首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Rhizosphere microbes affect plant performance, including plant resistance against insect herbivores; yet, a direct comparison of the relative influence of rhizosphere microbes versus plant genetics on herbivory levels and on metabolites related to defence is lacking. In the crucifer Boechera stricta, we tested the effects of rhizosphere microbes and plant population on herbivore resistance, the primary metabolome, and select secondary metabolites. Plant populations differed significantly in the concentrations of six glucosinolates (GLS), secondary metabolites known to provide herbivore resistance in the Brassicaceae. The population with lower GLS levels experienced ~60% higher levels of aphid (Myzus persicae) attack; no association was observed between GLS and damage by a second herbivore, flea beetles (Phyllotreta cruciferae). Rhizosphere microbiome (disrupted vs. intact native microbiome) had no effect on plant GLS concentrations. However, aphid number and flea beetle damage were respectively about three‐ and seven‐fold higher among plants grown in the disrupted versus intact native microbiome treatment. These differences may be attributable to shifts in primary metabolic pathways previously implicated in host defence against herbivores, including increases in pentose and glucoronate interconversion among plants grown with an intact microbiome. Furthermore, native microbiomes with distinct community composition (as estimated from 16s rRNA amplicon sequencing) differed two‐fold in their effect on host plant susceptibility to aphids. The findings suggest that rhizosphere microbes, including distinct native microbiomes, can play a greater role than population in defence against insect herbivores, and act through metabolic mechanisms independent of population.  相似文献   

2.
Insect herbivores form symbioses with a diversity of prokaryotic and eukaryotic microorganisms. A role for endosymbionts during host feeding on nutrient‐poor diets – including phloem – is now supported by a large body of evidence. Furthermore, symbiont‐herbivore associations have been implicated in feeding preferences by host races (mainly aphids) on multiple plant species. However, the role of symbionts in mediating herbivore preferences between varieties of the same plant species has received little research attention despite the implications for virulence adaptation to resistant crops. This study investigates the role of yeast‐like symbionts (YLS) in virulence adaptation and host plant switching among populations of the brown planthopper, Nilaparvata lugens (Stål) (Hemiptera: Delphacidae), that were selected on various rice [Oryza sativa L. (Poaceae)] lines differing in their resistance against herbivores. Planthopper fitness (nymph weight) declined where YLS densities were depleted through heat treatment. However, compared to normal symbiotic planthoppers, the depletion of symbionts did not generally change the relative fitness of planthoppers (each ‘adapted’ to a single natal host) when switched to feed on a range of rice lines (exposed hosts). In some cases, this occurred despite differences in YLS density responses to the various hosts. Furthermore, we detected no fitness costs associated with YLS in adapted populations. Therefore, the results of this study suggest that, whereas YLS are essential for planthopper nutrition, changes in YLS density play little role during virulence adaptation and host plant switching by the brown planthopper.  相似文献   

3.
The green leafhopper, Nephotettix virescens (Distant) (Hemiptera: Cicadellidae), occasionally damages rice in Asia either directly, by feeding on the host phloem, or indirectly by transmitting tungro virus. We assessed the nature of resistance against the leafhopper in monogenic and pyramided near‐isogenic rice lines containing the resistance genes Grh2 and Grh4. Only the pyramided line was resistant to leafhopper damage. Leafhopper nymphs and adults had high mortality and low weight gain when feeding on the pyramided line and adults laid few eggs. In contrast, although there was some minor resistance in 45‐day‐old plants that possessed either Grh2 or Grh4 genes, the monogenic lines were generally as susceptible to the leafhopper as the recurrent parent line Taichung65 (T65). Resistance in the pyramided line was stable as the plant aged and under high nitrogen, and affected each of five Philippine leafhopper populations equally. Furthermore, in a selection study, leafhoppers failed to adapt fully to the pyramided resistant line: nymph and adult survival did improve during the first five generations of selection and attained similar levels as on T65, but egg‐laying failed to improve over 10 generations. Our preliminary results suggested that resistance was associated with physiological costs to the plants in some experiments. The results of this study demonstrate the success of pyramiding resistance genes through marker‐assisted breeding, to achieve a strong and potentially durable resistance. We discuss the utility of gene pyramiding and the development of near‐isogenic lines for leafhopper management.  相似文献   

