首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
为探究铜藻多糖(Sargassum horneri polysaccharides, SHP)对H2O2诱导的人角质形成细胞(HaCaT)氧化应激损伤的保护作用,测定了SHP对总抗氧化能力(T-AOC)、DPPH自由基、羟自由基(·OH)和超氧阴离子自由基(O2·-)的清除作用,以评价SHP的体外抗氧化能力,并建立H2O2诱导HaCaT细胞氧化损伤模型;通过测定细胞存活率、细胞活性氧以及酶活,评价SHP对HaCaT细胞氧化损伤的保护作用。结果表明,当SHP为1 mg/mL时,DPPH的清除率为68%、·OH清除能力65.48 U/mL;在SHP为3 mg/mL时,O2·-清除能力为84.86 U/mL,T-AOC为33.55。SHP能显著提高H2O2诱导氧化损伤的HaCaT细胞活力,其中经100μg/mL SHP处理后,HaCaT细胞存活率由56.85%提高到80.57...  相似文献   

2.
茶多糖是一种从茶叶中提取的酸性糖蛋白,具有良好的抗氧化活性。以自由基清除率为指标,分析皖西南地区夏秋茶多糖的抗氧化活性,基于H2O2和EDTA-Fe2+建立的外源性羟基自由基(·OH)损伤细胞模型和PMA诱导内源性羟基自由基损伤模型,进一步探讨茶多糖对自由基损伤的修复作用机制。结果表明,茶多糖具有良好的体外抗氧化活性,对DPPH·和·OH均具有较强的清除效果,EC50值分别为209.5和535.2μg·mL–1,最大清除效率与Vc相当。细胞增殖实验表明,外源性和内源性自由基氧化损伤模型中细胞存活率均随着茶多糖浓度的增加而升高,在茶多糖浓度为800μg·mL–1时细胞存活率分别高达87.41%和85.84%,且显著高于模型组(47.67%和48.03%)。在修复机制上,利用激光共聚焦显微镜显影细胞内活性氧(ROS)分布以及荧光强度,分析结果显示,与模型组相比,茶多糖对于细胞模型中外源和内源性ROS均具有明显的清除效果,与体外抗氧化实验结果一致。茶多糖在体外表...  相似文献   

3.
该文比较研究了黑暗和光照条件下C3盐生植物盐地碱蓬(Suaeda salsa)叶片甜菜红素积累和H2O2含量及其抗氧化酶活性的关系,实验分析了甜菜红素体外抗氧化性能,以期揭示诱导盐地碱蓬甜菜红素积累的可能机制以及甜菜红素积累的生理生态意义。结果表明:暗期处理和营养液中加入一定浓度的H2O2都明显促进盐地碱蓬叶片H2O2含量、甜菜红素的含量、超氧化物歧化酶(SOD)和过氧化氢酶(CAT)的活性,而且叶片中 H2O2含量与甜菜红含量、SOD和CAT活性具有正相关性;盐地碱蓬甜菜红素体外清除羟自由基的能力明显强于维生素C,而清除超氧阴离子能力低于维生素C。这些结果表明:黑暗作为一种环境胁迫因子诱导盐地碱蓬叶片甜菜红素的积累可能是由自由基介导的,甜菜红素的积累可能与提高植物的抗氧化能力有关。  相似文献   

4.
蛹虫草是一种可利用大米、小麦等谷物培育的名贵药用真菌,其采收后的菌糠里仍富含许多生物活性物质。本研究立足于蛹虫草菌糠多糖,先分析其化学抗氧化活性,再以H2O2诱导氧化应激损伤的LO2细胞为模型,评价其对肝细胞氧化损伤的保护作用,进而解析活性多糖的单糖组分。结果显示,菌糠多糖能够有效清除DPPH自由基、羟基(?OH)自由基和ABTS自由基,EC50分别为0.26mg/mL、1.03mg/mL、0.57mg/mL,提示其具有良好的抗氧化能力;在H2O2诱导氧化应激损伤的LO2细胞中,菌糠多糖能有效地保护细胞形态的完整性,并且随浓度梯度递增式地提高细胞存活率,当多糖浓度为5mg/mL时,细胞存活率可达91.83%;在分析其作用机制上,与模型组对比,菌糠多糖能通过调节细胞抗氧化酶SOD(提高4.91倍)和CAT(提高3.40倍)的表达来清除ROS含量(P<0.01),降低氧化损害;经检测,虫草菌糠活性多糖主要含有葡萄糖、甘露糖、半乳糖、阿拉伯糖、葡萄糖醛酸、木糖、半乳糖醛酸、鼠李糖和岩藻糖等单糖。研究结果表明蛹虫草MF27菌糠多糖具有保护肝细胞氧化损伤的作用,为进一步开发和利用虫草菌糠提供了重要理论依据。  相似文献   

