首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The controlled disposal of tannery sludge in agricultural soils is a viable alternative for recycling such waste; however, the impact of this practice on the arbuscular mycorrhizal fungi (AMF) communities is not well understood. We studied the effects of low-chromium tannery sludge amendment in soils on AMF spore density, species richness and diversity, and root colonization levels. Sludge was applied at four doses to an agricultural field in Rolandia, Paraná state, Brazil. The sludge was left undisturbed on the soil surface and then the area was harrowed and planted with corn. The soil was sampled at four intervals and corn roots once within a year (2007/2008). AMF spore density was low (1 to 49 spores per 50 cm3 of soil) and decreased as doses of tannery sludge increased. AMF root colonization was high (64%) and unaffected by tannery sludge. Eighteen AMF species belonging to six genera (Acaulospora, Glomus, Gigaspora, Scutellospora, Paraglomus, and Ambispora) were recorded. At the sludge doses of 9.0 and 22.6 Mg ha−1, we observed a decrease in AMF species richness and diversity, and changes in their relative frequencies. Hierarchical grouping analysis showed that adding tannery waste to the soil altered AMF spore community in relation to the control, modifying the mycorrhizal status of soil and selectively favoring the sporulation of certain species.  相似文献   

2.
Understanding which factors drive the diversity and community composition of arbuscular mycorrhizal fungi (AMF) is important due to the role of these soil micro‐organisms in ecosystem functioning and current environmental threats to AMF biodiversity. Additionally, in agro‐ecosystems, this knowledge may help to evaluate their use in making agriculture more sustainable. Here, we used 454‐pyrosequencing of small subunit rRNA gene amplicons to quantify AMF diversity and community composition in the roots of cultivated apple trees across 24 orchards in central Belgium. We aimed at identifying the factors (soil chemical variables, organic vs. conventional farming, and geographical location) that affect AMF diversity and community composition. In total, 110 AMF OTUs were detected, of which the majority belonged to the Glomeraceae (73%) and the Claroideoglomeraceae (19%). We show that soil characteristics and farming system, rather than the geographical location of the orchards, shape AMF communities on apple trees. Particularly, plant‐available P content of the soil was associated with lower AMF diversity. In orchards with a lower plant‐available P content of the soil (P < 100 mg/kg soil), we also found a significantly higher AMF diversity in organically managed orchards as compared to conventionally managed orchards. Finally, the degree of nestedness of the AMF communities was related to plant‐available P and N content of the soil, pointing at a progressive loss of AMF taxa with increasing fertilization. Overall, we conclude that a combination of organic orchard management and moderate fertilization may preserve diverse AMF communities on apple trees and that AMF in the roots of apple trees appear not to be dispersal limited at the scale of central Belgium.  相似文献   

3.
Little is known about direct and indirect effects of extreme weather events on arbuscular mycorrhizal fungi (AMF) under field conditions. In a field experiment, we investigated the response of mycorrhization to drought and heavy rain in grassland communities. We quantified AMF biomass in soil, mycorrhization of roots of the grass Holcus lanatus and the forb Plantago lanceolata, as well as plant performance. Plants were grown in four‐species communities with or without a legume. We hypothesised that drought increases and heavy rain decreases mycorrhization, and that higher mycorrhization will be linked to improved stress resistance and higher biomass production. Soil AMF biomass increased under both weather extremes. Heavy rain generally benefitted plants and increased arbuscules in P. lanceolata. Drought neither reduced plant performance nor root mycorrhization. Arbuscules increased in H. lanatus several weeks after drought, and in P. lanceolata several weeks after heavy rain spells. These long‐lasting effects of weather events on mycorrhization highlight the indirect influence of climate on AMF via their host plant. Legume presence increased plant community biomass, but had only minor effects on mycorrhization. Arbuscule colonisation was negatively correlated with senescence during the dry summer. Mycorrhization and biomass production in P. lanceolata were positively related. However, increased mycorrhization was related to less biomass in the grass. AMF mycelium in soil might generally increase under extreme events, root colonisation, however, is host species specific. This might amplify community shifts in grassland under climate change by further increasing stress resistance of species that already benefit from changed precipitation.  相似文献   