4.
Despite increasing knowledge on host‐associated microbiomes, little is known about mechanisms underlying fungus‐microbiome interactions. This study aimed to examine the relative importance of host genetic, geographic and environmental variations in structuring fungus‐associated microbiomes. We analyzed the taxonomic composition and function of microbiomes inhabiting fungal fruiting‐bodies in relation to host genetic variation, soil pH and geographic distance between samples. For this, we sequenced the metagenomes of 40 fruiting‐bodies collected from six fairy rings (i.e., genets) of a saprotrophic fungus Marasmius oreades. Our analyses revealed that fine genetic variations between host fungi could strongly affect their associated microbiome, explaining, respectively, 25% and 37% of the variation in microbiome structure and function, whereas geographic distance and soil pH remained of secondary importance. These results, together with the smaller genome size of fungi compared to other eukaryotes, suggest that fruiting‐bodies are suitable for further genome‐centric studies on host–microbiome interactions.  相似文献   

5.
Pathogens compete with host microbiomes for space and resources. Their shared environment impacts pathogen–microbiome–host interactions, which can lead to variation in disease outcome. The skin microbiome of red‐backed salamanders (Plethodon cinereus) can reduce infection by the pathogen Batrachochytrium dendrobatidis (Bd) at moderate infection loads, with high species richness and high abundance of competitors as putative mechanisms. However, it is unclear if the skin microbiome can reduce epizootic Bd loads across temperatures. We conducted a laboratory experiment to quantify skin microbiome and host responses (P. cinereus: n = 87) to Bd at mimicked epizootic loads across temperatures (13, 17 and 21°C). We quantified skin microbiomes using 16S rRNA gene metabarcoding and identified operational taxonomic units (OTUs) taxonomically similar to culturable bacteria known to kill Bd (anti‐Bd OTUs). Prior to pathogen exposure, temperature changed the microbiome (OTU richness decreased by 12% and the abundance of anti‐Bd OTUs increased by 18% per degree increase in temperature), but these changes were not predictive of disease outcome. After exposure, Bd changed the microbiome (OTU richness decreased by 0.1% and the abundance of anti‐Bd OTUs increased by 0.2% per 1% increase in Bd load) and caused high host mortality across temperatures (35/45: 78%). Temperature indirectly impacted microbiome change and mortality through its direct effect on pathogen load. We did not find support for the microbiome impacting Bd load or host survival. Our research reveals complex host, pathogen, microbiome and environmental interactions to demonstrate that during epizootic events the microbiome will be unlikely to reduce pathogen invasion, even for putatively Bd‐resistant species.  相似文献   

6.
Insights into symbiosis between eukaryotic hosts and their microbiomes have shifted paradigms on what determines host fitness, ecology, and behavior. Questions remain regarding the roles of host versus environment in shaping microbiomes, and how microbiome composition affects host fitness. Using a model system in ecology, phytoplankton, we tested whether microbiomes are host-specific, confer fitness benefits that are host-specific, and remain conserved in time in their composition and fitness effects. We used an experimental approach in which hosts were cleaned of bacteria and then exposed to bacterial communities from natural environments to permit recruitment of microbiomes. We found that phytoplankton microbiomes consisted of a subset of taxa recruited from these natural environments. Microbiome recruitment was host-specific, with host species explaining more variation in microbiome composition than environment. While microbiome composition shifted and then stabilized over time, host specificity remained for dozens of generations. Microbiomes increased host fitness, but these fitness effects were host-specific for only two of the five species. The shifts in microbiome composition over time amplified fitness benefits to the hosts. Overall, this work solidifies the importance of host factors in shaping microbiomes and elucidates the temporal dynamics of microbiome compositional and fitness effects.Subject terms: Microbial ecology, Freshwater ecology  相似文献   

7.
Recent exploration into the interactions and relationship between hosts and their microbiota has revealed a connection between many aspects of the host's biology, health and associated micro‐organisms. Whereas amplicon sequencing has traditionally been used to characterize the microbiome, the increasing number of published population genomics data sets offers an underexploited opportunity to study microbial profiles from the host shotgun sequencing data. Here, we use sequence data originally generated from killer whale Orcinus orca skin biopsies for population genomics, to characterize the skin microbiome and investigate how host social and geographical factors influence the microbial community composition. Having identified 845 microbial taxa from 2.4 million reads that did not map to the killer whale reference genome, we found that both ecotypic and geographical factors influence community composition of killer whale skin microbiomes. Furthermore, we uncovered key taxa that drive the microbiome community composition and showed that they are embedded in unique networks, one of which is tentatively linked to diatom presence and poor skin condition. Community composition differed between Antarctic killer whales with and without diatom coverage, suggesting that the previously reported episodic migrations of Antarctic killer whales to warmer waters associated with skin turnover may control the effects of potentially pathogenic bacteria such as Tenacibaculum dicentrarchi. Our work demonstrates the feasibility of microbiome studies from host shotgun sequencing data and highlights the importance of metagenomics in understanding the relationship between host and microbial ecology.  相似文献   

