首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Translocating species is an important management tool to establish or expand the range of species. Success of translocations requires an understanding of potential consequences, including whether a sufficient number of individuals were used to minimize founder effects and if interspecific hybridization poses a threat. We provide an updated and comprehensive genetic assessment of a 1970s–1980s translocation and now established mottled duck (Anas fulvigula) population in South Carolina, USA. In addition to examining the population genetics of these mottled ducks, we simulated expected genetic assignments for generational hybrids (F1–F10), permitting formal purity assignment across samples to identify true hybrids and establish hybridization rates. In addition to wild mallards (A. platyrhynchos), we tested for presence of hybrids with migrant American black ducks (A. rubripes) and released domestic game-farm mallards (A. p. domesticus). We used wild reference populations of North American mallard-like ducks and sampled game-farm mallards from 2 sites in South Carolina that could potentially interbreed with mottled ducks. Despite 2 different subspecies of mottled duck (Florida [A. f. fulvigula] and the Western Gulf Coast [A. f. maculatlus]) used in original translocations, we determined the gene pool of the Western Gulf Coast mottled duck was overwhelmingly represented in South Carolina's current population. We found no evidence of founder effects or inbreeding and concluded the original translocation of 1,285 mottled ducks was sufficient to maintain current genetic diversity. We identified 7 hybrids, including an F1 and 3 late-staged (i.e., F2–F3 backcrosses) mottled duck × black duck hybrids, 1 F2-mottled duck backcrossed with a wild mallard, and 2 F3-mottled ducks introgressed with game-farm mallard. We estimated a 15% hybridization rate in our mottled duck dataset; however, the general lack of F1 and intermediate hybrids were inconsistent with scenarios of high hybridization rates or presence of a hybrid swarm. Instead, our results suggested a scenario of infrequent interspecific hybridization between South Carolina's mottled ducks and congeners. We concluded that South Carolina's mottled duck population is sufficiently large now to absorb current hybridization rates because 85% of sampled mottled ducks were pure. These results demonstrate the importance in managing and maintaining large parental populations to counter hybridization. As such, future population management of mottled ducks in South Carolina will benefit from increased geographical and continued sampling to monitor hybridization rates with closely related congeners. We also suggest that any future translocations of mottled ducks to coastal South Carolina should originate from the Western Gulf Coast. © 2021 The Wildlife Society.  相似文献   

2.
North Carolina, USA, represents the southern extent of the American black duck's (Anas rubripes) breeding range. Mallards (A. platyrhynchos) are present on the breeding grounds of the American black duck and hybridization is observed between these species; therefore, we assessed the genetic integrity, hybridization rates, and population structure of this local breeding population. We extracted genomic and mitochondrial DNA from chorioallantoic membranes and contour feathers from monitored black duck nests. We then prepared the extracted DNA for analysis using high-throughput DNA sequencing methods (ddRAD-seq). First, we assessed nuclear and mitochondrial population structure, genetic diversity, and differentiation across samples from North Carolina, and compared them against 199 genetically vetted mallards, black ducks, and mallard × black duck hybrids that served as genetic references. Next, we tested for parentage and sibling relationship and overall relatedness of black ducks in North Carolina. We recovered strong population structure and high co-ancestry across genetic markers due to interrelatedness among sampled nests in North Carolina and concluded that black ducks have been locally breeding in this area for a prolonged period of time. Despite a high level of interrelatedness among our samples, nucleotide diversity was similar to the reference continental black duck population, suggesting little effect of genetic drift, including inbreeding. Additionally, we conclude that molecular diversity of black ducks in North Carolina is maintained at reference population levels through the influx of genetic material from unrelated, migrating male black ducks. Finally, we report a hybridization level of 47.5%, covering 3 filial generations. Of identified hybrids, 54.7% and 53% were the direct result of interbreeding between black ducks and captive-reared or wild mallards, respectively. We conclude that because of high rates of interspecific hybridization and successive backcrossing events, introgression from wild and feral mallards is occurring into this population of breeding black ducks and requires careful consideration in future management efforts. © 2021 The Wildlife Society.  相似文献   