5.
目的探讨微小RNA-142-3p(miR-142-3p)对过氧化氢诱导的心肌细胞损伤的影响及其作用机制。 方法构建氧化应激损伤模型,以H9C2心肌细胞为研究对象,实验将心肌细胞转染后分为正常对照组、H2O2组、H2O2+miR-142-3p组、H2O2+miR阴性对照组、H2O2+?si-?ELAVL1组、H2O2+siRNA对照组、H2O2+miR-142-3p+pcDNA-ELAVL1组、H2O2+miR-?142-3p+pcDNA组。分别采用qRT-PCR与Western Blot检测细胞中miR-142-3p与ELAVL1表达;检测各组活性氧(ROS)生成水平;MTT检测细胞存活率,流式细胞术检测细胞凋亡。双荧光素酶报告实验验证miR-142-3p与ELAVL1的靶向作用。Western Blot检测细胞中Cleaved Caspase-3、STAT3、Caspase-3、p-STAT3蛋白表达。两组间比较采用两样本t检验;多组间比较采用单因素方差分析,两两比较采用LSD-t检验。 结果H2O2组心肌细胞中miR-142-?3p(0.26±0.06)、p-STAT3表达水平(0.36±0.04)、细胞存活率(61.73±6.48)﹪与正常对照组相比下降(P均< 0.01),而ROS水平(1?566.38±121.57)、细胞凋亡率(27.46±1.73)﹪、Cleaved Caspase-3(0.68±0.08)及ELAVL1表达水平(4.23±0.31)均升高(P均< 0.01);双荧光素酶报告实验证实ELAVL1是miR-142-3p的靶基因;miR-142-3p过表达或沉默ELAVL1表达可明显促进心肌细胞存活、上调p-STAT3表达,而抑制细胞凋亡及Cleaved Caspase-3表达;ELAVL1过表达可逆转miR-142-3p对过氧化氢处理H9C2细胞的保护作用。 结论miR-142-?3p可通过抑制ELAVL1表达进而减轻过氧化氢诱导的心肌细胞损伤,其可能通过影响STAT3信号通路而保护心肌细胞。  相似文献   

6.
戚梦  刘城移  赵强  张琪辉  胡开辉  傅俊生 《菌物学报》2018,37(12):1707-1716
作者对大革耳子实体多糖的抗氧化能力及单糖组分进行了分析,并探究了大革耳子实体多糖体外对羟自由基、超氧阴离子自由基、1,1-二苯基-2-三硝基苯肼(1,1-diphenyl-2-picrylhydrazyl,DPPH)自由基、2'-联氨-双-3-乙基苯并噻唑啉-6-磺酸[2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid),ABTS]自由基的清除能力和铁离子还原能力;以人正常肝细胞系LO2为材料建立了过氧化氢细胞氧化损伤模型,并探讨大革耳子实体多糖在细胞水平的抗氧化能力;通过苯酚硫酸法及HPLC检测了子实体多糖的单糖含量及组分。体外化学抗氧化实验结果显示,大革耳子实体多糖对羟自由基、超氧阴离子、DPPH自由基和ABTS自由基的清除能力较强,且具有较高的铁离子还原能力;细胞水平抗氧化实验表明,大革耳子实体多糖对人正常肝细胞系LO2的H2O2氧化损伤具有显著的保护作用,并能极显著提高受损细胞内过氧化氢酶(catalase,CAT)(P<0.01)及超氧化物歧化酶(superoxide dismutase,SOD)(P<0.01)的活力。大革耳子实体活性多糖主要单糖含量及组分依次为:葡萄糖(2 985.50mg/kg)、甘露糖(1 867.23mg/kg)、木糖(814.98mg/kg)、半乳糖(724.24mg/kg)、岩藻糖(443.72mg/kg)、葡萄糖醛酸(419.41mg/kg)、鼠李糖(81.18mg/kg)、阿拉伯糖(64.40mg/kg)、核糖(39.95mg/kg)、半乳糖醛酸(24.40mg/kg)。本研究结果为更好的推广应用和科学开发大革耳提供了基础资料。  相似文献   

