首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
AK Kwong  CW Fung  SY Chan  VC Wong 《PloS one》2012,7(7):e41802

Background

Dravet syndrome is a severe form of epilepsy. Majority of patients have a mutation in SCN1A gene, which encodes a voltage-gated sodium channel. A recent study has demonstrated that 16% of SCN1A-negative patients have a mutation in PCDH19, the gene encoding protocadherin-19. Mutations in other genes account for only a very small proportion of families. TSPYL4 is a novel candidate gene within the locus 6q16.3-q22.31 identified by linkage study.

Objective

The present study examined the mutations in epileptic Chinese children with emphasis on Dravet syndrome.

Methods

A hundred children with severe epilepsy were divided into Dravet syndrome and non-Dravet syndrome groups and screened for SCN1A mutations by direct sequencing. SCN1A-negative Dravet syndrome patients and patients with phenotypes resembling Dravet syndrome were checked for PCDH19 and TSPYL4 mutations.

Results

Eighteen patients (9 males, 9 females) were diagnosed to have Dravet syndrome. Among them, 83% (15/18) had SCN1A mutations including truncating (7), splice site (2) and missense mutations (6). The truncating/splice site mutations were associated with moderate to severe degree of intellectual disability (p<0.05). During the progression of disease, 73% (11/15) had features fitting into the diagnostic criteria of autism spectrum disorder and 53% (8/15) had history of vaccination-induced seizures. A novel PCDH19 p.D377N mutation was identified in one SCN1A-negative female patient with Dravet syndrome and a known PCDH19 p.N340S mutation in a female non-Dravet syndrome patient. The former also inherited a TSPYL4 p.G60R variant.

Conclusion

A high percentage of SCN1A mutations was identified in our Chinese cohort of Dravet syndrome patients but none in the rest of patients. We demonstrated that truncating/splice site mutations were linked to moderate to severe intellectual disability in these patients. A de novo PCDH19 missense mutation together with an inherited TSPYL4 missense variant were identified in a patient with Dravet syndrome.  相似文献   

2.
3.
4.
G protein-coupled receptors strongly modulate neuronal excitability but there has been little evidence for G protein mechanisms in genetic epilepsies. Recently, four patients with epileptic encephalopathy (EIEE17) were found to have mutations in GNAO1, the most abundant G protein in brain, but the mechanism of this effect is not known. The GNAO1 gene product, Gαo, negatively regulates neurotransmitter release. Here, we report a dominant murine model of Gnao1-related seizures and sudden death. We introduced a genomic gain-of-function knock-in mutation (Gnao1 +/G184S) that prevents Go turnoff by Regulators of G protein signaling proteins. This results in rare seizures, strain-dependent death between 15 and 40 weeks of age, and a markedly increased frequency of interictal epileptiform discharges. Mutants on a C57BL/6J background also have faster sensitization to pentylenetetrazol (PTZ) kindling. Both premature lethality and PTZ kindling effects are suppressed in the 129SvJ mouse strain. We have mapped a 129S-derived modifier locus on Chromosome 17 (within the region 41–70 MB) as a Modifer of G protein Seizures (Mogs1). Our mouse model suggests a novel gain-of-function mechanism for the newly defined subset of epileptic encephalopathy (EIEE17). Furthermore, it reveals a new epilepsy susceptibility modifier Mogs1 with implications for the complex genetics of human epilepsy as well as sudden death in epilepsy.  相似文献   

5.
Arabidopsis thaliana Stress Associated Protein 9 (AtSAP9) is a member of the A20/AN1 zinc finger protein family known to play important roles in plant stress responses and in the mammalian immune response. Although SAPs of several plant species were shown to be involved in abiotic stress responses, the underlying molecular mechanisms are largely unknown, and little is known about the involvement of SAPs in plant disease responses. Expression of SAP9 in Arabidopsis is up‐regulated in response to dehydration, cold, salinity and abscisic acid (ABA), as well as pathogen infection. Constitutive expression of AtSAP9 in Arabidopsis leads to increased sensitivity to ABA and osmotic stress during germination and post‐germinative development. Plants that overexpress AtSAP9 also showed increased susceptibility to infection by non‐host pathogen Pseudomonas syringae pv. phaseolicola, indicating a potential role of AtSAP9 in disease resistance. AtSAP9 was found to interact with RADIATION SENSITIVE23d (Rad23d), a shuttle factor for the transport of ubiquitinated substrates to the proteasome, and it is co‐localized with Rad23d in the nucleus. Thus, AtSAP9 may promote the protein degradation process by mediating the interaction of ubiquitinated targets with Rad23d. Taken together, these results indicate that AtSAP9 regulates abiotic and biotic stress responses, possibly via the ubiquitination/proteasome pathway.  相似文献   