3.
Along with manipulating habitat, the direct release of domesticated individuals into the wild is a practice used worldwide to augment wildlife populations. We test between possible outcomes of human‐mediated secondary contact using genomic techniques at both historical and contemporary timescales for two iconic duck species. First, we sequence several thousand ddRAD‐seq loci for contemporary mallards (Anas platyrhynchos) throughout North America and two domestic mallard types (i.e., known game‐farm mallards and feral Khaki Campbell's). We show that North American mallards may well be becoming a hybrid swarm due to interbreeding with domesticated game‐farm mallards released for hunting. Next, to attain a historical perspective, we applied a bait‐capture array targeting thousands of loci in century‐old (1842–1915) and contemporary (2009–2010) mallard and American black duck (Anas rubripes) specimens. We conclude that American black ducks and mallards have always been closely related, with a divergence time of ~600,000 years before present, and likely evolved through prolonged isolation followed by limited bouts of gene flow (i.e., secondary contact). They continue to maintain genetic separation, a finding that overturns decades of prior research and speculation suggesting the genetic extinction of the American black duck due to contemporary interbreeding with mallards. Thus, despite having high rates of hybridization, actual gene flow is limited between mallards and American black ducks. Conversely, our historical and contemporary data confirm that the intensive stocking of game‐farm mallards during the last ~100 years has fundamentally changed the genetic integrity of North America's wild mallard population, especially in the east. It thus becomes of great interest to ask whether the iconic North American mallard is declining in the wild due to introgression of maladaptive traits from domesticated forms. Moreover, we hypothesize that differential gene flow from domestic game‐farm mallards into the wild mallard population may explain the overall temporal increase in differentiation between wild black ducks and mallards, as well as the uncoupling of genetic diversity and effective population size estimates across time in our results. Finally, our findings highlight how genomic methods can recover complex population histories by capturing DNA preserved in traditional museum specimens.  相似文献   

4.
Interspecific hybridization has been implicated in population declines for some waterfowl species within the mallard complex, and hybridization with mallards (Anas platyrhynchos) is currently considered the largest threat to mottled ducks (A. fulvigula), one North American member of that complex. We assessed genetic variation among 225 mottled ducks and mallards using five microsatellite loci, and detected significant overall differences between these species within two geographic areas. We characterized hybridization in Florida, where mottled ducks are endemic and mallards are beginning to appear on the breeding grounds, and in South Carolina, where mottled ducks were introduced outside their native range. We used Bayesian genetic mixture analysis in an attempt to distinguish between these closely related species. In Florida, we detected two distinct genetic groups, and 10.9% of our samples from Florida mottled ducks were inferred to have been hybrids. In contrast only 3.4% of Florida mallards were inferred to have been hybrids, suggesting asymmetric hybridization. Populations from different geographic areas within Florida exhibited hybridization rates ranging from 0% to 24%. These data indicate a genetic component would be appropriate in actively managing interspecific hybridization in Florida mottled ducks. In contrast, South Carolina mottled ducks and mallards cannot be differentiated.  相似文献   

5.
American black ducks (Anas rubripes) and mallards (A. platyrhynchos) are morphologically and behaviorally similar species that were primarily allopatric prior to European colonization of North America. Subsequent sympatry has resulted in hybridization, and recent molecular analyses of mallards and black ducks failed to identify two distinct taxa, either due to horizontal gene flow, homoplasy, or shared ancestry. We analyzed microsatellite markers in modern and museum specimens to determine if the inter-relatedness of mallards and black ducks was an ancestral or recent character. Gst, a measure of genetic differentiation, decreased from 0.146 for mallards and black ducks living before 1940, to 0.008 for birds taken in 1998. This is a significant reduction in genetic differentiation, and represents a breakdown in species integrity most likely due to hybridization. Using modern specimens, we observed that despite a lower incidence of sympatry, northern black ducks are now no more distinct from mallards than their southern conspecifics.  相似文献   