7.
为了探讨甲基紫精(MV)对丹参(Salvia miltiorrhiza)体内抗氧化防护系统的影响及其生理机制。以MV为诱导剂, 以敌草隆(DCMU)为抑制剂, 考察了MV与DCMU处理后丹参悬浮培养细胞中H2O2、丙二醛、还原型谷胱甘肽的含量以及抗氧化防护酶(超氧化物歧化酶(SOD)、过氧化物酶(POD)、过氧化氢酶(CAT))活性变化和同工酶的表达差异。结果表明, MV处理显著提高了丹参培养细胞内H2O2、丙二醛以及还原型谷胱甘肽含量; MV处理使CAT、POD活性增强, 谱带颜色更亮, 条带增加。DCMU处理显著抑制了MV诱导的H2O2、丙二醛、还原型谷胱甘肽含量的增加, 抗氧化酶活性的升高和同工酶的表达。以上结果说明, MV可诱导丹参培养细胞叶绿体产生H2O2, H2O2激活了丹参培养细胞抗氧化防护系统以维持细胞正常的生理活动。  相似文献   

8.
《植物生态学报》2014,38(5):507
为了探讨甲基紫精(MV)对丹参(Salvia miltiorrhiza)体内抗氧化防护系统的影响及其生理机制。以MV为诱导剂, 以敌草隆(DCMU)为抑制剂, 考察了MV与DCMU处理后丹参悬浮培养细胞中H2O2、丙二醛、还原型谷胱甘肽的含量以及抗氧化防护酶(超氧化物歧化酶(SOD)、过氧化物酶(POD)、过氧化氢酶(CAT))活性变化和同工酶的表达差异。结果表明, MV处理显著提高了丹参培养细胞内H2O2、丙二醛以及还原型谷胱甘肽含量; MV处理使CAT、POD活性增强, 谱带颜色更亮, 条带增加。DCMU处理显著抑制了MV诱导的H2O2、丙二醛、还原型谷胱甘肽含量的增加, 抗氧化酶活性的升高和同工酶的表达。以上结果说明, MV可诱导丹参培养细胞叶绿体产生H2O2, H2O2激活了丹参培养细胞抗氧化防护系统以维持细胞正常的生理活动。  相似文献   

9.
采用蛋白组学方法筛选穿心莲内酯衍生物(AL-1)抗过氧化氢诱导胰岛RIN-mβ细胞凋亡的差异蛋白质分子并探讨其作用分子机制.结果显示:AL-1浓度依赖性地提高H2O2处理的胰岛RIN-mβ细胞的存活率.经蛋白组学研究分析,成功地鉴定了18个与凋亡、应激等相关的蛋白,包括Prohibitin、Shmt2、RhoGDP-dissociationinhibitor-1、Galectin-1、Cyt b5、Hsps等;与对照组(H2O2)相比,处理组(AL-1+H2O2)中,有9个表达上调的蛋白和9个表达下调的蛋白.AL-1通过调控与细胞凋亡、应激等相关的蛋白发挥其抗H2O2诱导的凋亡作用.  相似文献   

10.
H2O2是一种重要的信号分子,参与植物体内多种生理代谢活动,但过量的H2O2破坏生物大分子,从而使细胞受到毒害。硫氧还蛋白过氧化物酶(thioredoxin peroxidase,Tpx)通过清除H2O2在保护植物免受氧化损伤方面起着重要作用。为进一步研究番茄Tpx基因(SlTpx)的功能,构建了番茄SlTpx原核表达载体,并诱导和纯化了SlTpx蛋白,发现该蛋白质大小约为21 kDa。为检测SlTpx的抗氧化功能,通过体外的混合功能氧化酶(MFO)实验、过氧化氢清除实验和SlTpx蛋白体外抗重金属和H2O2实验,证明SlTpx可以保护DNA不受有害活性氧切割,并且提高大肠杆菌抵抗重金属和H2O2胁迫的能力。为揭示SlTpx在植物中的功能和作用机制奠定基础。  相似文献   