4.
Citrus plants strongly depend on mycorrhizal symbiosis because of less or no root hairs, but few reports have studied if their root traits and physiological status could be altered by different arbuscular mycorrhizal fungi (AMF). In a pot experiment we evaluated the effects of three AMF species, Glomus mosseae, G. versiforme and Paraglomus occultum on the root traits and physiological variables of the trifoliate orange (Poncirus trifoliata L. Raf.) seedlings. Root mycorrhizal colonization was 58–76% after 180 days of inoculation. AMF association significantly increased plant height, stem diameter, leaf number per plant, shoot and root biomass. Mycorrhizal seedlings also had higher total root length, total root projected area, total root surface area and total root volume but thinner root diameter. Among the three AMFs, greater positive effects on aboveground growth generally ranked as G. mosseae > P. occultum > G. versiforme, whilst on root traits as G. mosseae ≈ P. occultum > G. versiforme. Compared to the non-mycorrhizal seedlings, contents of chlorophyll, leaf glucose and sucrose, root soluble protein were significantly increased in the mycorrhizal seedlings. In contrast, root glucose and sucrose, leaf soluble protein, and activity of peroxidase (POD) in both leaves and roots were significantly decreased in the mycorrhizal seedlings. It suggested that the improvement of root traits could be dependent on AMF species and be related to the AMF-induced alteration of carbohydrates and POD.  相似文献   

5.
The arbuscular mycorrhizal status of fifteen mangroves and one mangrove associate was investigated from 27 sites of three inundation types namely, diurnal, usual springtide and summer springtide. Roots and rhizospheric soil samples were analysed for spore density, frequency of mycorrhizal colonization and some chemical characteristics of soil. Relative abundance, frequency and spore richness of AMF were assessed at each inundation type. All the plant species except Avicennia alba exhibited mycorrhizal colonization. The study demonstrated that mycorrhizal colonization and spore density were more influenced by host plant species than tidal inundation. Forty four AMF species belonging to six genera, namely Acaulospora, Entrophospora, Gigaspora, Glomus, Sclerocystis and Scutellospora, were recorded. Glomus mosseae exhibited highest frequency at all the inundation types; Glomus fistulosum, Sclerocystis coremioides and Glomus mosseae showed highest relative abundance at sites inundated by usual springtides, summer springtides and diurnal tides, respectively. Spore richness of AMF was of the order usual springtide > diurnal > summer springtide inundated sites. The mean spore richness was 3.27. Diurnally inundated sites had the lowest concentrations of salinity, available phosphorus, exchangeable potassium, sodium and magnesium. Statistical analyses indicated that mycorrhizal frequency and AMF spore richness were significantly negatively correlated to soil salinity. Spore richness was also significantly negatively correlated to available phosphorus. The soil parameters of the usual springtide inundated sites appeared to be favourable for the existence of maximum number of AMF. Glomus mosseae was the predominant species in terms of frequency in the soils of the Sundarbans.  相似文献   

6.
Stein C  Rissmann C  Hempel S  Renker C  Buscot F  Prati D  Auge H 《Oecologia》2009,159(1):191-205
Plant communities can be affected both by arbuscular mycorrhizal fungi (AMF) and hemiparasitic plants. However, little is known about the interactive effects of these two biotic factors on the productivity and diversity of plant communities. To address this question, we set up a greenhouse study in which different AMF inocula and a hemiparasitic plant (Rhinanthus minor) were added to experimental grassland communities in a fully factorial design. In addition, single plants of each species in the grassland community were grown with the same treatments to distinguish direct AMF effects from indirect effects via plant competition. We found that AMF changed plant community structure by influencing the plant species differently. At the community level, AMF decreased the productivity by 15–24%, depending on the particular AMF treatment, mainly because two dominant species, Holcus lanatus and Plantago lanceolata, showed a negative mycorrhizal dependency. Concomitantly, plant diversity increased due to AMF inoculation and was highest in the treatment with a combination of two commercial AM strains. AMF had a positive effect on growth of the hemiparasite, and thereby induced a negative impact of the hemiparasite on host plant biomass which was not found in non-inoculated communities. However, the hemiparasite did not increase plant diversity. Our results highlight the importance of interactions with soil microbes for plant community structure and that these indirect effects can vary among AMF treatments. We conclude that mutualistic interactions with AMF, but not antagonistic interactions with a root hemiparasite, promote plant diversity in this grassland community. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

