首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Changes in climate, in combination with intensive exploitation of marine resources, have caused large‐scale reorganizations in many of the world's marine ecosystems during the past decades. The Baltic Sea in Northern Europe is one of the systems most affected. In addition to being exposed to persistent eutrophication, intensive fishing, and one of the world's fastest rates of warming in the last two decades of the 20th century, accelerated climate change including atmospheric warming and changes in precipitation is projected for this region during the 21st century. Here, we used a new multimodel approach to project how the interaction of climate, nutrient loads, and cod fishing may affect the future of the open Central Baltic Sea food web. Regionally downscaled global climate scenarios were, in combination with three nutrient load scenarios, used to drive an ensemble of three regional biogeochemical models (BGMs). An Ecopath with Ecosim food web model was then forced with the BGM results from different nutrient‐climate scenarios in combination with two different cod fishing scenarios. The results showed that regional management is likely to play a major role in determining the future of the Baltic Sea ecosystem. By the end of the 21st century, for example, the combination of intensive cod fishing and high nutrient loads projected a strongly eutrophicated and sprat‐dominated ecosystem, whereas low cod fishing in combination with low nutrient loads resulted in a cod‐dominated ecosystem with eutrophication levels close to present. Also, nonlinearities were observed in the sensitivity of different trophic groups to nutrient loads or fishing depending on the combination of the two. Finally, many climate variables and species biomasses were projected to levels unseen in the past. Hence, the risk for ecological surprises needs to be addressed, particularly when the results are discussed in the ecosystem‐based management context.  相似文献   

2.
In 2007 the alien invasive ctenophore Mnemiopsis leidyi A. Agassiz 1865 was recorded for the first time in the Bornholm Basin, an area which serves as important spawning ground for Baltic fish stocks. Since M. leidyi is capable of preying upon early life stages of fish and further might act as food competitor for fish larvae, it is of major concern to investigate the potential threat that this non-indigenous species poses to the pelagic ecosystem of the Baltic Sea. The present study investigates the temporal and spatial overlap of M. leidyi with eggs and larvae of Baltic cod (Gadus morhua L.) and sprat (Sprattus sprattus L.) in order to assess the potential impact of this new invader on two of the most important Baltic fish stocks. Results show variable inter-seasonal distribution and overlap dynamics and thus different seasonal threat-scenarios for the early life stages of cod and sprat. The spatial overlap between M. leidyi and ichthyoplankton was low for most of the period observed, and we conclude that M. leidyi presently does not have a strong impact. However, we detected situations with high overlaps, e.g. for sprat larvae and cod eggs in spring. As the population dynamics of M. leidyi in the central Baltic are not yet fully understood, a future population explosion of the alien ctenophore with possible effects on fish recruitment cannot be ruled out. Furthermore, a possible shift in peak spawning of cod to the early season, when ctenophore abundances were relatively high, might increase the impact of M. leidyi on cod.  相似文献   

3.
In the distributional overlap volume of Baltic cod Gadus morhua and its prey, studied in the Bornholm Basin in the southern Baltic Sea, only a fraction of the sprat Sprattus sprattus population vertically overlapped with the Baltic cod population. Sprat occurred in the intermediate water, in the halocline and in the bottom water, while herring Clupea harengus and Baltic cod occurred exclusively in the halocline and in the bottom water. Only parts of the sprat population were hence accessible for Baltic cod, and only a fraction of the sprat had access to the Baltic cod eggs below the halocline. Baltic cod–clupeid overlap volumes appeared to be determined by salinity stratification and oxygenation of the bottom water. Hydrography time series were used to estimate average habitat volumes and overlap from July to September in 1958–1999. In the 1999 survey spawning Baltic cod had greater ratios of empty stomachs and lower average rations than non-spawning Baltic cod. The average ration for Baltic cod caught within 11· 4 m from the bottom (demersal) did not differ from the average ration of Baltic cod caught in shallower waters (pelagic), because spawning and non-spawning Baltic cod in both strata were caught at equal rates. The diet of the Baltic cod caught demersally contained more benthic invertebrates, especially Saduria entomon, but Baltic cod caught pelagically also had fresh benthic food in their stomachs, indicating vertical migration of individual fish.  相似文献   