8.
9.
Microbiomes play a critical role in promoting a range of host functions. Microbiome function, in turn, is dependent on its community composition. Yet, how microbiome taxa are assembled from their regional species pool remains unclear. Many possible drivers have been hypothesized, including deterministic processes of competition, stochastic processes of colonization and migration, and physiological ‘host‐effect’ habitat filters. The contribution of each to assembly in nascent or perturbed microbiomes is important for understanding host–microbe interactions and host health. In this study, we characterized the bacterial communities in a euryhaline fish and the surrounding tank water during salinity acclimation. To assess the relative influence of stochastic versus deterministic processes in fish microbiome assembly, we manipulated the bacterial species pool around each fish by changing the salinity of aquarium water. Our results show a complete and repeatable turnover of dominant bacterial taxa in the microbiomes from individuals of the same species after acclimation to the same salinity. We show that changes in fish microbiomes are not correlated with corresponding changes to abundant taxa in tank water communities and that the dominant taxa in fish microbiomes are rare in the aquatic surroundings, and vice versa. Our results suggest that bacterial taxa best able to compete within the unique host environment at a given salinity appropriate the most niche space, independent of their relative abundance in tank water communities. In this experiment, deterministic processes appear to drive fish microbiome assembly, with little evidence for stochastic colonization.  相似文献   

10.
Although the significance of the gut microbiome for host health is well acknowledged, the impact of host traits and environmental factors on the interindividual variation of gut microbiomes of wildlife species is not well understood. Such information is essential; however, as changes in the composition of these microbial communities beyond the natural range might cause dysbiosis leading to increased susceptibility to infections. We examined the potential influence of sex, age, genetic relatedness, spatial tactics and the environment on the natural range of the gut microbiome diversity in free‐ranging Namibian cheetahs (Acinonyx jubatus). We further explored the impact of an altered diet and frequent contact with roaming dogs and cats on the occurrence of potential bacterial pathogens by comparing free‐ranging and captive individuals living under the same climatic conditions. Abundance patterns of particular bacterial genera differed between the sexes, and bacterial diversity and richness were higher in older (>3.5 years) than in younger individuals. In contrast, male spatial tactics, which probably influence host exposure to environmental bacteria, had no discernible effect on the gut microbiome. The profound resemblance of the gut microbiome of kin in contrast to nonkin suggests a predominant role of genetics in shaping bacterial community characteristics and functional similarities. We also detected various Operational Taxonomic Units (OTUs) assigned to potential pathogenic bacteria known to cause diseases in humans and wildlife species, such as Helicobacter spp., and Clostridium perfringens. Captive individuals did not differ in their microbial alpha diversity but exhibited higher abundances of OTUs related to potential pathogenic bacteria and shifts in disease‐associated functional pathways. Our study emphasizes the need to integrate ecological, genetic and pathogenic aspects to improve our comprehension of the main drivers of natural variation and shifts in gut microbial communities possibly affecting host health. This knowledge is essential for in situ and ex situ conservation management.  相似文献   

11.
1. Plant resistance against herbivores can act directly (e.g. by producing toxins) and indirectly (e.g. by attracting natural enemies of herbivores). If plant secondary metabolites that cause direct resistance against herbivores, such as glucosinolates, negatively influence natural enemies, this may result in a conflict between direct and indirect plant resistance. 2. Our objectives were (i) to test herbivore‐mediated effects of glucosinolates on the performance of two generalist predators, the marmalade hoverfly (Episyrphus balteatus) and the common green lacewing (Chrysoperla carnea) and (ii) to test whether intraspecific plant variation affects predator performance. 3. Predators were fed either Brevicoryne brassicae, a glucosinolate‐sequestering specialist aphid that contains aphid‐specific myrosinases, or Myzus persicae, a non‐sequestering generalist aphid that excretes glucosinolates in the honeydew, reared on four different white cabbage cultivars. Predator performance and glucosinolate concentrations and profiles in B. brassicae and host‐plant phloem were measured, a novel approach as previous studies often measured glucosinolate concentrations only in total leaf material. 4. Interestingly, the specialist aphid B. brassicae selectively sequestered glucosinolates from its host plant. The performance of predators fed this aphid species was lower than when fed M. persicae. When fed B. brassicae reared on different cultivars, differences in predator performance matched differences in glucosinolate profiles among the aphids. 5. We show that not only the prey species, but also the plant cultivar can have an effect on the performance of predators. Our results suggest that in the tritrophic system tested, there might be a conflict between direct and indirect plant resistance.  相似文献   