7.
Arbuscular mycorrhizal fungi (AMF) are essential constituents of most terrestrial ecosystems. AMF species differ in terms of propagation strategies and the major propagules they form. This study compared the AMF community composition of different propagule fractions – colonized roots, spores and extraradical mycelium (ERM) – associated with five Mediterranean plant species in Sierra de Baza Natural Park (Granada, Spain). AMF were identified using 454 pyrosequencing of the SSU rRNA gene. A total of 96 AMF phylogroups [virtual taxa (VT)] were detected in the study site, including 31 novel VT. After per‐sample sequencing depth standardization, 71 VT were recorded from plant roots, and 47 from each of the spore and ERM fractions. AMF communities differed significantly among the propagule fractions, and the root‐colonizing fraction differed among host plant species. Indicator VT were detected for the root (13 Glomus VT), spore (Paraglomus VT281, VT336, Pacispora VT284) and ERM (Diversispora VT62) fractions. This study provides detailed evidence from a natural system that AMF taxa are differentially allocated among soil mycelium, soil spores and colonized root propagules. This has important implications for interpreting AMF diversity surveys and designing applications of AMF in vegetation restoration.  相似文献   

8.
Arbuscular mycorrhizal fungi (AMF) can improve plant nutrient acquisition, either by directly supplying nutrients to plants or by promoting soil organic matter mineralization, thereby affecting interspecific plant relationships in natural communities. We examined the mechanism by which the addition of P affects interspecific interactions between a C4 grass (Bothriochloa ischaemum, a dominant species in natural grasslands) and a C3 legume (Lespedeza davurica, a subordinate species in natural grasslands) via AMF and plant growth, by continuous 13C and 15N labelling, combined with soil enzyme analyses. The results of 15N labelling revealed that P addition affected the shoot uptake of N via AMF by Bischaemum and Ldavurica differently. Specifically, the addition of P significantly increased the shoot uptake of N via AMF by Bischaemum but significantly decreased that by Ldavurica. Interspecific plant interactions via AMF significantly facilitated the plant N uptake via AMF by B. ischaemum but significantly inhibited that by L. davurica under P-limited soil conditions, whereas the opposite effect was observed in the case of excess P. This was consistent with the impact of interspecific plant interaction via AMF on arbuscular mycorrhizal (AM) benefit for plant growth. Our data indicate that the capability of plant N uptake via AMF is an important mechanism that influences interspecific relationships between C4 grasses and C3 legumes. Moreover, the effect of AMF on the activities of the soil enzymes responsible for N and P mineralization substantially contributed to the consequence of interspecific plant interaction via AMF for plant growth.  相似文献   

9.
The majority of terrestrial plants form mutualistic associations with arbuscular mycorrhizal fungi (AMF) and rhizobia (i.e., nitrogen‐fixing bacteria). Understanding these associations has important implications for ecological theory and for restoration practice. Here, we tested whether the presence of AMF and rhizobia influences the performance of native woody plants invaded by a non‐native grass in experimental microcosms. We planted eight plant species (i.e., Acacia acuminata, A. microbotrya, Eucalyptus loxophleba subsp. loxophleba, E. astringens, Calothamnus quadrifidus, Callistemon phoeniceus, Hakea lissocarpha and H. prostrata) in microcosms of field‐conditioned soil with and without addition of AMF and rhizobia in a fully factorial experimental design. After seedling establishment, we seeded half the microcosms with an invasive grass Bromus diandrus. We measured shoot and root biomass of native plants and Bromus, and on roots, the percentage colonization by AMF, number of rhizobia‐forming nodules and number of proteaceous root clusters. We found no effect of plant root symbionts or Bromus addition on performance of myrtaceous, and as predicted, proteaceous species as they rely little or not at all on AMF and rhizobia. Soil treatments with AMF and rhizobia had a strong positive effect (i.e., larger biomass) on native legumes (Amicrobotrya and A. acuminata). However, the beneficial effect of root symbionts on legumes became negative (i.e., lower biomass and less nodules) if Bromus was present, especially for one legume, i.e., A. acuminata, suggesting a disruptive effect of the invader on the mutualism. We also found a stimulating effect of Bromus on root nodule production in Amicrobotrya and AMF colonization in A. acuminata which could be indicative of legumes’ increased resource acquisition requirement, i.e., for nitrogen and phosphorus, respectively, in response to the Bromus addition. We have demonstrated the importance of measuring belowground effects because the aboveground effects gave limited indication of the effects occurring belowground.  相似文献   