6.
From 1974 to 1976, a breeding program was used to produce hybrids of black ducks and mallards for the evaluation of inheritance patterns of serum proteins and serum, liver and muscle enzymes. In addition to the crosses designed to produce hybrids, a series of matings in 1975 and 1976 were designed to evaluate inheritance patterns of a hybrid with either a black duck or mallard. At the F1 level, hybrids were easily distinguished using serum proteins. However, once a hybrid was crossed back to either a mallard or black duck, only 12–23% of the progeny were distinguishable from black ducks or mallards using serum proteins and 23–39% using esterases. Muscle, serum and liver enzymes were similar between the two species.  相似文献   

7.
The nonmigratory and endemic Florida mottled duck (Anas fulvigula fulvigula) is facing conservation threats from the combined effects of urbanization and introgressive hybridization with feral mallards (Anas platyrhynchos) and mallard x mottled duck hybrids. In the past, the status of the Florida mottled duck population was assessed during annual aerial surveys and most brown ducks (mottled ducks, mallards, and hybrids of them) detected during the survey would have been mottled ducks. But the release of domesticated mallards for aesthetic purposes has led to increases in the prevalence of mallards-hybrids (mallards or mallard x mottled duck hybrids) throughout peninsular Florida, USA, and because it is impossible to differentiate among mottled ducks, female mallards, and hybrids during aerial surveys, helicopter surveys were halted in 2009 until state researchers could conduct a range-wide study to determine what proportion of brown ducks are mottled ducks versus mallards-hybrids. We used plumage keys and high-resolution photography to categorize brown ducks from 557 wetland grid points as either mottled ducks or mallards-hybrids. Of the 5,179 brown ducks categorized, 40.1% were mottled ducks and 59.9% were mallards-hybrids. We used logistic regression analysis to model the interactive effect of a site's latitude and level of urbanization (urban gradient value within a 2-km buffer) to generate a predictive raster surface (1-km resolution) of the study area with values corresponding to the probability that a brown duck observed within a cell is a pure mottled duck. Predicted values will be used as correction factors when estimating final mottled duck population abundance from brown-duck survey data. Additionally, the predictive raster surface will be used to identify wetlands where mottled ducks remain predominant so that these sites can be targeted for preservation. Overall, mallards-hybrids outnumbered mottled ducks throughout most of peninsular Florida, especially in more urbanized regions, and their current prevalence rate presents a serious conservation threat, via hybridization, to extant mottled duck populations.  相似文献   

8.
Under drift-mutation equilibrium, genetic diversity is expected to be correlated with effective population size (N e ). Changes in population size and gene flow are two important processes that can cause populations to deviate from this expected relationship. In this study, we used DNA sequences from six independent loci to examine the influence of these processes on standing genetic diversity in endemic mottled ducks (Anas fulvigula) and geographically widespread mallards (A. platyrhynchos), two species known to hybridize. Mottled ducks have an estimated census size that is about two orders-of-magnitude smaller than that of mallards, yet these two species have similar levels of genetic diversity, especially at nuclear DNA. Coalescent analyses suggest that a population expansion in the mallard at least partly explains this discrepancy, but the mottled duck harbors higher genetic diversity and apparent N e than expected for its census size even after accounting for a population decline. Incorporating gene flow into the model, however, reduced the estimated N e of mottled ducks to 33 % of the equilibrium N e and yielded an estimated N e consistent with census size. We also examined the utility of these loci to distinguish among mallards, mottled ducks, and their hybrids. Most putatively pure individuals were correctly assigned to species, but the power for detecting hybrids was low. Although hybridization with mallards potentially poses a conservation threat to mottled ducks by creating a risk of extinction by hybridization, introgression of mallard alleles has helped maintain high genetic diversity in mottled ducks and might be important for the adaptability and survival of this species.  相似文献   

