共查询到20条相似文献,搜索用时 15 毫秒
1.
To advance the utilization of microalgae as a viable feedstock for biodiesel production, the intracellular lipid content of three strains of the marine microalgae Nannochloropsis sp. was enhanced using flow cytometry (FC) coupled with cell sorting. Total lipid content was doubled to 55% (biomass dry weight) in the sorted, daughter cells of Nannochloropsis (strain 47) after consecutive three rounds of cell sorting, and this trait was maintained for approximately 100 subsequent cell generations. In addition, daughter cells had a fatty acid profile similar to that of the parent, wild‐type strain. The study demonstrates that FC coupled with cell sorting is a powerful tool for the enhancement of intracellular lipid content in microalgae exploited for biodiesel feedstock. 相似文献
2.
3.
J. Bussink N. H. A. Terry W. A. Brock 《In vitro cellular & developmental biology. Animal》1995,31(7):547-552
Summary Chinese hamster ovary cells were synchronized into purified populations of viable G1-, S-, G2-, and M-phase cells by a combination
of methods, including growth arrest, aphidicolin block, cell cycle progression, mitotic shake-off, and centrifugal elutriation.
The DNA content and bromodeoxyuridine (BrdUrd) labeling index were measured in each purified fraction by dual-parameter flow
cytometry. The cell cycle distributions determined from the DNA measurements alone (single parameter) were compared with those
calculated from both DNA and BrdUrd data (dual parameter). The results show that highly purified cells can be obtained using
these methods, but the assessed purity depends on the method of cell cycle analysis. Using the single versus dual parameter
measurement to determine cell cycle distributions gave similar results for most phases of the cell cycle, except for cells
near the transition from G1- to S-phase and S- to G2-phase. There the BrdUrd labeling index determined by flow cytometry was
more sensitive for detecting small amounts of DNA synthesis. As an alternative to flow cytometry, a simple method of measuring
BrdUrd labeling index on cell smears was used and gave the same result as flow cytometry. Measuring both DNA content and DNA
synthesis improves characterization of synchronized cell populations, especially at the transitions in and out of S-phase,
when cells are undergoing dramatic shifts in biochemical activity. 相似文献
4.
5.
Zhong Y Zhou C Ma W Wang D Guo S Su X Zhang S 《Biochemical and biophysical research communications》2007,364(2):338-343
Using clonal and population analysis, we found that the MCF7 and SK-OV3 were composed mainly of cancer stem cells. Together with SP analysis, we found that both SP and NSP cells of MCF7 and SK-OV3 contained different proportions of cancer stem cells. In addition, we discovered that MCF7 SP cells were able to generate non-SP cells, and conversely non-SP cells generated SP cells; Moreover, we showed that Hoechst 33342 and FACS were harmful to the clonogenicity of MCF7 and SK-OV3 cells. 相似文献
6.
Kensuke Ichida Makoto Hayashi Misako Miwa Ryota Kitada Momo Takahashi Ryo Fujihara Surintorn Boonanuntanasarn Goro Yoshizaki 《Molecular reproduction and development》2019,86(12):1810-1821
In the fish germ cell transplantation system, only type A spermatogonia (ASGs) and oogonia are known to be incorporated into the recipient genital ridges, where they undergo gametogenesis. Therefore, high colonization efficiency can be achieved by enriching undifferentiated germ cells out of whole testicular cells. In this study, we used magnetic‐activated cell sorting (MACS) for enriching undifferentiated germ cells of rainbow trout using a monoclonal antibody that recognizes a specific antigen located on the germ cell membrane. We screened the antibodies to be used for MACS by performing immunohistochemistry on rainbow trout gonads. Two antibodies, nos. 172 and 189, showed strong signals for ASGs and oogonia. Next, we performed MACS with antibody no. 172 using gonadal cells isolated from vasa‐gfp rainbow trout showing GFP in undifferentiated germ cells. We found that GFP‐positive cells are highly enriched in antibody no. 172‐positive fractions. Finally, to examine the transplantability of MACS‐enriched cells, we intraperitoneally transplanted sorted or unsorted cells into recipient larvae. We observed that transplantability of sorted cells, particularly ovarian cells, were significantly higher than that of unsorted cells. Therefore, MACS with antibody no. 172 could enrich ASGs and oogonia and become a powerful tool to improve transplantation efficiency in salmonids. 相似文献
7.