10.
【目的】解析不同连作年限花魔芋软腐病株、健株根域的丛枝菌根真菌(arbuscular mycorrhizal fungi,AMF)群落多样性。【方法】使用AMF 18S SSU rRNA基因特异引物AMV4.5NF/AMDGR对正茬及连作2年和3年的软腐病株、健株魔芋根系和根际土壤DNA扩增建库,通过高通量测序和生物信息学分析探究魔芋软腐病与其根域AMF群落多样性的关系。【结果】魔芋根系具有明显的AMF菌丝、泡囊和丛枝等结构。在相同连作年限条件下,健株根系AMF总侵染率、侵染强度和孢子密度均显著高于病株(P<0.05);在不同连作年限条件下,病株根系AMF总侵染率和侵染强度随连作年限延长而降低。从所有样品中共鉴定到9属53种AMF,其中有49个已知种和4个新种。球囊霉属(Glomus)和类球囊霉属(Claroideoglomus)是AMF群落的优势属,其AMF种分别占总AMF种数的41.5%和26.4%;丰度最高的Paraglomus sp.VTX00308是所有样品的共有种。连作、软腐病及二者的交互作用显著影响根系AMF群落的Shannon指数和Simpson指数及根际土壤AMF的Chao1指数(P<0.05)。通过丰度差异分析发现6个在连作软腐病发生后丰度差异显著的AMF种(P<0.05);NMDS分析表明,不同连作年限的魔芋软腐病株与健株之间的根域AMF菌种组成、相对丰度和群落结构存在差异。相关性分析表明,软腐病发病率和病情指数与魔芋根系和根际土壤AMF的Shannon指数、根系AMF的Chao1和Simpson指数以及AMF总侵染率、侵染强度和孢子密度极显著负相关(P<0.01)。【结论】比对健株,连作魔芋软腐病株根际土壤AMF孢子密度以及根系AMF侵染率、种数和多样性均降低,其群落结构显著改变。  相似文献   

11.
Yam (Dioscorea spp.) is a tuberous staple food crop of major importance in the sub-Saharan savannas of West Africa. Optimal yields commonly are obtained only in the first year following slash-and-burn in the shifting cultivation systems. It appears that the yield decline in subsequent years is not merely caused by soil nutrient depletion but might be due to a loss of the beneficial soil microflora, including arbuscular mycorrhizal fungi (AMF), associated with tropical “tree-aspect” savannas and dry forests that are the natural habitats of the wild relatives of yam. Our objective was to study the AMF communities of natural savannas and adjacent yam fields in the Southern Guinea savanna of Benin. AMF were identified by morphotyping spores in the soil from the field sites and in AMF trap cultures with Sorghum bicolor and yam (Dioscorea rotundata and Dioscorea cayenensis) as bait plants. AMF species richness was higher in the savanna than in the yam-field soils (18–25 vs. 11–16 spp.), but similar for both ecosystems (29–36 spp.) according to the observations in trap cultures. Inoculation of trap cultures with soil sampled during the dry season led to high AMF root colonization, spore production, and species richness (overall 45 spp.) whereas inoculation with wet-season soil was inefficient (two spp. only). The use of D. cayenensis and D. rotundata as baits yielded 28 and 29 AMF species, respectively, and S. bicolor 37 species. AMF root colonization, however, was higher in yam than in sorghum (70–95 vs. 11–20%). After 8 months of trap culturing, the mycorrhizal yam had a higher tuber biomass than the nonmycorrhizal controls. The AMF actually colonizing D. rotundata roots in the field were also studied using a novel field sampling procedure for molecular analyses. Multiple phylotaxa were detected that corresponded with the spore morphotypes observed. It is, therefore, likely that the legacy of indigenous AMF from the natural savanna plays a crucial role for yam productivity, particularly in the low-input traditional farming systems prevailing in West Africa.  相似文献   