9.
Abstract: Researchers have successfully designed aerial surveys that provided precise estimates of wintering populations of ducks over large physiographic regions, yet few conservation agencies have adopted these probability-based sampling designs for their surveys. We designed and evaluated an aerial survey to estimate abundance of wintering mallards (Anas platyrhynchos), dabbling ducks (tribe Anatini) other than mallards, diving ducks (tribes Aythini, Mergini, and Oxyurini), and total ducks in western Mississippi, USA. We used design-based sampling of fixed width transects to estimate population indices (Ǐ), and we used model-based methods to correct population indices for visibility bias and estimate population abundance (Ň) for 14 surveys during winters 2002–2004. Correcting for bias increased estimates of mallards, other dabbling ducks, and diving ducks by an average of 40–48% among all surveys and contributed 48–61% of the estimated variance of Ň. However, mean-squared errors were consistently less for Ň than Ǐ. Estimates of Ň met our goals for precision (CV ≤ 15%) in 7 of 14 surveys for mallards, 5 surveys for other dabbling ducks, no surveys for diving ducks, and 10 surveys for total ducks. Generally, we estimated more mallards and other dabbling ducks in mid- and late winter (Jan-Feb) than early winter (Nov-Dec) and determined that population indices from the late 1980s were nearly 3 times greater than those from our study. We developed a method to display relative densities of ducks spatially as an additional application of survey data. Our study advanced methods of estimating abundance of wintering waterfowl, and we recommend this design for continued monitoring of wintering ducks in western Mississippi and similar physiographic regions.  相似文献   

10.
Hawaiian ducks (Anas wyvilliana), or koloa, are endemic to the Hawaiian Islands and are listed as a federal and state endangered species. Hybridization between koloa and introduced mallards (A. platyrhynchos) is believed to be a primary threat to the recovery of koloa. We evaluated the utility of two sets of nuclear markers (microsatellite loci and amplified fragment length polymorphisms) and a variable portion of the mitochondrial DNA control region to distinguish among koloa, mallards, and hybrids. We show that microsatellite and AFLP markers can be used to distinguish between koloa and mallard-koloa hybrids with a high degree of confidence. For all but one of the putative koloa in our sample, the posterior probability of belonging to the koloa category was >0.90. Similarly all but one of the mallard-koloa hybrids were assigned to the hybrid category with posterior probabilities >0.98. Subsets of markers led to poorer resolution among koloa, mallard and hybrid categories. Among a sample of 61 koloa, hybrids and mallards, we found 25 different mtDNA haplotypes, belonging to two groups of haplotypes (A and B) identified previously in mallards and their relatives. All putative koloa samples exhibited group B haplotypes, of which 65% comprised one haplotype, while the rest were divided among four haplotypes. All Hawai’i mallard samples exhibited haplotypes that belonged to group A. Hybrids and California mallards exhibited haplotypes belonging to both groups, but a majority were of group A, suggesting that hybridization may more commonly involve mating between Hawai’i mallard females and koloa males.  相似文献   

11.
Hou ZC  Yang FX  Qu LJ  Zheng JX  Brun JM  Basso B  Pitel F  Yang N  Xu GY 《Animal genetics》2012,43(3):352-355
To elucidate the origin and genetic structure of the domesticated duck in Eurasia and North America, we sequenced 114 duck D-loop sequences and retrieved 489 D-loop sequences from GenBank. In total, 603 ducks including 50 duck breeds/populations from eight countries (China, France, Russia, India, Kazakhstan, Mongolia, Thailand and USA) were used in this study. One hundred and thirty-four haplotypes and 81 variable sites were detected. H49 was the predominant haplotype, which was considered to be the same dominant haplotype found in the previous studies, and was found in 309 birds. The smallest values for both genetic differentiation index (F(ST), 0.04156) and the number of the net nucleotide substitutions between two populations (D(A), 0.00018) were observed between Eurasian domestic ducks and Eurasian mallards. No geography, breed or population clusters were observed in the Eurasian domestic ducks and mallards. Five haplotypes were shared by USA mallards and Eurasian domestic duck/Eurasian mallards. Only one haplotype (H49) was shared by Eurasian domestic ducks and China spot-billed ducks. By combining phylogenetic analyses, haplotype network profile, genetic distances and shared haplotypes, we can draw two major conclusions: (i) Eurasian and North American mallards show a clear geographic distribution pattern; (ii) Eurasian domestic ducks are derived from the Eurasian mallards, not from the spot-billed ducks.  相似文献   