12.
Herbivorous insects acquire microorganisms from host plants or soil, but it remains unclear how the diversity and functional composition of host plants contribute to structuring herbivore microbiomes. Within a controlled tree diversity setting, we used DNA metabarcoding of 16S rRNA to assess the contribution of Lepidoptera species and their local environment (particularly, tree diversity, host tree species, and leaf traits) to the composition of associated bacterial communities. In total, we obtained 7,909 bacterial OTUs from 634 caterpillar individuals comprising 146 species. Tree diversity was found to drive the diversity of caterpillar‐associated bacteria both directly and indirectly via effects on caterpillar communities, and tree diversity was a stronger predictor of bacterial diversity than diversity of caterpillars. Leaf toughness and dry matter content were important traits of the host plant determining bacterial species composition, while leaf calcium and potassium concentration influenced bacterial richness. Our study reveals previously unknown linkages between trees and their characteristics, herbivore insects, and their associated microbes, which contributes to developing a more nuanced understanding of functional dependencies between herbivores and their environment, and has implications for the consequences of plant diversity loss for trophic interactions.  相似文献   

13.
Population genetic structuring is common among herbivorous insects and frequently is associated with divergent host plants, such as crops and their wild relatives. Previous studies showed population genetic structuring in corn leafhopper Dulbulus maidis in Mexico, such that the species consists of two sympatric, host plant-associated populations: an abundant and widespread "pestiferous” population on maize (Zea mays mays), and a small and localized "wild" population on perennial teosinte (Zea diploperennis). a maize wild relative with a limited distribution. This study addressed whether assortative mating and immigrant inviability mediate genetic structuring of corn leafliopper by comparing the mating and reproductive successes of pestiferous and wild females that colonize their nonassociated host plants against the successes of females colonizing their associated host plants. Assortative mating was assessed by comparing mating frequencies and premating and mating times among females of each population on each host plant: immigrant inviability was assessed by comparing, across two generations, the fecundity, survival, development time, sex ratio, and population growth rate among leafhopper populations and host plants. Our results showed that on maize, and compared to resident, pestiferous females, wild females were more likely to mate, and greater proportions of their offspring survived to adult stage and were daughters;consequently, the per-generation population growth rate on maize was greater for immigrant, wild leafhoppers compared to resident, pestiferous leafhoppers. Our results suggested that wild leafhoppers emigrating to maize have a fitness advantage over resident, pestiferous leafhoppers, while immigrant pestiferous and resident wild leafhoppers on teosinte have similar fitnesses.  相似文献   

14.
For over 50 years, host plant resistance has been the principal focus of public research to reduce planthopper and leafhopper damage to rice in Asia. Several resistance genes have been identified from native varieties and wild rice species, and some of these have been incorporated into high-yielding rice varieties through conventional breeding. However, adaptation by hoppers to resistant rice has been phenomenally rapid, and hopper populations with virulence against several resistance genes are now widespread. Directional genetic selection for virulent hoppers seems unlikely given the rapid pace of adaptation reported from field and laboratory studies. Among the alternative explanations for rapid hopper adaptation are changes (genetic, epigenetic, or community structure) in endosymbiont communities that become advantageous for planthoppers and leafhoppers that feed on resistant rice varieties. This review examines the nature of these symbiont communities and their functions in planthoppers and leafhoppers—focusing on their likely roles in mediating adaptation to plant resistance. Evidence from a small number of experimental studies suggests that bacterial and eukaryotic (including yeast-like) symbionts can determine or mediate hopper virulence on rice plants and that symbiont functions could change over successive generations of selection on both resistant and susceptible plants. The review highlights the potential complexity of rice hopper–symbiont interactions and calls for a more careful choice of research materials and methods to help reduce this complexity. Finally, the consequences of symbiont-mediated virulence adaptation for future rice breeding programs are discussed.  相似文献   