11.
Potamogeton crispus L. (P. crispus) is the type of a widely distributed perennial herbs, which is rich in rhodoxanthin. In this research work, five antioxidant indexes in vitro were selected to study the antioxidant activity of rhodoxanthin from P. crispus (RPC). A model of hydrogen peroxide (H2O2) -induced oxidative damage in RAW264.7 cells was established to analyze the antioxidant effect and potential mechanism of RPC. The levels of ROS, MDA and the activities of oxidation related enzymes by H2O2 were determined by enzyme linked immunosorbent assay (ELISA). The mRNA expression of Nrf-2, HO-1, SOD1 and SOD2 was measured by qRT-PCR assay. According to the results, RPC had free radical scavenging ability for 2, 2-diphenyl-1-trinitrohydrazine (DPPH), 2,2’-azinobis(3-ethylbenzo-thiazoline-6-sulfonic acid radical ion) (ABTS), hydroxyl radical and superoxide anion. RPC significantly decreased the level of MDA and ROS and LDH activity, while increased GSH level and activities of SOD, GSH−Px and CAT. It was showed that RPC could increase the mRNA expression of Nrf-2, HO-1, SOD1 and SOD2 in RAW264.7 cells in a dose-dependently manner. In summary, RPC treatment could effectively attenuate the H2O2-induced cell damage rate, and the mechanism is related to the reduction of H2O2 induced oxidative stress and the activation of Nrf-2 pathway.  相似文献   

12.
We investigated the efficacy of Pistacia lentiscus fruit oil (PLFO) for protecting human skin from damage due to oxidative stress. PLFO contains natural antioxidants including polyphenols, sterols and tocopherols. We compared the antioxidant potential of PLFO with extra virgin olive oil (EVOO). Explants of healthy adult human skin were grown in culture with either PLFO or EVOO before adding hydrogen peroxide (H2O2). We also used cultured skin explants to investigate the effects of PLFO on lipid oxidation and depletion of endogenous antioxidant defense enzymes including glutathione peroxidase (GPx), superoxide dismutase (SOD) and catalase (CAT) one day after 2 h exposure to H2O2. We found that PLFO scavenged radicals and protected skin against oxidative injury. PLFO exhibited greater antioxidant and free radical scavenging activity than EVOO. Skin explants treated with PLFO inhibited H2O2 induced MDA formation by inhibition of lipid oxidation. In addition, the oil inhibited H2O2 induced depletion of antioxidant defense enzymes including GPx, SOD and CAT. We found that treatment with PLFO repaired skin damage owing to its antioxidant properties.  相似文献   

13.
AimsProtection of cells from oxidative insult may be possible through direct scavenging of reactive oxygen species, or through stimulation of intracellular antioxidant defense mechanisms by induction of antioxidant gene expression. In this study we investigated the cytoprotective effect of chamomile and elucidated the underlying mechanisms.Main methodsThe cytoprotective effect of chamomile was examined on H2O2-induced cellular stress in RAW 264.7 murine macrophages.Key findingsRAW 264.7 murine macrophages treated with chamomile were protected from cell death caused by H2O2. Treatment with 50 μM H2O2 for 6 h caused significant increase in cellular stress accompanied by cell death in RAW 264.7 macrophages. Pretreatment with chamomile at 10–20 μg/mL for 16 h followed by H2O2 treatment protected the macrophages against cell death. Chamomile exposure significantly increased the expression of antioxidant enzymes viz. heme oxygenase-1 (HO-1), peroxiredoxin-1 (Prx-1), and thioredoxin-1 (Trx-1) in a dose-dependent manner, compared with their respective controls. Chamomile increased nuclear translocation of Nrf2 with increased phosphorylated Nrf2 levels, and binding to the antioxidant response element in the nucleus.SignificanceThese molecular findings for the first time provide insights into the mechanisms underlying the induction of phase 2 enzymes through the Keap1-Nrf2 signaling pathway by chamomile, and provide evidence that chamomile possesses antioxidant and cytoprotective properties.  相似文献   

14.
We investigated the suppressive effects of an avocado constituent, persenone A, on lipopolysaccharide- and interferon-γ-induced inducible nitric oxide synthase (iNOS) and cyclooxygenase (COX-2) in a mouse macrophage cell line RAW 264.7. Persenone A at concentration of 20 μM almost completely suppressed both iNOS and COX-2 protein expression. In mouse skin, double treatments with persenone A (810 nmol) significantly suppressed double 12-O-tetradecanoylphorbol-13-acetate (TPA, 8.1 nmol) application-induced hydrogen peroxide (H2O2) generation. Treatment with persenone A before the second TPA treatment was sufficient to inhibit H2O2 generation, while the first treatment was not. This study thus suggests that persenone A is a possible agent to prevent inflammation-associated diseases including cancer.  相似文献   