12.
Arbuscular mycorrhizal fungi (AMF) represent an important soil microbial group playing a fundamental role in many terrestrial ecosystems. We explored the effects of deterministic (soil characteristics, host plant life stage, neighbouring plant communities) and stochastic processes on AMF colonization, richness and community composition in roots of Knautia arvensis (Dipsacaceae) plants from three serpentine grasslands and adjacent nonserpentine sites. Methodically, the study was based on 454‐sequencing of the ITS region of rDNA. In total, we detected 81 molecular taxonomical operational units (MOTUs) belonging to the Glomeromycota. Serpentine character of the site negatively influenced AMF root colonization, similarly as higher Fe concentration. AMF MOTUs richness linearly increased along a pH gradient from 3.5 to 5.8. Contrary, K and Cr soil concentration had a negative influence on AMF MOTUs richness. We also detected a strong relation between neighbouring plant community composition and AMF MOTUs richness. Although spatial distance between the sampled sites (c. 0.3–3 km) contributed to structuring AMF communities in K. arvensis roots, environmental parameters were key factors in this respect. In particular, the composition of AMF communities was shaped by the complex of serpentine conditions, pH and available soil Ni concentration. The composition of AMF communities was also dependent on host plant life stage (vegetative vs. generative). Our study supports the dominance of deterministic factors in structuring AMF communities in heterogeneous environment composed of an edaphic mosaic of serpentine and nonserpentine soils.  相似文献   

13.
Mean annual temperature (MAT) is an influential climate factor affecting the bioavailability of growth‐limiting nutrients nitrogen (N) and phosphorus (P). In tropical montane wet forests, warmer MAT drives higher N bioavailability, while patterns of P availability are inconsistent across MAT. Two important nutrient acquisition strategies, fine root proliferation into bulk soil and root association with arbuscular mycorrhizal fungi, are dependent on C availability to the plant via primary production. The case study presented here tests whether variation in bulk soil N bioavailability across a tropical montane wet forest elevation gradient (5.2°C MAT range) influences (a) morphology fine root proliferation into soil patches with elevated N, P, and N+P relative to background soil and (b) arbuscular mycorrhizal fungal (AMF) colonization of fine roots in patches. We created a fully factorial fertilized root ingrowth core design (N, P, N+P, unfertilized control) representing soil patches with elevated N and P bioavailability relative to background bulk soil. Our results show that percent AMF colonization of roots increased with MAT (r2 = .19, p = .004), but did not respond to fertilization treatments. Fine root length (FRL), a proxy for root foraging, increased with MAT in N+P‐fertilized patches only (p = .02), while other fine root morphological parameters did not respond to the gradient or fertilized patches. We conclude that in N‐rich, fine root elongation into areas with elevated N and P declines while AMF abundance increases with MAT. These results indicate a tradeoff between P acquisition strategies occurring with changing N bioavailability, which may be influenced by higher C availability with warmer MAT.  相似文献   

14.
In the past few decades, it has been widely accepted that forest loss due to human actions alter the interactions between organisms. We studied the relationship between forest fragment size and arbuscular mycorrhizal fungi (AMF) and dark septate endophytes (DSE) colonization, and the AMF spore communities in the rhizosphere of two congeneric Euphorbia species (native and exotic/invasive). We hypothesized that these fungal variables will differ with fragment size and species status, and predicted that (a) AMF and DSE colonization together with AMF spore abundance and diversity would be positively related to forest fragment size; (b) these relationships will differ between the exotic and the native species; and (c) there will be a negative relationship between forest fragment size and the availability of soil nutrients (NH4 +, NO3 , and phosphorus). This study was performed in the eight randomly selected forest fragments (0.86–1000 ha), immersed in an agricultural matrix from the Chaquean region in central Argentina. AMF root colonization in the native and exotic species was similar, and was positively related with forest fragment size. Likewise, AMF spore diversity and spore abundance were higher in the larger fragments. While DSE root colonization in the native host was positively related with forest fragment size, DSE colonization in the exotic host showed no relationship. Soil nutrients contents were negatively related with forest fragment size. In addition, NH4 + and NO3 were negatively correlated with AMF spores abundance and root colonization and with DSE colonization in the native species. The results observed in this study show how habitat fragmentation might affect the interaction between key soil components, such as rhizospheric plant-fungal symbiosis and nutrient availability. These environmental changes may have important consequences on plant community composition and nutrient dynamics in this fragmented landscape.  相似文献   