6.
In trypanosomes, mRNAs are processed by spliced leader (SL) trans splicing, in which a capped SL, derived from SL RNA, is spliced onto the 5′ end of each mRNA. This process is mediated by the spliceosome, a large and dynamic RNA‐protein machinery consisting of small nuclear ribonucleoproteins (snRNPs) and non‐snRNP proteins. Due to early evolutionary divergence, the amino acid sequences of trypanosome splicing factors exhibit limited similarity to those of their eukaryotic orthologs making their bioinformatic identification challenging. Most of the ~ 60 protein components that have been characterized thus far are snRNP proteins because, in contrast to individual snRNPs, purification of intact spliceosomes has not been achieved yet. Here, we characterize the non‐snRNP PRP19 complex of Trypanosoma brucei. We identified a complex that contained the core subunits PRP19, CDC5, PRL1, and SPF27, as well as PRP17, SKIP and PPIL1. Three of these proteins were newly annotated. The PRP19 complex was associated primarily with the activated spliceosome and, accordingly, SPF27 silencing blocked the first splicing step. Interestingly, SPF27 silencing caused an accumulation of SL RNA with a hypomethylated cap that closely resembled the defect observed previously upon depletion of the cyclin‐dependent kinase CRK9, indicating that both proteins may function in spliceosome activation.  相似文献   

7.
8.
microRNA‐9 (miR‐9) is highly expressed in the nervous system across species and plays essential roles in neurogenesis and axon growth; however, little is known about the mechanisms that link miR‐9 with dendrite growth. Using an in vivo model of Drosophila class I dendrite arborization (da) neurons, we show that miR‐9a, a Drosophila homolog of mammalian miR‐9, downregulates the cadherin protein Flamingo (Fmi) thereby attenuating dendrite development in a non‐cell autonomous manner. In miR‐9a knockout mutants, the dendrite length of a sensory neuron ddaE was significantly increased. Intriguingly, miR‐9a is specifically expressed in epithelial cells but not in neurons, thus the expression of epithelial but not neuronal Fmi is greatly elevated in miR‐9a mutants. In contrast, overexpression of Fmi in the neuron resulted in a reduction in dendrite growth, suggesting that neuronal Fmi plays a suppressive role in dendrite growth, and that increased epithelial Fmi might promote dendrite growth by competitively binding to neuronal Fmi. Fmi has been proposed as a G protein‐coupled receptor (GPCR), we find that neuronal G protein Gαq (Gq), but not Go, may function downstream of Fmi to negatively regulate dendrite growth. Taken together, our results reveal a novel function of miR‐9a in dendrite morphogenesis. Moreover, we suggest that Gq might mediate the intercellular signal of Fmi in neurons to suppress dendrite growth. Our findings provide novel insights into the complex regulatory mechanisms of microRNAs in dendrite development, and further reveal the interplay between the different components of Fmi, functioning in cadherin adhesion and GPCR signalling. © 2015 Wiley Periodicals, Inc. Develop Neurobiol 76: 225–237, 2016  相似文献   

9.
During seedling establishment, blue and red light suppress hypocotyl growth through the cryptochrome 1 (cry1) and phytochrome B (phyB) photosensory pathways, respectively. How these photosensory pathways integrate with growth control mechanisms to achieve the appropriate degree of stem elongation was investigated by combining cry1 and phyB photoreceptor mutations with genetic manipulations of a multidrug resistance‐like membrane protein known as ABCB19 that influenced auxin distribution within the plant, as evidenced by a combination of reporter gene assays and direct auxin measurements. Auxin signaling and ABCB19 protein levels, hypocotyl growth rates, and apical hook opening were measured in mutant and wild‐type seedlings exposed to a range of red and blue light conditions. Ectopic/overexpression of ABCB19 (B19OE) greatly increased auxin in the hypocotyl, which reduced the sensitivity of hypocotyl growth specifically to blue light in long‐term assays and red light in high‐resolution, short‐term assays. Loss of ABCB19 partially suppressed the cry1 hypocotyl growth phenotype in blue light. Hypocotyl growth of B19OE seedlings in red light was very similar to phyB mutants. Altered auxin distribution in B19OE seedlings also affected the opening of the apical hook. The cry1 and phyB photoreceptor mutations both increased ABCB19 protein levels at the plasma membrane, as measured by confocal microscopy. The B19OE plant proved to be a useful tool for determining aspects of the mechanism by which light, acting through cry1 or phyB, influences the auxin transport process to control hypocotyl growth during de‐etiolation.  相似文献   