4.
The multispecies stock‐production model of Horbowy developed in 1996 was further extended to include the unexploited part of a stock. The model was then applied to simulate stock dynamics and species interactions of cod, herring, and sprat in the Baltic from 1982 to 2001. The model indicates that there have been large declines in cod and herring biomass over the past two decades and a strong increase in sprat biomass in the 1990s. Using the extended stock‐production model, the relative changes in stock biomass were similar to the changes derived using the age‐structured multispecies model, the multispecies virtual population analysis (MSVPA). However, the production model estimates of the average predation mortality of young cod and young sprat are much lower than those derived from MSVPA, although the estimates for young and adult herring and adult sprat are similar in both approaches. The estimates of food suitability show that the preferred food of adult cod is adult sprat and young herring, while the suitability of young sprat, young cod, and adult herring is much smaller. The simulations performed show that the multispecies production model, which is less data‐demanding than age‐structured MSVPA, can provide estimates of stock dynamics and species interactions that are largely consistent with those estimated by MSVPA. The quality of input data in terms of recruitment and fishing‐effort indices strongly impacts the reliability of the model's results.  相似文献   

5.
The Baltic Sea ecosystem has undergone large changes during the last two decades, including a severe reduction in cod and herring biomass but, at the same time, a large increase in sprat abundance. The lower trophic levels of the Baltic Sea also changed due to environmental fluctuations, including variations in salinity and in volume of oxygenated water. In this apparently shifting environment, the conditions of herring and sprat have undergone large inter-annual variations during the past 15–20 years. In this study, we explore how abiotic factors (i.e. salinity and temperature) and biotic factors (biomass of the copepods Pseudocalanus elongatus , Temora longicornis , Acartia spp. and of cladocerans as well as clupeid abundance) in different seasons (May and August) affect clupeid body condition. Our analyses suggest that data of zooplankton biomass and abiotic factors in August have higher predictive power than May data. Although our analysis suggests that salinity (a bottom-up process) has an effect on sprat condition, total abundance of clupeids (a top-down process) is by far the most significant predictor of both herring and sprat condition. The strong correlation between clupeid abundance and total zooplankton biomass points to food competition and to top-down control by herring and sprat on common food resources. Furthermore, clupeid condition co-varied with the changes in the weight of zooplankton in the stomachs, which further suggest food competition being the main mechanism behind the changes in clupeid condition during the last two decades. Hence, our results are not in agreement with most of the current literature that has suggested that clupeid growth is regulated by environmentally mediated bottom-up processes acting on the abundance of copepods. This is, to our knowledge, the first evidence of food resources mediated density-dependent fish growth in a large marine ecosystem.  相似文献   

6.
Natural populations are exposed to seasonal variation in environmental factors that simultaneously affect several demographic rates (survival, development and reproduction). The resulting covariation in these rates determines population dynamics, but accounting for its numerous biotic and abiotic drivers is a significant challenge. Here, we use a factor‐analytic approach to capture partially unobserved drivers of seasonal population dynamics. We use 40 years of individual‐based demography from yellow‐bellied marmots (Marmota flaviventer) to fit and project population models that account for seasonal demographic covariation using a latent variable. We show that this latent variable, by producing positive covariation among winter demographic rates, depicts a measure of environmental quality. Simultaneously, negative responses of winter survival and reproductive‐status change to declining environmental quality result in a higher risk of population quasi‐extinction, regardless of summer demography where recruitment takes place. We demonstrate how complex environmental processes can be summarized to understand population persistence in seasonal environments.  相似文献   

