A. heliophila n. sp., both from the Brazilian Central Plateau are respectively related to the two Amazonian species A. forcipula Hagen in Selys 1871, and A. auripennis Geijskes 1970. A. louissiriusi n. sp. from Northern Brazil is not closely related to any known species. Based on larval and adult derived characters, the genus Aeschnosoma appears closely related to the Australian genus Pentathemis Karsch 1890, and also to the Madagascan genus Libellulosoma Martin 1907. The clade Aeschnosomata nov. is erected to receive the three genera. Some putative plesiomorphies would place this clade sister group of the remaining Corduliidae s.str.  相似文献   

15.
Recent field studies revealed two new species of the genus Aglyptodactylus (Amphibia: Anura: Ranidae), which was hitherto considered as monotypic and confined to humid eastern Madagascar. Both new species, Aglyptodactylus laticeps sp. n. and Aglyptodactylus securifer sp. n. , occur syntopically in the deciduous dry forest of Kirindy in western Madagascar. In comparison to Aglyptodactylus madagascariensis from eastern rainforests, the new species A. laticeps shows a remarkable morphological divergence, which may be partly due to adaptations to burrowing habits in dry environments. Despite of the morphological differentiation, advertisement calls and osteology indicate that all three species of Aglyptodactylus are closely related. A phylogenetic analysis of the Madagascan ranid genera Aglyptodactylus, Mantella, Mantidactylus, Boophis , and Tomopterna (the latter including species from Madagascar, Africa, and Asia) strongly supports a sister group relationship of Aglyptodactylus with the ranine genus Tomopterna . We therefore transfer Aglyptodactylus from the Rhacophorinae to the Raninae and discuss implications of this rearrangement for ranoid systematics. The existence of the endemic genus Aglyptodactylus in Madagascar as well as its close phylogenetic relationships to Tomopterna confirm that the Raninae were already present on the Madagascan plate before its separation from Africa. The Madagascan Tomopterna labrosa shows several important differences both to Asian and to African species of the genus, and is therefore transferred from the subgenus Sphaerotheca (now restricted to Asia) to a new subgenus Laliostoma subgen. n .  相似文献   

16.
Drakensbergianella rudebecki, a new genus and new species of flea beetle (Chrysomelidae, Alticinae) found at high elevations from Southern Africa (Drakensberg mountains) is described. This new genus is closely related to the genus Gabonia Jacoby, 1893 but is easily distinguishable mainly by: the metasternum shorter than the length of the middle coxal cavities; the legs with femora and tibiae clearly elongate, especially the hind ones; the antennae generally longer than body in both sexes, especially in males; the metafemoral spring with inner side of the ventral lobe not angled; the metathoracic wings strongly reduced. Line drawings of male and female genitalia, metafemoral springs, and scanning electronic micrographs of particular morphological aspects of the taxa considered are provided. Finally, a brief discussion about Gabonia and related genera in the Afrotropical region with a key for the identification, is also reported. Moreover, the following new combination is proposed: Longitarsus ruandensis Weise, 1910 = Montiaphthona ruandensis Weise, 1910 n. comb.  相似文献   

17.
Ant nest beetles (Paussus L.) are ecologically fascinating and phenotypically bizarre. Obligate myrmecophiles, Paussus have undergone extreme adaptations for life with ants and their profound range of phenotypic diversity has been difficult to reconcile in a systematic framework. We conducted a detailed morphological study of Paussus utilizing novel techniques and character systems in order to discover anatomical apomorphies diagnostic of the major clades of Paussus strongly supported by molecular data. Bayesian inference (BI) of molecules alone, morphology alone and varying combinations of the two data types reveal that morphology is informative for placing Paussus species, despite the extreme phenotypic diversity and convergence prevalent in the group. We propose a new classification for Paussus based on this phylogeny. The genus Paussus is revised to include all genera, subgenera and species formerly classified as Paussus by Nagel (2003) in addition to Hylopaussus syn.n. , Hylotorus syn.n. and Granulopaussus syn.n. The following species are transferred to Paussus: Paussus sebakuanus (Péringuey) comb.n. , Paussus gracilis (Reichensperger) comb.n. , Paussus bucephalus Gyllenhal, Paussus caroli (Reichensperger) comb.n. , Paussus uelensis (Reichensperger) comb.n. , Paussus hottentottus (Westwood) comb.n. , Paussus blanchardi (Raffray) comb.n. , Paussus basilewskyi (Luna de Carvalho) comb.n. , Paussus granulatus Westwood, Paussus sankuruensis Reichensperger, Paussus leleupi (Reichensperger) comb.n. , Paussus reichenspergeri (Luna de Carvalho) comb.n. We formally delineate and diagnose the following major subgroups of Paussus: Paussus I series, comprising the subgenera Bohemanipaussus Luna de Carvalho stat. rev. sensu n. , Bathypaussus Wasmann stat. rev. sensu n. , and Edaphopaussus Kolbe stat. rev. sensu n. ; the Paussus II series comprising the subgenera Paussus L. stat. rev. sensu n. , Klugipaussus Kolbe stat. rev. sensu n. , Scaphipaussus Fowler stat. rev. sensu n. , Hylotorus Dalman stat.n. sensu n. , and Anapaussus Wasmann stat. rev. sensu n. ; and the Paussus III series comprising the subgenera Lineatopaussus Kolbe stat. rev. sensu n. and Shuckardipaussus Kolbe stat. rev. sensu n.  相似文献   