12.
Interspecific hybridization is recognized as an important process in the evolutionary dynamics of both speciation and the reversal of speciation. However, our understanding of the spatial and temporal patterns of hybridization that erode versus promote species boundaries is incomplete. The endangered, endemic koloa maoli (or Hawaiian duck, Anas wyvilliana) is thought to be threatened with genetic extinction through ongoing hybridization with an introduced congener, the feral mallard (A. platyrhynchos). We investigated spatial and temporal variation in hybrid prevalence in populations throughout the main Hawaiian Islands, using genomic data to characterize population structure of koloa, quantify the extent of hybridization, and compare hybrid proportions over time. To accomplish this, we genotyped 3,308 double‐digest restriction‐site‐associated DNA (ddRAD) loci in 425 putative koloa, mallards, and hybrids from populations across the main Hawaiian Islands. We found that despite a population decline in the last century, koloa genetic diversity is high. There were few hybrids on the island of Kaua?i, home to the largest population of koloa. By contrast, we report that sampled populations outside of Kaua?i can now be characterized as hybrid swarms, in that all individuals sampled were of mixed koloa × mallard ancestry. Further, there is some evidence that these swarms are stable over time. These findings demonstrate spatial variation in the extent and consequences of interspecific hybridization, and highlight how islands or island‐like systems with small population sizes may be especially prone to genetic extinction when met with a congener that is not reproductively isolated.  相似文献   

13.
Genetic incompatibilities and low offspring fitness are characteristic outcomes of hybridization between species. Yet, the creative potential of recombination following hybridization continues to be debated. Here we quantify the outcome of hybridization and recombination between adaptively divergent populations of the North American legume Chamaecrista fasciculata in a large-scale field experiment. Previously, hybrids between these populations demonstrated hybrid breakdown, suggesting the expression of adaptive epistatic interactions underlying population genetic differentiation. However, the outcome of hybridization ultimately rests on the performance of even later generation recombinants. In experiments that compared the performance of recombinant F6 and F2 generations with nonrecombinant F1 and parental genotypes, we observed that increasing recombination had contrasting effects on different life-history components. Lifetime fitness, defined as the product of survivorship and reproduction, showed a strong recovery of fitness in the F6. The overall gain in fitness with increased recombination suggests that hybridization and recombination may provide the necessary genetic variation for adaptive evolution within species. We discuss the mechanisms that may account for the gain in fitness with recombination, and explore the implications for hybrid speciation and phenotypic evolution.  相似文献   

14.
《Animal behaviour》1988,36(5):1371-1378
The influence of male dominance on male-female social interactions was examined in black ducks, Anas rubripes, and mallards, A. platyrhynchos, that were raised from hatch in four different groups (male and female mallards; male and female black ducks; male mallards and female black ducks; male black ducks and female mallards). The mate preference of females, independent of the influence of male dominance, was determined by exposing females to four caged, isolated males, one from each different group. All females preferred the type of male they had been raised with since hatch. Females were then exposed to the same four males, now free-swimming, to determine how male dominance influenced the initial preference. Under these conditions, each female associated primarily with the most dominant of the four males, regardless of her initial mate preference. Mallards were the most dominant males in all tests. These results demonstrate that male dominance influences social interactions and is one factor contributing to hybridization between these two species.  相似文献   

15.
We present the computer program hybridlab 1.0 for simulating intraspecific hybrids from population samples of nuclear genetic markers such as microsatellites, allozymes or SNPs (single nucleotide polymorphisms). The program generates a user‐specified number of multilocus F1 hybrid genotypes between any pair of potentially hybridizing populations included in a standard input‐file of multilocus genotypes for population genetic analysis. This simple, user‐friendly program has a wide range of applications for studying natural and artificial hybridization; in particular, for evaluating the statistical power for individual assignment of parental and hybrid individuals. An example of application for Atlantic cod populations is given.  相似文献   