8.
Chi‐Ping Day John Carter Carrie Bonomi Dominic Esposito Bruce Crise Betty Ortiz‐Conde Melinda Hollingshead Glenn Merlino 《Pigment cell & melanoma research》2009,22(3):283-295
Lentiviral vectors (LVs) are capable of labeling a broad spectrum of cell types, achieving stable expression of transgenes. However, for in vivo studies, the duration of marker gene expression has been highly variable. We have developed a series of LVs harboring different promoters for expressing reporter gene in mouse cells. Long‐term culture and colony formation of several LV‐labeled mouse melanoma cells showed that promoters derived from mammalian house‐keeping genes, especially those encoding RNA polymerase II (Pol2) and ferritin (FerH), provided the highest consistency for reporter expression. For in vivo studies, primary B16BL6 mouse melanoma were infected with LVs whose luciferase–green fluorescence protein fusion gene (Luc/GFP) was driven by either Pol2 or FerH promoters. When transplanted into syngeneic C57BL/6 mice, Luc/GFP‐labeled B16BL6 mouse melanoma cells can be monitored by bioluminescence imaging in vivo, and GFP‐positive cells can be isolated from the tumors by fluorescence‐activated cell sorter. Pol2‐Luc/GFP labeling, while lower in activity, was more sustainable than FerH‐Luc/GFP labeling in B16BL6 over consecutive passages into mice. We conclude that Pol‐2‐Luc/GFP labeling allows long‐term in vivo monitoring and tumor cell isolation in immunocompetent mouse melanoma models. 相似文献
9.
Sebastian Schornack Rene Fuchs Edgar Huitema Ulrich Rothbauer Volker Lipka Sophien Kamoun 《The Plant journal : for cell and molecular biology》2009,60(4):744-754
A key challenge in cell biology is to directly link protein localization to function. The green fluorescent protein (GFP)‐binding protein, GBP, is a 13‐kDa soluble protein derived from a llama heavy chain antibody that binds with high affinity to GFP as well as to some GFP variants such as yellow fluorescent protein (YFP). A GBP fusion to the red fluorescent protein (RFP), a molecule termed a chromobody, was previously used to trace in vivo the localization of various animal antigens. In this study, we extend the use of chromobody technology to plant cells and develop several applications for the in vivo study of GFP‐tagged plant proteins. We took advantage of Agrobacterium tumefaciens‐mediated transient expression assays (agroinfiltration) and virus expression vectors (agroinfection) to express functional GBP:RFP fusion (chromobody) in the model plant Nicotiana benthamiana. We showed that the chromobody is effective in binding GFP‐ and YFP‐tagged proteins in planta. Most interestingly, GBP:RFP can be applied to interfere with the function of GFP fusion protein and to mislocalize (trap) GFP fusions to the plant cytoplasm in order to alter the phenotype mediated by the targeted proteins. Chromobody technology, therefore, represents a new alternative technique for protein interference that can directly link localization of plant proteins to in vivo function. 相似文献
10.