15.
Arbuscular mycorrhizal fungal (AMF) symbiosis was thought to be rare in wetland plant roots, although several recent studies suggested that this association might be important in wetland ecosystems. In this research work we have studied the distribution of AMF in the marshy and shoreline vegetation of Deepar Beel Ramsar site of Assam, India. The study reveals the percentage of mycorrhizal colonization in the roots of different plant species which were observed from 20.89 to 86.47% and particularly found larger among the members of the family Poaceae. The Vetiveria zizanioides L. from the family Cyperaceae showed the highest (86.47%) percentage of root colonization, however, only one plant species viz. Scirpus lateriflorus Gmel. from the same family was found to be nonmycorrhizal. The rhizospheric soil samples of most of the plant species were found to be dominated by Glomus morphotypes. All total 18 AMF morphotypes were recorded which comprises four genera viz. Glomus (66.67%), Acaulospora (16.66%), Gigaspora (11.11%) and Scutellospora (5.56%). The observation of diversity of AMF in 25 different plant species among the wetland plants gives a glimpse of AMF diversity and their host selectivity in the said ecosystem.  相似文献   

16.
The fungal root endophyte associations of 16 species from 12 families of plants endemic to the Pamir Alay Mountains of Central Asia are presented. The plants and soil samples were collected in Zeravshan and Hissar ranges within the central Pamir Alay mountain system. Colonization by arbuscular mycorrhizal fungi (AMF) was found in 15 plant species; in 8 species it was of the Arum type and in 4 of the Paris type, while 3 taxa revealed intermediate arbuscular mycorrhiza (AM) morphology. AMF colonization was found to be absent only in Matthiola integrifolia, the representative of the Brassicaceae family. The AM status and morphology are reported for the first time for all the species analyzed and for the genera Asyneuma, Clementsia, and Eremostachys. Mycelia of dark septate endophytes (DSE) accompanied the AMF colonization in ten plant species. The frequency of DSE occurrence in the roots was low in all the plants, with the exception of Spiraea baldschuanica. However, in the case of both low and higher occurrence, the percentage of DSE root colonization was low. Moreover, the sporangia of Olpidium spp. were sporadically found inside the root epidermal cells of three plant species. Seven AMF species (Glomeromycota) found in the trap cultures established with soils surrounding roots of the plants being studied were reported for the first time from this region of Asia. Our results provide information that might well be of use to the conservation and restoration programmes of these valuable plant species. The potential application of beneficial root-inhabiting fungi in active plant protection projects of rare, endemic and endangered plants is discussed.  相似文献   

17.
Boddington  C.L.  Dodd  J.C. 《Plant and Soil》2000,218(1-2):137-144
Two pre-established agricultural field trials were assessed for the abundance of arbuscular mycorrhizal fungi (AMF) in the soil (density of spores, species richness and lengths of extra-radical mycelium [ERM]) in association with one of three tropical plant species (Gliricidia sepium, Peltophorum dasyrachis and Zea mays). The trials were managed by one of three agricultural practices: soil disturbance in a monoculture system, a root barrier to prevent interactions between plants in an agroforestry system or the addition of organic matter (OM) in an agroforestry and a monoculture system. The lengths of ERM of AMF in the soil were greater in the agroforestry system than the monoculture system. These were greater when a root barrier was present, but decreased when OM was added. Soil disturbance reduced the density of spores, species richness and the lengths of ERM of AMF compared with the undisturbed soil. This work indicates that agricultural trials may provide a useful tool to monitor the abundance of AMF in the field. Clearly, there is potential to increase the abundance of AMF, from different genera, in the soil through the management of agricultural practices. The significance of the abundance of AMF for subsequent benefits to plant growth and development and ultimately the sustainability of tropical agro-ecosystems are discussed. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