15.
Chitosan gallate were synthesized using a free radical-induced grafting reaction. Chitosan gallate showed enhanced water-solubility compared to plain chitosan, and exhibited good thermal stability. The IC50 value of chitosan gallate against 2,2-diphenyl-1-picrylhydrazyl (DPPH) was 17.86 μg/mL. In addition, chitosan gallate effectively inhibited the generation of intracellular reactive oxygen species (ROS), and also suppressed lipid peroxidation in RAW264.7 macrophage cells. Chitosan gallate also exhibited the protection effect on genomic DNA damage by induced hydroxyl radical, and up-regulated the protein expression of antioxidant enzymes including superoxide dismutase-1 and glutathione reductase under H2O2-mediated oxidative stress in RAW264.7 macrophage cells. These results indicate that chitosan gallate might be potential antioxidant biomaterials.  相似文献   

16.
为揭示亚热带地区杉木(Cunninghamialanceolata)对干旱的响应机制,在福建三明森林生态系统国家野外科学观测研究站,对隔离降水环境下杉木幼树细根生理特征进行研究。结果表明,隔离降水处理的土壤湿度显著下降(P<0.05),但杉木细根超氧阴离子自由基、丙二醛含量变化不显著(P>0.05),表明其细根保持着低水平的膜脂氧化损伤;脯氨酸和谷胱甘肽含量较对照显著增加(P<0.05),并且过氧化氢含量也显著增加(P<0.05),意味着杉木受到一定程度的干旱胁迫并且进行自我调节;长期降水隔离导致的过氧化氢积累一定程度上促使谷胱甘肽显著提高,二者呈极显著正相关(P<0.01);内源激素中细胞分裂素、吲哚乙酸含量显著下降,与杉木生长调控未表现出明显相关性;超氧化物歧化酶活性较对照显著下降21.5%,过氧化物酶活性较对照显著提高16.7%,但抗氧化酶系统对杉木细根的水分缺失适应调控无显著影响。因此,50%降水减少条件下杉木能通过其细根的渗透物质和内源激素等非酶促物质进行综合调节,以有效适应土壤湿度的显著降低。  相似文献   

17.
A rat model of tendon repair was established to investigate the effects of hydrogen water on tendon adhesion reduction. Thirty-six Sprague Dawley rats were randomly divided into a normal saline (NS) group and a hydrogen water (HS) group according to the processing reagents after a tendon repairing operation. Pre- and postoperative superoxide dismutase (SOD), malondialdehyde (MDA), and glutathione (GSH) in subjects’ serum were observed. Skin fibroblasts were grouped into an NS group, H2O2 group, H2 group, and H2O2 H2 group. Expressions of Nrf2, CATA, and γ-GCS were also tested by Western blot analysis. 8-OHdG, GSH, MDA, and SOD of the cells were analyzed by the enzyme-linked immunosorbent assay method. The postoperative SOD activity and GSH contents were significantly reduced (P < 0.05), whereas the postoperative MDA level was significantly increased (P < 0.05). Similarly, the postoperative HS group showed significantly higher SOD activity and GSH contents (P < 0.05) but lower MDA (P < 0.05) compared with the postoperative NS group. MDA and 8-OHdG were significantly decreased in hydrogen-rich medium, while SOD and GSH were increased. The expression of Nrf2, CATA, and γ-GCS in antioxidant system were reduced after H2O2 processing, which were restored after the application of hydrogen-rich medium. Hydrogen water can reduce tendon adhesion after tendon repairing and prohibit excessive inflammatory response, which could be associated with the activation of the Nrf2 pathway.  相似文献   

18.
Abstract

Objectives

Regular intake of green tea associates with lower DNA damage and increased resistance of DNA to oxidant challenge. However, in vitro pro-oxidant effects of green tea have been reported. Both effects could be mediated by hydrogen peroxide (H2O2) which is generated by autoxidation of tea catechins. In large amounts, H2O2 is genotoxic, but low concentrations could activate the redox-sensitive antioxidant response element (ARE) via the Keap-1/Nrf2 redox switch, inducing genoprotective adaptations. Our objective was to test this hypothesis.