Peter J Enyeart Mai N Dao Jiri Perutka Erik M Quandt Jun Yao Jacob T Whitt Adrian T Keatinge‐Clay Alan M Lambowitz Andrew D Ellington 《Molecular systems biology》2013,9(1)
Efficient bacterial genetic engineering approaches with broad‐host applicability are rare. We combine two systems, mobile group II introns (‘targetrons’) and Cre/lox, which function efficiently in many different organisms, into a versatile platform we call GETR (Genome Editing via Targetrons and Recombinases). The introns deliver lox sites to specific genomic loci, enabling genomic manipulations. Efficiency is enhanced by adding flexibility to the RNA hairpins formed by the lox sites. We use the system for insertions, deletions, inversions, and one‐step cut‐and‐paste operations. We demonstrate insertion of a 12‐kb polyketide synthase operon into the lacZ gene of Escherichia coli, multiple simultaneous and sequential deletions of up to 120 kb in E. coli and Staphylococcus aureus, inversions of up to 1.2 Mb in E. coli and Bacillus subtilis, and one‐step cut‐and‐pastes for translocating 120 kb of genomic sequence to a site 1.5 Mb away. We also demonstrate the simultaneous delivery of lox sites into multiple loci in the Shewanella oneidensis genome. No selectable markers need to be placed in the genome, and the efficiency of Cre‐mediated manipulations typically approaches 100%. 相似文献
11.
Male germline recombination of a conditional allele by the widely used Dermo1‐cre (Twist2‐cre) transgene 下载免费PDF全文
Conditional gene knockout using the Cre/loxP system is instrumental in advancing our understanding of the function of genes in a wide range of disciplines. It is becoming increasingly apparent in the literature that recombination mediated by some Cre transgenes can occur in unexpected tissues. Dermo1‐Cre (Twist2‐Cre) has been widely used to target skeletal lineage cells as well as other mesoderm‐derived cells. Here we report that Dermo1‐Cre exhibits spontaneous male germline recombination activity leading to a Cre‐mediated recombination of a floxed Ptk2 (Protein tyrosine kinase 2, also known as Fak [Focal adhesion kinase]) allele but not a floxed Rb1cc1 (RB1 inducible coiled‐coil 1, also known as Fip200 [FAK‐family Interacting Protein of 200 kDa]) allele at high frequency. This ectopic germline activity of Dermo1‐Cre occurred in all or none manner in a given litter. We demonstrated that the occurrence of germline recombination activity of Dermo1‐Cre transgene can be avoided by using female mice as parental Dermo1‐Cre carriers. 相似文献
12.
Keith E. J. Tyo Yong‐Su Jin Freddy A. Espinoza Gregory Stephanopoulos 《Biotechnology progress》2009,25(5):1236-1243
Inverse metabolic engineering (IME) is a combinatorial approach for identifying genotypes associated with a particular phenotype of interest. In this study, gene disruptions that increase the biosynthesis of poly‐3‐hydroxybutyrate (PHB) in the photosynthetic bacterium Synechocystis PCC6803 were identified. A Synechocystis mutant library was constructed by homologous recombination between the Synechocystis genome and a mutagenized genomic plasmid library generated through transposon insertion. Using a fluorescence‐activated cell sorting‐based high throughput screen, high PHB accumulating mutants from the library grown in different nutrient conditions were isolated and characterized. While several mutants isolated from the screen had increased PHB accumulation, transposon insertions in only two ORFs could be linked to increased PHB production. Disruptions of sll0461, coding for gamma‐glutamyl phosphate reductase (proA), and sll0565, a hypothetical protein, resulted in increased accumulation in standard growth media and acetate supplemented media. These genetic perturbations have increased PHB accumulation in Synechocystis and serve as markers for engineering increased polymer production in higher photosynthetic organisms. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2009 相似文献
13.
Paula R. Brown Fanny Odet Carl D. Bortner Edward M. Eddy 《Genesis (New York, N.Y. : 2000)》2014,52(12):976-984
Transgenic mice were generated using a heat shock protein 2 (Hspa2) gene promoter to express green fluorescent protein (GFP) at the beginning of meiotic prophase I in spermatocytes. Expression was confirmed in four lines by in situ fluorescence, immunohistochemistry, western blotting, and PCR assays. The expression and distribution of the GFP and HSPA2 proteins co‐localized in spermatocytes and spermatids in three lines, but GFP expression was variegated in one line (F46), being present in some clones of meiotic and post‐meiotic germ cells and not in others. Fluorescence activated cell sorting (FACS) was used to isolate purified populations of spermatocytes and spermatids. Although bisulfite sequencing revealed differences in the DNA methylation patterns in the promoter regions of the transgene of the variegated expressing GFP line, a uniformly expressing GFP reporter line, and the Hspa2 gene, these differences did not correlate with variegated expression. The Hspa2‐GFP reporter mice provide a novel tool for studies of meiosis by allowing detection of GFP in situ and in isolated spermatogenic cells. They will allow sorting of meiotic and post‐meiotic germ cells for characterization of molecular features and correlation of expression of GFP with stage‐specific spermatogenic cell proteins and developmental events. genesis 52:976–984, 2014. © 2014 Wiley Periodicals, Inc. 相似文献
14.