18.
Soil and roots associated with different tea clones and nearby weeds (Veronica sp., Setaria sp., Salvia sp., Senecio sp. and Tripogon sp.) were sampled for arbuscular mycorrhizal fungi (AMF) in the tea gardens of Northern Iran. Spores were searched for in the soil and AMF colonisation determined microscopically and fatty acid signatures in roots was determined. Root samples from mycorrhizal and non-mycorrhizal clover were used as positive and negative controls. AMF spores were abundant in the tea garden soils; the genera Glomus and Acaulospora dominated. Microscopic observations of stained tea roots showed no sign of AMF. To confirm this, the roots were analysed for fatty acid signature compounds. The average level of PLFA 16:1ω5 as signature molecule for AMF in tea roots was 2 nmol g−1 dry root, while the NLFA 16:1ω5 was not detectable. In mycorrhizal and non-mycorrhizal clover roots, the PLFA 16:1ω5 was 141and 5.74 nmol g−1 dry root, respectively. In roots of weeds in tea plantations, the amount of PLFA 16:1ω5 was in the range 4.9 to 31.1 nmol g−1 dry root. Thus, there was no evidence for AMF association in tea roots and weeds are thought to be the source of the spores in the soils. Finally, no mycorrhizal colonisation was found when tea plant seedlings were inoculated with AMF in pot cultures.  相似文献   

19.
Arbuscular-mycorrhizal (AM) fungi stabilize the soil and enhance plant growth by alleviating nutrient and drought stress. Their contributions to agriculture are well known, but their role in desert ecosystems has received less attention. The AM status of perennial plants in disturbed and undisturbed plots were investigated in the Sonoran Desert near La Paz, Baja California Sur, Mexico to determine if AM fungi contribute to resource-island stability and plant establishment. All perennial plants (46 species) in the study plots were AM, but root colonization varied widely (<10 to> 70%). Roots of plants that established in greatest numbers in plant-free zones (colonizers) of disturbed areas were highly AM. Plants with trace (<10%) root colonization (cacti of the tribe Pachycereae: Pachycereus pringlei, Machaerocereus gummosus, and Lemaireocereus thurberi; and Agave datilyo) established preferentially in association with nurse trees. The pachycereid cacti grew under Prosopis articulata and A. datilyo under Olneya tesota canopies. Of the nine species of trees and arborescent shrubs in the area, the mature (>20 yr) nurse-legumes P. articulata and O. tesota supported the largest number of under-story plants. Younger plants had only occasional associates. AM propagule densities in plant-free areas were lower than under plant canopies (40 vs. 280 propagules/kg soil). Occurrence of soil mounds (islands) under plants owing to soil deposition was related to the nature of the canopies and to the AM status of the roots. Island soils were enmeshed with AM-fungal hyphae, especially in the upper layer (approximately 10 cm). Seedlings of P. pringlei, growing in a screenhouse for six months in soil collected under P. articulata, had a biomass ten times greater than plants growing in bare-area soil. The results are consistent with the proposition that AM fungi contributed to the plant-soil system of our study area by: (1) helping to stabilize windborne soil that settles under dense plant canopies; (2) enhancing the establishment of colonizer plants in bare soils of disturbed areas; and (3) influencing plant associations through differences in the mycotrophic status of the associates.  相似文献   

20.
Spence LA  Dickie IA  Coomes DA 《Mycorrhiza》2011,21(4):309-314
Mycorrhizal fungi are important symbionts for the majority of plant species, but their role in determining the susceptibility of habitat to plant invasion is poorly understood. Hieracium lepidulum is an arbuscular mycorrhizal herb, currently invading the understorey of ectomycorrhizal Nothofagus solandri var. cliffortioides (mountain beech) forest in New Zealand. Mountain beech is solely ectomycorrhizal, and other plant species within the understorey occur sporadically. Hieracium has been shown to establish preferentially in microsites with higher plant species richness at a scale of less than 1 m2 within mountain beech forest, and we tested the hypothesis that more diverse microsites (<1 m2) are associated with higher levels of arbuscular mycorrhizal fungal (AMF) inoculum. We found low levels of AMF inoculum across all microsites, and over a third of samples contained no inoculum at all. Higher vascular-plant species richness (but not biomass) was associated with higher AMF spore densities in field soil, and greater AMF colonization of H. lepidulum seedlings in a bioassay. Absence of AMF inoculum from much of the soil and the positive association of inoculum potential with species richness provide a potential mechanism for the establishment of a positive diversity–invasibility relationship in the mountain beech forest.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号