15.
Differences in resource use or in tolerances to abiotic conditions are often invoked as potential mechanisms underlying the sympatric distribution of cryptic species. Additionally, the microbiome can provide physiological adaptations of the host to environmental conditions. We determined the intra‐ and interspecific variability of the microbiomes of three cryptic nematode species of the Litoditis marina species complex that co‐occur, but show differences in abiotic tolerances. Roche 454 pyrosequencing of the microbial 16S rRNA gene revealed distinct bacterial communities characterized by a substantial diversity (85–513 OTUs) and many rare OTUs. The core microbiome of each species contained only very few OTUs (2–6), and four OTUs were identified as potentially generating tolerance to abiotic conditions. A controlled experiment in which nematodes from two cryptic species (Pm1 and Pm3) were fed with either an E. coli suspension or a bacterial mix was performed, and the 16S rRNA gene was sequenced using the MiSeq technology. OTU richness was 10‐fold higher compared to the 454 data set and ranged between 1118 and 7864. This experiment confirmed the existence of species‐specific microbiomes, a core microbiome with few OTUs, and high interindividual variability. The offered food source affected the bacterial community and illustrated different feeding behaviour between the cryptic species, with Pm3 exhibiting a higher degree of selective feeding than Pm1. Morphologically similar species belonging to the same feeding guild (bacterivores) can thus have substantial differences in their associated microbiomes and feeding strategy, which in turn may have important ramifications for biodiversity–ecosystem functioning relationships.  相似文献   

16.
Extensive research has been conducted to reveal how species diversity affects ecosystem functions and services. Yet, consequences of diversity loss for ecosystems as a whole as well as for single community members are still difficult to predict. Arthropod communities typically are species‐rich, and their species interactions, such as those between herbivores and their predators or parasitoids, may be particularly sensitive to changes in community composition. Parasitoids forage for herbivorous hosts by using herbivore‐induced plant volatiles (indirect cues) and cues produced by their host (direct cues). However, in addition to hosts, non‐suitable herbivores are present in a parasitoid's environment which may complicate the foraging process for the parasitoid. Therefore, ecosystem changes in the diversity of herbivores may affect the foraging efficiency of parasitoids. The effect of herbivore diversity may be mediated by either species numbers per se, by specific species traits, or by both. To investigate how diversity and identity of non‐host herbivores influence the behaviour of parasitoids, we created environments with different levels of non‐host diversity. On individual plants in these environments, we complemented host herbivores with 1–4 non‐host herbivore species. We subsequently studied the behaviour of the gregarious endoparasitoid Cotesia glomerata L. (Hymenoptera: Braconidae) while foraging for its gregarious host Pieris brassicae L. (Lepidoptera: Pieridae). Neither non‐host species diversity nor non‐host identity influenced the preference of the parasitoid for herbivore‐infested plants. However, after landing on the plant, non‐host species identity did affect parasitoid behaviour, whereas non‐host diversity did not. One of the non‐host species, Trichoplusia ni Hübner (Lepidoptera: Noctuidae), reduced the time the parasitoid spent on the plant as well as the number of hosts it parasitized. We conclude that non‐host herbivore species identity has a larger influence on C. glomerata foraging behaviour than non‐host species diversity. Our study shows the importance of species identity over species diversity in a multitrophic interaction of plants, herbivores, and parasitoids.  相似文献   

17.
1. Plant responses to herbivore attack may have community‐wide effects on the composition of the plant‐associated insect community. Thereby, plant responses to an early‐season herbivore may have profound consequences for the amount and type of future attack. 2. Here we studied the effect of early‐season herbivory by caterpillars of Pieris rapae on the composition of the insect herbivore community on domesticated Brassica oleracea plants. We compared the effect of herbivory on two cultivars that differ in the degree of susceptibility to herbivores to analyse whether induced plant responses supersede differences caused by constitutive resistance. 3. Early‐season herbivory affected the herbivore community, having contrasting effects on different herbivore species, while these effects were similar on the two cultivars. Generalist insect herbivores avoided plants that had been induced, whereas these plants were colonised preferentially by specialist herbivores belonging to both leaf‐chewing and sap‐sucking guilds. 4. Our results show that community‐wide effects of early‐season herbivory may prevail over effects of constitutive plant resistance. Induced responses triggered by prior herbivory may lead to an increase in susceptibility to the dominant specialists in the herbivorous insect community. The outcome of the balance between contrasting responses of herbivorous community members to induced plants therefore determines whether induced plant responses result in enhanced plant resistance.  相似文献   