7.
For the first time an international acoustic survey dataset covering three decades was used to investigate the factors shaping the spatial and temporal patterns in the condition of sprat and herring in the Baltic Proper. Generalized additive models showed that the spatial and temporal fluctuations in sprat density have been the main drivers of the spatio-temporal changes of both sprat and herring condition, evidencing intra- and inter-specific density dependence mediated by the size and distribution of the sprat population. Salinity was also an important predictor of herring condition, whereas temperature explained only a minor part of sprat model deviance. Herring density was an additional albeit weak significant predictor for herring condition, evidencing also intra-specific density dependence within the herring population. For both species, condition was high and similar in all areas of the Baltic Proper until the early 1990s, coincident with low sprat densities. Afterwards, a drop in condition occurred and a clear south–north pattern emerged. The drop in condition after the early 1990s was stronger in the northern areas, where sprat population increased the most. We suggest that the increase in sprat density in the northern areas, and the consequent spatial differentiation in clupeid condition, have been triggered by the almost total disappearance of the predator cod from the northern Baltic Proper. This study provides a step forward in understanding clupeid condition in the Baltic Sea, presenting evidence that density-dependent mechanisms also operate at the spatial scale within stock units. This stresses the importance of spatio-temporal considerations in the management of exploited fish.  相似文献   

8.
Anthropogenic disturbances intertwined with climatic changes can have a large impact on the upper trophic levels of marine ecosystems, which may cascade down the food web. So far it has been difficult to demonstrate multi-level trophic cascades in pelagic marine environments. Using field data collected during a 33-year period, we show for the first time a four-level community-wide trophic cascade in the open Baltic Sea. The dramatic reduction of the cod (Gadus morhua) population directly affected its main prey, the zooplanktivorous sprat (Sprattus sprattus), and indirectly the summer biomass of zooplankton and phytoplankton (top-down processes). Bottom-up processes and climate-hydrological forces had a weaker influence on sprat and zooplankton, whereas phytoplankton variation was explained solely by top-down mechanisms. Our results suggest that in order to dampen the occasionally harmful algal blooms of the Baltic, effort should be addressed not only to control anthropogenic nutrient inputs but also to preserve structure and functioning of higher trophic levels.  相似文献   

9.
In many seabird studies, single annual proxies of prey abundance have been used to explain variability in breeding performance, but much more important is probably the timing of prey availability relative to the breeding season when energy demand is at a maximum. Until now, intraseasonal variation in prey availability has been difficult to quantify in seabirds. Using a state‐of‐the‐art ocean drift model of larval cod Gadus morhua, an important constituent of the diet of common guillemots Uria aalge in the southwestern Barents Sea, we were able to show clear, short‐term correlations between food availability and measurements of the stress hormone corticosterone (CORT) in parental guillemots over a 3‐year period (2009–2011). The model allowed the extraction of abundance and size of cod larvae with very high spatial (4 km) and temporal resolutions (1 day) and showed that cod larvae from adjacent northern spawning grounds in Norway were always available near the guillemot breeding colony while those from more distant southerly spawning grounds were less frequent, but larger. The latter arrived in waves whose magnitude and timing, and thus overlap with the guillemot breeding season, varied between years. CORT levels in adult guillemots were lower in birds caught after a week with high frequencies of southern cod larvae. This pattern was restricted to the two years (2009 and 2010) in which southern larvae arrived before the end of the guillemot breeding season. Any such pattern was masked in 2011 by already exceptionally high numbers of cod larvae in the region throughout chick‐rearing period. The findings suggest that CORT levels in breeding birds increase when the arrival of southern sizable larvae does not match the period of peak energy requirements during breeding.  相似文献   

10.
With the human population expected to near 10 billion by 2050, and diets shifting towards greater per‐capita consumption of animal protein, meeting future food demands will place ever‐growing burdens on natural resources and those dependent on them. Solutions proposed to increase the sustainability of agriculture, aquaculture, and capture fisheries have typically approached development from single sector perspectives. Recent work highlights the importance of recognising links among food sectors, and the challenge cross‐sector dependencies create for sustainable food production. Yet without understanding the full suite of interactions between food systems on land and sea, development in one sector may result in unanticipated trade‐offs in another. We review the interactions between terrestrial and aquatic food systems. We show that most of the studied land–sea interactions fall into at least one of four categories: ecosystem connectivity, feed interdependencies, livelihood interactions, and climate feedback. Critically, these interactions modify nutrient flows, and the partitioning of natural resource use between land and sea, amid a backdrop of climate variability and change that reaches across all sectors. Addressing counter‐productive trade‐offs resulting from land‐sea links will require simultaneous improvements in food production and consumption efficiency, while creating more sustainable feed products for fish and livestock. Food security research and policy also needs to better integrate aquatic and terrestrial production to anticipate how cross‐sector interactions could transmit change across ecosystem and governance boundaries into the future.  相似文献   