Isolation of specific cell types allows one to analyze rare cell populations such as stem/progenitor cells. Such an approach to studying inner ear tissues presents a unique challenge because of the paucity of cells of interest and few transgenic reporter mouse models. Here, we describe a protocol using fluorescence-conjugated probes to selectively label LacZ-positive cells from the neonatal cochleae. The most common underlying pathology of sensorineural hearing loss is the irreversible damage and loss of cochlear sensory hair cells, which are required to transduce sound waves to neural impulses. Recent evidence suggests that the murine auditory and vestibular organs harbor stem/progenitor cells that may have regenerative potential. These findings warrant further investigation, including identifying specific cell types with stem/progenitor cell characteristics. The Wnt signaling pathway has been demonstrated to play a critical role in maintaining stem/progenitor cell populations in several organ systems. We have recently identified Wnt-responsive Axin2-expressing cells in the neonatal cochlea, but their function is largely unknown. To better understand the behavior of these Wnt-responsive cells in vitro, we have developed a method of isolating Axin2-expressing cells from cochleae of Axin2-LacZ reporter mice. Using flow cytometry to isolate Axin2-LacZ positive cells from the neonatal cochleae, we could in turn execute a variety of experiments on live cells to interrogate their behavior as stem/progenitor cells. Here, we describe in detail the steps for the microdissection of neonatal cochlea, dissociation of these tissues, labeling of the LacZ-positive cells using a fluorogenic substrate, and cell sorting. Techniques for dissociating cochleae into single cells and isolating cochlear cells via flow cytometry have been described. We have made modifications to these techniques to establish a novel protocol to isolate LacZ-expressing cells from the neonatal cochlea. 相似文献
15.
16.
Bo Xie Dan Stessman Jason H. Hart Haili Dong Yingjun Wang David A. Wright Basil J. Nikolau Martin H. Spalding Larry J. Halverson 《Plant biotechnology journal》2014,12(7):872-882
The genetically tractable microalga Chlamydomonas reinhardtii has many advantages as a model for renewable bioproducts and/or biofuels production. However, one limitation of C. reinhardtii is its relatively low‐lipid content compared with some other algal species. To overcome this limitation, we combined ethane methyl sulfonate mutagenesis with fluorescence‐activated cell sorting (FACS) of cells stained with the lipophilic stain Nile Red to isolate lipid hyperaccumulating mutants of C. reinhardtii. By manipulating the FACS gates, we sorted mutagenized cells with extremely high Nile Red fluorescence signals that were rarely detected in nonmutagenized populations. This strategy successfully isolated several putative lipid hyperaccumulating mutants exhibiting 23% to 58% (dry weight basis) higher fatty acid contents than their progenitor strains. Significantly, for most mutants, nitrogen starvation was not required to attain high‐lipid content nor was there a requirement for a deficiency in starch accumulation. Microscopy of Nile Red stained cells revealed that some mutants exhibit an increase in the number of lipid bodies, which correlated with TLC analysis of triacyglycerol content. Increased lipid content could also arise through increased biomass production. Collectively, our findings highlight the ability to enhance intracellular lipid accumulation in algae using random mutagenesis in conjunction with a robust FACS and lipid yield verification regime. Our lipid hyperaccumulating mutants could serve as a genetic resource for stacking additional desirable traits to further increase lipid production and for identifying genes contributing to lipid hyperaccumulation, without lengthy lipid‐induction periods. 相似文献
17.