10.
Early infantile epileptic encephalopathy with suppression-burst pattern (EIEE) is one of the most severe and earliest forms of epilepsy, often evolving into West syndrome; however, the pathogenesis of EIEE remains unclear. ARX is a crucial gene for the development of interneurons in the fetal brain, and a polyalanine expansion mutation of ARX causes mental retardation and seizures, including those of West syndrome, in males. We screened the ARX mutation and found a hemizygous, de novo, 33-bp duplication in exon 2, 298_330dupGCGGCA(GCG)9, in two of three unrelated male patients with EIEE. This mutation is thought to expand the original 16 alanine residues to 27 alanine residues (A110_A111insAAAAAAAAAAA) in the first polyalanine tract of the ARX protein. Although EIEE is mainly associated with brain malformations, ARX is the first gene found to be responsible for idiopathic EIEE. Our observation that EIEE had a longer expansion of the polyalanine tract than is seen in West syndrome is consistent with the findings of earlier onset and more-severe phenotypes in EIEE than in West syndrome.  相似文献   

11.
12.
13.
The lipid moiety of natural haemozoin (nHZ, malarial pigment) was previously shown to enhance expression and release of human monocyte matrix metalloproteinase‐9 (MMP‐9), and a major role for 15‐(S,R)‐hydroxy‐6,8,11,13‐eicosatetraenoic acid (15‐HETE), a nHZ lipoperoxidation product, was proposed. Here, the underlying mechanisms were investigated, focusing on the involvement of mitogen‐activated protein kinases (MAPKs). Results showed that nHZ promoted either early or late p38 MAPK phosphorylation; however, nHZ did not modify basal phosphorylation/expression ratios of extracellular signal‐regulated kinase‐1/2 and c‐jun N‐terminal kinase‐1/2. 15‐HETE mimicked nHZ effects on p38 MAPK, whereas lipid‐free synthetic (s)HZ and delipidized (d)HZ did not. Consistently, both nHZ and 15‐HETE also promoted phosphorylation of MAPK‐activated protein kinase‐2, a known p38 MAPK substrate; such an effect was abolished by SB203580, a synthetic p38 MAPK inhibitor. SB203580 also abrogated nHZ‐dependent and 15‐HETE‐dependent enhancement of MMP‐9 mRNA and protein (latent and activated forms) levels in cell lysates and supernatants. Collectively, these data suggest that in human monocytes, nHZ and 15‐HETE upregulate MMP‐9 expression and secretion through activation of p38 MAPK pathway. The present work provides new evidence on mechanisms underlying MMP‐9 deregulation in malaria, which might be helpful to design new specific drugs for adjuvant therapy in complicated malaria. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

14.
Dravet syndrome (DS) is a genetically determined epileptic encephalopathy mainly caused by de novo mutations in the SCN1A gene. Since 2003, we have performed molecular analyses in a large series of patients with DS, 27% of whom were negative for mutations or rearrangements in SCN1A. In order to identify new genes responsible for the disorder in the SCN1A-negative patients, 41 probands were screened for micro-rearrangements with Illumina high-density SNP microarrays. A hemizygous deletion on chromosome Xq22.1, encompassing the PCDH19 gene, was found in one male patient. To confirm that PCDH19 is responsible for a Dravet-like syndrome, we sequenced its coding region in 73 additional SCN1A-negative patients. Nine different point mutations (four missense and five truncating mutations) were identified in 11 unrelated female patients. In addition, we demonstrated that the fibroblasts of our male patient were mosaic for the PCDH19 deletion. Patients with PCDH19 and SCN1A mutations had very similar clinical features including the association of early febrile and afebrile seizures, seizures occurring in clusters, developmental and language delays, behavioural disturbances, and cognitive regression. There were, however, slight but constant differences in the evolution of the patients, including fewer polymorphic seizures (in particular rare myoclonic jerks and atypical absences) in those with PCDH19 mutations. These results suggest that PCDH19 plays a major role in epileptic encephalopathies, with a clinical spectrum overlapping that of DS. This disorder mainly affects females. The identification of an affected mosaic male strongly supports the hypothesis that cellular interference is the pathogenic mechanism.  相似文献   