11.
Stomach content composition and prey‐specific consumption rates of juvenile and adult harbor porpoises (Phocoena phocoena) were estimated from a data set including 339 stomachs collected over a 32 yr period (1980–2011) in the western Baltic Sea. The stomach contents were mainly hard parts of fish prey and in particular otoliths. The bias originating from differential residence time of otoliths in the stomachs was addressed by use of a recently developed approach. Atlantic cod and herring were the main prey of adults, constituting on average 70% of the diet mass. Juvenile porpoises also frequently consumed gobies. Here, the mass contribution by gobies was on average 25%, which was as much as cod. Other species such as whiting, sprat, eelpout, and sandeels were of minor importance for both juveniles and adults. The diet composition differed between years, quarters, and porpoise acquisition method. Yearly consumption rates for porpoises in the western Baltic Sea were obtained in three scenarios on the daily energy requirements of a porpoise in combination with an estimate including the 95% CLs of the porpoise population size. Cod of age groups 1 and 2 and intermediate‐sized herring suffered the highest predation from porpoises.  相似文献   

12.
The Baltic Sea is characterised by a heterogeneous oceanographic environment. The deep water layers forming the habitat of Baltic cod (Gadus morhua callarias L.) are subjected to frequently occurring pronounced anoxic conditions. Adverse oxygen conditions result in physiological stress for organisms living under these conditions. For cod e.g. a direct relationship between oxygen availability and food intake with a decreasing ingestion rate at hypoxia could be revealed. In the present study, the effects of oxygen deficiency on consumption rates were investigated and how these translate to stock size estimates in multi‐species models. Based on results from laboratory experiments, a model was fitted to evacuation rates at different oxygen levels and integrated into the existing consumption model for Baltic cod. Individual mean oxygen corrected consumption rates were 0.1–10.9% lower than the uncorrected ones. At the currently low predator stock size, however, the effect of oxygen‐reduced consumption on the total amount of eaten prey biomass and thus predation mortalities was only marginal. But should successful management lead to higher cod stock sizes in the future, then total predation mortalities will greatly increase and thus improved precision of these estimates would be valuable for the assessment of prey stocks.  相似文献   

13.
Understanding how combinations of fishing effort and selectivity affect productivity is central to fisheries research. We investigate the roles of fishing regulation in comparison with ecosystem status for Baltic Sea cod stock productivity, growth performance, and population stability. This case study is interesting because three cod populations with different exploitation patterns and stock status are located in three adjacent but partially, ecologically different areas. In assessing stock status, growth, and productivity, we use survey information and rather basic stock parameters without relying on age readings. Because there is an urgent interest of better understanding of the current development of the Eastern Baltic cod stock, we argue that our approach represents partly a novel way of interpreting monitoring information together with catch data in a simplified yet more informative way. Our study reports how the Eastern and Western Baltic cod have gone toward more truncated size structures between 1991 and 2016, in particular for the Eastern Baltic cod, whereas the Öresund cod show no trend. We suggest that selective fishing may disrupt fish population dynamic stability and that lower natural productivity might amplify the effects of selective fishing. In support of earlier findings on a density‐dependent growth of Eastern Baltic cod, management is advised to acknowledge that sustainable exploitation levels for Eastern Baltic cod are much more limited than perceived in regular assessments. Of more general importance, our results emphasize the need to embrace a more realistic view on what ecosystems can produce regarding tractable fish biomass to facilitate a more ecosystem‐based fisheries management.  相似文献   