18.
The composition and diversity of bacteria forming the microbiome of parasitic organisms have implications for differential host pathogenicity and host–parasite co‐evolutionary interactions. The microbiome of pathogens can therefore have consequences that are relevant for managing disease prevalence and impact on affected hosts. Here, we investigate the microbiome of an invasive parasitic fly Philornis downsi, recently introduced to the Galápagos Islands, where it poses extinction threat to Darwin's finches and other land birds. Larvae infest nests of Darwin's finches and consume blood and tissue of developing nestlings, and have severe mortality impacts. Using 16s rRNA sequencing data, we characterize the bacterial microbiota associated with P. downsi adults and larvae sourced from four finch host species, inhabiting two islands and representing two ecologically distinct groups. We show that larval and adult microbiomes are dominated by the phyla Proteobacteria and Firmicutes, which significantly differ between life stages in their distributions. Additionally, bacterial community structure significantly differed between larvae retrieved from strictly insectivorous warbler finches (Certhidea olivacea) and those parasitizing hosts with broader dietary preferences (ground and tree finches, Geospiza and Camarhynchus spp., respectively). Finally, we found no spatial effects on the larval microbiome, as larvae feeding on the same host (ground finches) harboured similar microbiomes across islands. Our results suggest that the microbiome of P. downsi changes during its development, according to dietary composition or nutritional needs, and is significantly affected by host‐related factors during the larval stage. Unravelling the ecological significance of bacteria for this parasite will contribute to the development of novel, effective control strategies.  相似文献   

19.
Milk is inhabited by a community of bacteria and is one of the first postnatal sources of microbial exposure for mammalian young. Bacteria in breast milk may enhance immune development, improve intestinal health, and stimulate the gut‐brain axis for infants. Variation in milk microbiome structure (e.g., operational taxonomic unit [OTU] diversity, community composition) may lead to different infant developmental outcomes. Milk microbiome structure may depend on evolutionary processes acting at the host species level and ecological processes occurring over lactation time, among others. We quantified milk microbiomes using 16S rRNA high‐throughput sequencing for nine primate species and for six primate mothers sampled over lactation. Our data set included humans (Homo sapiens, Philippines and USA) and eight nonhuman primate species living in captivity (bonobo [Pan paniscus], chimpanzee [Pan troglodytes], western lowland gorilla [Gorilla gorilla gorilla], Bornean orangutan [Pongo pygmaeus], Sumatran orangutan [Pongo abelii], rhesus macaque [Macaca mulatta], owl monkey [Aotus nancymaae]) and in the wild (mantled howler monkey [Alouatta palliata]). For a subset of the data, we paired microbiome data with nutrient and hormone assay results to quantify the effect of milk chemistry on milk microbiomes. We detected a core primate milk microbiome of seven bacterial OTUs indicating a robust relationship between these bacteria and primate species. Milk microbiomes differed among primate species with rhesus macaques, humans and mantled howler monkeys having notably distinct milk microbiomes. Gross energy in milk from protein and fat explained some of the variations in microbiome composition among species. Microbiome composition changed in a predictable manner for three primate mothers over lactation time, suggesting that different bacterial communities may be selected for as the infant ages. Our results contribute to understanding ecological and evolutionary relationships between bacteria and primate hosts, which can have applied benefits for humans and endangered primates in our care.  相似文献   

20.
Parasitoids use odor cues from infested plants and herbivore hosts to locate their hosts. Specialist parasitoids of generalist herbivores are predicted to rely more on herbivorederived cues than plant-derived cues. Microplitis croceipes (Cresson)(Hymenoptera: Braconidae) is a relatively specialized larval endoparasitoid of Heliothis virescens (F.)(Lepidoptera: Noctuidae), which is a generalist herbivore on several crops including cotton and soybean. Using M. croceipes/H. virescens as a model system, we tested the following predictions about specialist parasitoids of generalist herbivores:(i) naive parasitoids will show innate responses to herbivore-emitted kairomones, regardless of host plant identity and (ii) herbivore-related experience will have a greater influence on intraspecific oviposition preference than plant-related experience. Inexperienced (naive) female M. croceipes did not discriminate between cotton-fed and soybean-fed H. virescens in oviposition choice tests, supporting our first prediction. Oviposition experience alone with either host group influenced subsequent oviposition preference while experience with infested plants alone did not elicit preference in M. croceipes, supporting our second prediction. Furthermore, associative learning of oviposition with host-damaged plants facilitated host location. I terestingly, naive parasitoids attacked more soybeathan cotton-fed host larvae in two-choice tests when a background of host-infested cotton odor was supplied, and vice versa. This suggests that plant volatiles may have created an olfactory contrast effect. We discussed ecological significance of the results and concluded that both plant- and herbivore-related experiences play important role in parasitoid host foraging.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号