Methods

Peripheral lymphocytes from healthy volunteers were incubated for 30 minutes at 37°C in freshly prepared tea solutions (0.005, 0.01, 0.05%w/v (7, 14, 71 µmol/l total catechins) in phosphate buffered saline (PBS), with PBS as control) in the presence and absence of catalase (CAT). H2O2 in tea was measured colorimetrically. Oxidation-induced DNA lesions were measured by the Fpg-assisted comet assay.

Results

H2O2 concentrations in 0.005, 0.01, and 0.05% green tea after 30 minutes at 37°C were, respectively, ~3, ~7, and ~52 µmol/l. Cells incubated in 0.005 and 0.01% tea showed less (P < 0.001) DNA damage compared to control cells. Cells treated with 0.05% green tea showed ~50% (P < 0.001) more DNA damage. The presence of CAT prevented this damage, but did not remove the genoprotective effects of low-dose tea. No significant changes in expression of ARE-associated genes (HMOX1, NRF2, KEAP1, BACH1, and hOGG1) were seen in cells treated with tea or tea + CAT.

Conclusion

Genoprotection by low-dose green tea could be due to direct antioxidant protection by green tea polyphenols, or to H2O2-independent signalling pathways.  相似文献   

19.
Peroxynitrite (ONOO) has been proposed as a mediator of gut inflammation and as an inducer of cell death by apoptosis. Phytolens (PHY), a water-soluble extract of polyphenolic antioxidants from nonsoy legumes (Biotics Research Corp, patent pending), was evaluated as a cytoprotective agent in human colonic (T84) and murine macrophage (RAW 264.7) cell lines. In the antioxidant testing, PHY showed a significant free radical scavenging ability against 1,1-diphenyl-2-picrylhydrazyl radical (DPPH) and superoxide (O2) radicals with an IC50of 4.44 and 5.87 μg/ml against DPPH and O2, respectively. Apoptosis (DNA fragmentation) was measured by an ELISA technique. Cells were exposed to oxidative stress by treating them with peroxynitrite (100–300 μM) for 4 h in the presence and absence of PHY. Peroxynitrite elicited a dose-dependent increase in DNA fragmentation in both cell lines compared to the control group receiving decomposed ONOO. PHY (10, 30, or 50 μg/ml) significantly attenuated the degree of apoptosis in T84 cells induced by ONOO(P< 0.05). PHY (10–100 μg/ml) did not directly affect T84 cell viability or induce apoptosis after 4 h or overnight exposure. RAW 264.7 cells exposed to PHY alone (>30 μg/ml) for 4 h displayed decreased cell viability (P< 0.05) and increased apoptosis (P< 0.05). Phytolens may have beneficial effects on inflammation by attenuating peroxynitrite-induced apoptosis. The sparing of epithelial cells while compromising the viability of macrophages suggests that PHY may be beneficial in autoimmune disorders.  相似文献   

20.
The evolving concept of pro-oxidative mechanism-based antitumor activity of emodin (1,3,8-trihydroxy-6-methyl anthraquinone), derived mainly from in vitro studies, needs to be defined for in vivo tumor models. The present article describes apoptosis and regression of Dalton’s lymphoma (DL) in mice by emodin vis a vis modulations of hydrogen peroxide (H2O2) metabolizing antioxidant enzymes in the tumor cells in vivo. A non-toxic dose (40 mg/kg bw) of emodin, given intraperitoneally to the DL bearing mice daily up to 12th post DL transplantation day, caused a significant decline (P < 0.05) in the number of viable DL cells and could significantly increase life span of the DL mice (P < 0.01). A significant decline in Bcl2/Bax ratio consistent with the release of mitochondrial cytochrome c release in DL cells from emodin-treated DL mice suggested that emodin could induce mitochondrial pathway of apoptosis in the DL cells in vivo. Apoptosis of DL cells by emodin was further confirmed by the appearance of smaller DNA fragments on DNA ladder analysis. Over activation of both, the Cu–Zn-superoxide dismutases (SOD1) and Mn-SOD (SOD2), has been found correlated with the tumor suppression. Emodin caused significant increases in the expression and activity of SOD1 and SOD2 in the DL cells. H2O2 produced by SODs is degraded by catalase and glutathione peroxidase in the cells. Both these enzymes were observed to be declined significantly with a concomitant increment in H2O2 concentration (P < 0.01) in the DL cells from emodin-treated DL mice. It is concluded that emodin is able to induce mitochondrial pathway of apoptosis in the DL cells in vivo via reciprocal modulations of H2O2 producing and degrading antioxidant enzymes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号