14.
The introduction of mammalian predators to oceanic islands has led to dramatic declines in the abundance of many native species. Conservation management of these species often relies on low‐cost predator control techniques that can be implemented over large scales. Assessing the effectiveness of such management techniques is difficult, but using population viability analyses (PVA), which identify the population growth rate (λ) and extinction risk of threatened species, may offer a solution. PVA provide the opportunity to compare the relative effectiveness of various management options and can identify knowledge gaps to prioritize research efforts. We used PVA to assess the population viability of whio (Hymenolaimus malacorhynchos), a rare riverine duck endemic to New Zealand. Current populations are threatened by introduced mammalian predators and are rapidly declining in both distribution and abundance. Whio conservation management is dominated by large‐scale, low‐intensity predator control, targeting introduced stoats (Mustela erminea). There is evidence that such control increases whio productivity but it is unknown if this increase is sufficient for long‐term population persistence. We undertook a stochastic PVA to assess the viability of whio populations under different management scenarios using data obtained from a 6‐year study of whio demographic responses to predator control. Populations with no predator control and low productivity will rapidly decline to extinction. Increasing productivity through predator control increased population viability but populations still showed a declining trajectory. A perturbation analysis showed that the growth rate of whio populations was largely driven by adult survival. Therefore, future research should target obtaining more robust estimates of adult survival, particularly how it is affected by predator control. Overall, our analysis indicated that large‐scale predator control increases the short‐term viability of whio populations but is insufficient for long‐term population persistence.  相似文献   

15.
Phenological changes have been observed globally for marine, freshwater and terrestrial species, and are an important element of the global biological ‘fingerprint’ of climate change. Differences in rates of change could desynchronize seasonal species interactions within a food web, threatening ecosystem functioning. Quantification of this risk is hampered by the rarity of long‐term data for multiple interacting species from the same ecosystem and by the diversity of possible phenological metrics, which vary in their ecological relevance to food web interactions. We compare phenological change for phytoplankton (chlorophyll a), zooplankton (Daphnia) and fish (perch, Perca fluviatilis) in two basins of Windermere over 40 years and determine whether change has differed among trophic levels, while explicitly accounting for among‐metric differences in rates of change. Though rates of change differed markedly among the nine metrics used, seasonal events shifted earlier for all metrics and trophic levels: zooplankton advanced most, and fish least, rapidly. Evidence of altered synchrony was found in both lake basins, when combining information from all phenological metrics. However, comparisons based on single metrics did not consistently detect this signal. A multimetric approach showed that across trophic levels, earlier phenological events have been associated with increasing water temperature. However, for phytoplankton and zooplankton, phenological change was also associated with changes in resource availability. Lower silicate, and higher phosphorus, concentrations were associated with earlier phytoplankton growth, and earlier phytoplankton growth was associated with earlier zooplankton growth. The developing trophic mismatch detected between the dominant fish species in Windermere and important zooplankton food resources may ultimately affect fish survival and portend significant impacts upon ecosystem functioning. We advocate that future studies on phenological synchrony combine data from multiple phenological metrics, to increase confidence in assessments of change and likely ecological consequences.  相似文献   

16.
The current extinction and climate change crises pressure us to predict population dynamics with ever‐greater accuracy. Although predictions rest on the well‐advanced theory of age‐structured populations, two key issues remain poorly explored. Specifically, how the age‐dependency in demographic rates and the year‐to‐year interactions between survival and fecundity affect stochastic population growth rates. We use inference, simulations and mathematical derivations to explore how environmental perturbations determine population growth rates for populations with different age‐specific demographic rates and when ages are reduced to stages. We find that stage‐ vs. age‐based models can produce markedly divergent stochastic population growth rates. The differences are most pronounced when there are survival‐fecundity‐trade‐offs, which reduce the variance in the population growth rate. Finally, the expected value and variance of the stochastic growth rates of populations with different age‐specific demographic rates can diverge to the extent that, while some populations may thrive, others will inevitably go extinct.  相似文献   

17.
Good decision making for fisheries and marine ecosystems requires a capacity to anticipate the consequences of management under different scenarios of climate change. The necessary ecological forecasting calls for ecosystem-based models capable of integrating multiple drivers across trophic levels and properly including uncertainty. The methodology presented here assesses the combined impacts of climate and fishing on marine food-web dynamics and provides estimates of the confidence envelope of the forecasts. It is applied to cod (Gadus morhua) in the Baltic Sea, which is vulnerable to climate-related decline in salinity owing to both direct and indirect effects (i.e. through species interactions) on early-life survival. A stochastic food web-model driven by regional climate scenarios is used to produce quantitative forecasts of cod dynamics in the twenty-first century. The forecasts show how exploitation would have to be adjusted in order to achieve sustainable management under different climate scenarios.  相似文献   