18.
The fluorescent labeling agent monobromobimane (mBBr) was used to label thiols and disulfides (after reduction of sperm disulfides by dithiothreitol) in intact spermatozoa. Bimane-labeled sperm of several mammalian species were analyzed by flow cytometry (FCM) and examined by fluorescent microscopy. FCM analysis showed sperm thiol oxidation to disulfides during epididymal maturation. FCM of labeled mature spermatozoa showed differences among species in the sperm thiol content. Heterogeneity in thiol content of sperm within individual samples was also observed. In addition, FCM patterns showed heterogeneity among and within samples in the content of disulfides and their resistance to reduction. FCM analysis reflected the microscopic appearance of the labeled spermatozoa. FCM analysis of bimane-labeled spermatozoa offers a convenient method for the study of sperm thiol-disulfide status and permits detection of sperm subpopulations within an individual sample. FCM analysis of mBBr-labeled spermatozoa may serve as a test to evaluate sperm quality. 相似文献
19.
Characterization and categorization of fluorescence activated cell sorted planarian stem cells by ultrastructural analysis 总被引:1,自引:0,他引:1
Higuchi S Hayashi T Hori I Shibata N Sakamoto H Agata K 《Development, growth & differentiation》2007,49(7):571-581
Planarians have regenerative ability made possible by pluripotent stem cells referred to as neoblasts. Classical ultrastructural studies have indicated that stem cells can be distinguished by a unique cytoplasmic structure known as the chromatoid body and their undifferentiated features, and they are specifically eliminated by X-ray irradiation. Recently, by using fluorescence activated cell sorting (FACS), planarian cells were separated into two X-ray-sensitive fractions (X1 and X2) and an X-ray-insensitive fraction (XIS) according to DNA content and cytoplasmic size. Here we analyzed the fractionated cells by transmission electron microscopy (TEM). First, we found that both undifferentiated cells (stem cells) and regenerative cells (differentiating cells) were concentrated in the X1 fraction containing the S/G2/M phase cells. The regenerative cells were considered to be committed stem cells or progenitor cells, suggesting that some stem cells may maintain proliferative ability even after cell fate-commitment. Second, we succeeded in identifying a new type of stem cells, which were small in size with few chromatoid bodies and a heterochromatin-rich nucleus. Interestingly, they were concentrated in the X2 fraction, containing G0/G1 phase cells. These results suggest that planarian stem cells are not homogeneous, but may consist of heterogeneous populations, like mammalian stem cells. 相似文献
20.
Masakazu Yamamoto Nicole A. Shook Onur Kanisicak Shoko Yamamoto Michael N. Wosczyna James R. Camp David J. Goldhamer 《Genesis (New York, N.Y. : 2000)》2009,47(2):107-114
The Cre/lox and FLP/FRT recombination systems have been used extensively for both conditional knockout and cell lineage analysis in mice. Here we report a new multifunctional Cre/FLP dual reporter allele (R26NZG) that exhibits strong and apparently ubiquitous marker expression in embryos and adults. The reporter construct, which is driven by the CAG promoter, was knocked into the ROSA26 locus providing an open chromatin domain for consistent expression and avoiding site‐of‐integration effects often observed with transgenic reporters. R26NZG directs Cre‐dependent nuclear‐localized β‐galactosidase (β‐gal) expression, and can be converted into a Cre‐dependent EGFP reporter (R26NG) by germline excision of the FRT‐flanked nlslacZ cassette. Alternatively, germline excision of the floxed PGKNEO cassette in R26NZG generates an FLP‐dependent EGFP reporter (R26ZG) that expresses β‐gal in FLP‐nonexpressing cells. Finally, by the simultaneous use of both Cre and FLP deleters, R26NZG allows lineage relationships to be interrogated with greater refinement than is possible with single recombinase reporter systems. genesis 47:107–114, 2009. © 2009 Wiley‐Liss, Inc. 相似文献