15.
16.
Four new (9βH)‐lanostanes, i.e., (9βH)‐3β‐acetoxylanosta‐7,24‐diene, (9βH)‐3‐oxolanosta‐7,24‐diene, (9βH,24R)‐3β‐acetoxy‐24‐hydroxylanosta‐7,25‐diene, and (9βH,24S)‐3β‐acetoxy‐24‐hydroxylanosta‐7,25‐diene, two new lanostanes, i.e., (24R)‐3β‐acetoxy‐24‐hydroxylanosta‐8,25‐diene and (24S)‐3β‐acetoxy‐24‐hydroxylanosta‐8,25‐diene, and two known lanostanes, i.e., 3β‐acetoxylanosta‐8,24‐diene and 3‐oxolanosta‐8,24‐diene, were obtained from a new Mikania species (Asteraceae) besides pentacyclic triterpenes, steroids, and diterpenes. The structures of the compounds were determined by spectroscopic methods. This is the second study about acetyl‐lanosterols from higher plants. Moreover, (9βH)‐lanostanes are very rare metabolites from dicotyledone angiosperms. The occurrence of these terpenes together in the same plant makes the species a good source for lanostane‐ and (9βH)‐lanostane‐biosynthesis studies.  相似文献   

17.
18.
The silkworm hemolymph has an anti-apoptotic activity in insect, mammalian, and human cell systems. The protein from silkworm hemolymph with the highest apoptosis inhibiting activity was found to be 30Kc19 protein, which was one of the ‘30K proteins’. In this study, 30Kc19 protein encoded by the 30Kc19 gene of the silkworm was expressed in Escherichia coli with (pET-22b(+)) and without (pET-3a) pelB leader sequence. 30Kc19 protein was over-expressed largely as a soluble form by pET-3a and both as soluble and insoluble forms by pET-22b(+). The medium was supplemented with each of the recombinant 30Kc19 proteins, and their presence was found to inhibit nuclear fragmentation and apoptotic body formation in actinomycin D-induced Sf9 cell apoptosis. Moreover, 30Kc19 protein repressed the activation of Sf-caspase-1. The 30Kc19 protein obtained from periplasm showed the most effective anti-apoptotic activity. This protein holds great potential for industrial and pharmaceutical applications since mass production and easy purification of this protein is possible.  相似文献   

19.
To induce neural differentiation of P19 cells, two different treatments, RA (retinoic acid) and cell aggregation, are required. However, there has been no report that RA treatment alone or cell aggregation alone could control alternative splicing regulation in P19 cells. Therefore, we focused on alternative splicing effects by neural induction (RA treatment and/or cell aggregation) in P19 cells. We analysed the splicing patterns of several genes, including 5‐HT3R‐A (5‐hydroxytryptamine receptor), Actn1 (actinin alpha1), CUGBP2 (CUG‐binding protein) and PTB (polypyrimidine track‐binding protein), which showed different responses during the early neural induction of P19 cells. We show here that RA treatment alone changes the alternative splice mechanism of 5‐HT3R‐A. Cell aggregation alone controls alternative splicing regulation of Actn1. Both treatments (RA and cell aggregation) compensate and regulate the alternative splicing mechanism of CUGBP2. However, PTB is independent of RA and cell aggregation. Taken together, our results suggest that RA treatment and cell aggregation independently regulate the alternative splicing mechanism in the early stage of P19 cells during neural differentiation.  相似文献   

20.
Cytochrome P450 aromatase (CYP19) catalyzes the conversion of androgens to estrogens and is critical in sex differentiation. CYP19 exists as the ovarian type and brain type. Herein, we cloned the full‐length ovarian cyp19a gene from the Chinese soft‐shelled turtle, Pelodiscus sinensis (pscyp19a). We determined the distribution of pscyp19a in adult tissue and evaluated its expression during embryonic development, following treatment with 17β‐estradiol (E2) or letrozole (LE). The pscyp19a complementary DNA is 2,285 bp in length and comprises a 1,512 bp open reading frame that encodes a protein of 503 AA. The nucleotide sequence and amino acid of pscyp19a shared significant identity with other vertebrate sequences. Expression of pscyp19a was high in the ovary (p < 0.01), and exhibited modest expression in the female brain and intestine. Expression of pscyp19a displayed significant differences between sexes during early embryo development stages; expression increased gradually during embryonic development in females, but the opposite trend was observed in males. Female embryos treated with different concentrations of E2 and LE displayed altered pscyp19a expression compared with untreated individuals, and E2 clearly induced pscyp19a expression. These results indicate that pscyp19a gene plays important roles in early developmental stages in Chinese soft‐shelled turtle, and may assist future studies on sex differentiation and sex control in this and similar species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号