18.
Life‐history theory predicts trade‐offs between reproductive and survival traits such that different strategies or environmental constraints may yield comparable lifetime reproductive success among conspecifics. Food availability is one of the most important environmental factors shaping developmental processes. It notably affects key life‐history components such as reproduction and survival prospect. We investigated whether food resource availability could also operate as an ultimate driver of life‐history strategy variation between species. During 13 years, we marked and recaptured young and adult sibling mouse‐eared bats (Myotis myotis and Myotis blythii) at sympatric colonial sites. We tested whether distinct, species‐specific trophic niches and food availability patterns may drive interspecific differences in key life‐history components such as age at first reproduction and survival. We took advantage of a quasi‐experimental setting in which prey availability for the two species varies between years (pulse vs. nonpulse resource years), modeling mark‐recapture data for demographic comparisons. Prey availability dictated both adult survival and age at first reproduction. The bat species facing a more abundant and predictable food supply early in the season started its reproductive life earlier and showed a lower adult survival probability than the species subjected to more limited and less predictable food supply, while lifetime reproductive success was comparable in both species. The observed life‐history trade‐off indicates that temporal patterns in food availability can drive evolutionary divergence in life‐history strategies among sympatric sibling species.  相似文献   

19.
Both temperature and terrestrial organic matter have strong impacts on aquatic food‐web dynamics and production. Temperature affects vital rates of all organisms, and terrestrial organic matter can act both as an energy source for lower trophic levels, while simultaneously reducing light availability for autotrophic production. As climate change predictions for the Baltic Sea and elsewhere suggest increases in both terrestrial matter runoff and increases in temperature, we studied the effects on pelagic food‐web dynamics and food‐web efficiency in a plausible future scenario with respect to these abiotic variables in a large‐scale mesocosm experiment. Total basal (phytoplankton plus bacterial) production was slightly reduced when only increasing temperatures, but was otherwise similar across all other treatments. Separate increases in nutrient loads and temperature decreased the ratio of autotrophic:heterotrophic production, but the combined treatment of elevated temperature and terrestrial nutrient loads increased both fish production and food‐web efficiency. CDOM: Chl a ratios strongly indicated that terrestrial and not autotrophic carbon was the main energy source in these food webs and our results also showed that zooplankton biomass was positively correlated with increased bacterial production. Concomitantly, biomass of the dominant calanoid copepod Acartia sp. increased as an effect of increased temperature. As the combined effects of increased temperature and terrestrial organic nutrient loads were required to increase zooplankton abundance and fish production, conclusions about effects of climate change on food‐web dynamics and fish production must be based on realistic combinations of several abiotic factors. Moreover, our results question established notions on the net inefficiency of heterotrophic carbon transfer to the top of the food web.  相似文献   

20.
Many species only show sexual dimorphism at the age of maturity, such that juveniles typically resemble females. Under these circumstances, estimating accurate age‐specific demographic parameters is challenging. Here, we propose a multievent model parameterization able to estimate age‐dependent survival using capture–recapture data with uncertainty in age and sex assignment of individuals. We illustrate this modeling approach with capture–recapture data from the ring‐necked parakeet Psittacula krameri. We analyzed capture, recapture, and resighting data (439 recaptures/resightings) of 156 ring‐necked parakeets tagged with neck collars in Barcelona city from 2003 to 2016 to estimate the juvenile and adult survival rate. Our models successfully estimated the survival probabilities of the different age classes considered. Survival probability was similar between adults (0.83, 95% CI = 0.77–0.87) and juveniles during their second (0.79, 95% CI = 0.58–0.87) and third winter (0.83, 95% CI = 0.65–0.88). The youngest juveniles (1st winter) showed a slightly lower survival (0.57, 95% CI = 0.37–0.79). Among adults, females showed a slightly higher survival than males (0.87, 95% CI = 0.78–0.93; and 0.80, 95% CI = 0.73–0.86, respectively). These high survival figures predict high population persistence in this species and urge management policies. The analysis also stresses the usefulness of multievent models to estimate juvenile survival when age cannot be fully ascertained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号