18.
Tomá? Lackner 《ZooKeys》2013,(294):57-73
A new genus and species from Kenya, Afroprinus cavicola is herein described and illustrated and its systematic position is discussed. By the prosternal pre-apical foveae connected by marginal prosternal stria it resembles most of the Afrotropical species of the genus Chalcionellus Reichardt, 1932, or some species of the genus Pholioxenus Reichardt, 1932 from South Africa and Namibia. Afroprinus can be distinguished from Chalcionellus chiefly by the lack of pronotal depressions and a coarsely sculptured, non-metallic dorsum; from Afrotropical species of Pholioxenus it can be most easily distinguished by the asetose pronotal hypomeron. The new taxon was discovered in a cave, but lacks obvious troglophilic adaptations. Notes on other Saprininae taxa found in caves are given. An identification key to the genera of Afrotropical Saprininae is provided.  相似文献   

19.
The ants in the subfamily Amblyoponinae are an old, relictual group with an unusual suite of morphological and behavioural features. Adult workers pierce the integument of their larvae to imbibe haemolymph, earning them the vernacular name ‘dracula ants’. We investigate the phylogeny of this group with a data set based on 54 ingroup taxa, 23 outgroups and 11 nuclear gene fragments (7.4 kb). We find that the genus Opamyrma has been misplaced in this subfamily: it is a member of the leptanilline clade and sister to all other extant Leptanillinae. Transfer of Opamyrma to Leptanillinae renders the Amblyoponinae monophyletic. The enigmatic Afrotropical genus Apomyrma is sister to all other amblyoponines, and the latter cleave into two distinct and well‐supported clades, here termed POA and XMMAS. The POA clade, containing Prionopelta, Onychomyrmex and Amblyopone, is well resolved internally, and its structure supports synonymy of the genus Concoctio under Prionopelta ( syn.n. ). The XMMAS clade comprises two well‐supported groups: (i) a predominantly Neotropical clade, for which we resurrect the genus name Fulakora ( stat.r., stat.n. ), with junior synonyms Paraprionopelta ( syn.n. ) and Ericapelta ( syn.n. ); and (ii) the remaining taxa, or ‘core XMMAS’, which are manifested in our study as a poorly resolved bush of about a dozen lineages, suggesting rapid radiation at the time of their origin. Most of these XMMAS lineages have been assigned to the catch‐all genus Stigmatomma, but the more distinctive elements have been treated as separate genera (Xymmer, Mystrium, Myopopone and Adetomyrma). Resolution of basal relationships in the core XMMAS clade and reconfiguration of ‘Stigmatomma’ to restore monophyly of all named genera will require more extensive genetic data and additional morphological analysis. However, the genus Bannapone can be synonymized under Stigmatomma ( syn.n. ) because it is embedded within a clade that contains S. denticulatum, the type species of Stigmatomma. Divergence dating analysis indicates that crown Amblyoponinae arose in the mid‐Cretaceous, about 107 Ma (95% highest probability density: 93–121 Ma). The POA and XMMAS clades have estimated crown ages of 47 and 73 Ma, respectively. The initial burst of diversification in the core XMMAS clade occurred in the Late Paleocene/Early Eocene (50–60 Ma). Ancestral range reconstruction suggests that amblyoponines originated in the Afrotropics, and dispersed to the Indo‐Malayan region and to the New World. During none of these dispersal events did the ants break out of their cryptobiotic lifestyle.  相似文献   

20.
Two new extant species of the fossil genus Alavesia Waters & Arillo (A. brandbergensis sp.n. and A. daura sp.n. ) are described from the Brandberg Massif, Namibia. The genus is reassigned to the family Atelestidae (subfamily Atelestinae) on the basis of male terminalia (elongate gonocoxal apodemes, ventral apodemes, subapical surstylus), female terminalia (absence of tergum 10) and a three‐articled stylus. This is the first record of Atelestidae from the Afrotropical Region. A genus‐level phylogeny of the Atelestidae is resolved, in which Alavesia is the sister genus to the remaining genera of the Atelestinae. The biogeographic history of the genus is briefly discussed, as is the significance of this and other relict Diptera on the Brandberg.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号