16.
Hybridization and gene flow between diverging lineages are increasingly recognized as common evolutionary processes, and their consequences can vary from hybrid breakdown to adaptive introgression. We have previously found a population of wood ant hybrids between Formica aquilonia and F. polyctena that shows antagonistic effects of hybridization: females with introgressed alleles show hybrid vigour, whereas males with the same alleles show hybrid breakdown. Here, we investigate whether hybridization is a general phenomenon in this species pair and analyse 647 worker samples from 16 localities in Finland using microsatellite markers and a 1200‐bp mitochondrial sequence. Our results show that 27 sampled nests contained parental‐like gene pools (six putative F. polyctena and 21 putative F. aquilonia) and all remaining nests (69), from nine localities, contained hybrids of varying degrees. Patterns of genetic variation suggest these hybrids arise from several hybridization events or, instead, have backcrossed to the parental gene pools to varying extents. In contrast to expectations, the mitochondrial haplotypes of the parental species were not randomly distributed among the hybrids. Instead, nests that were closer to parental‐like F. aquilonia for nuclear markers preferentially had F. polyctena's mitochondria and vice versa. This systematic pattern suggests there may be underlying selection favouring cytonuclear mismatch and hybridization. We also found a new hybrid locality with strong genetic differences between the sexes similar to those predicted under antagonistic selection on male and female hybrids. Further studies are needed to determine the selective forces that act on male and female genomes in these newly discovered hybrids.  相似文献   

17.
Estimating the frequency of hybridization is important to understand its evolutionary consequences and its effects on conservation efforts. In this study, we examined the extent of hybridization in two sister species of ducks that hybridize. We used mitochondrial control region sequences and 3589 double‐digest restriction‐associated DNA sequences (ddRADseq) to identify admixture between wild lesser scaup (Aythya affinis) and greater scaup (A. marila). Among 111 individuals, we found one introgressed mitochondrial DNA haplotype in lesser scaup and four in greater scaup. Likewise, based on the site‐frequency spectrum from autosomal DNA, gene flow was asymmetrical, with higher rates from lesser into greater scaup. However, using ddRADseq nuclear DNA, all individuals were assigned to their respective species with >0.95 posterior assignment probability. To examine the power for detecting admixture , we simulated a breeding experiment in which empirical data were used to create F1 hybrids and nine generations (F2–F10) of backcrossing. F1 hybrids and F2, F3 and most F4 backcrosses were clearly distinguishable from pure individuals, but evidence of admixed histories was effectively lost after the fourth generation. Thus, we conclude that low interspecific assignment probabilities (0.011–0.043) for two lesser and nineteen greater scaup were consistent with admixed histories beyond the F3 generation. These results indicate that the propensity of these species to hybridize in the wild is low and largely asymmetric. When applied to species‐specific cases, our approach offers powerful utility for examining concerns of hybridization in conservation efforts, especially for determining the generational time until admixed histories are effectively lost through backcrossing.  相似文献   

18.
The ruddy duck, Oxyura jamaicensis, was introduced to Great Britain in the mid-20th century and has recently spread to other Western European countries. In Spain, ruddy ducks hybridize with the globally endangered white-headed duck, Oxyura leucocephala. We assessed the effects of hybridization on the Spanish white-headed ducks, which constitute 25% of the global population of this species, using a panel of eight nuclear intron markers, 10 microsatellite loci, and mtDNA control region sequences. These data allowed parental individuals, F(1) hybrids, and the progeny of backcrossing to be reliably distinguished. We show that hybrids between the two species are fertile and produce viable offspring in backcrosses with both parental species. To date, however, we found no extensive introgression of ruddy duck genes into the Spanish white-headed duck population, probably due to the early implementation of an effective ruddy duck and hybrid control programme. We also show that genetic diversity in the expanding European ruddy duck population, which was founded by just seven individuals, exceeds that of the native Spanish white-headed duck population, which recently recovered from a severe bottleneck. Unless effective control of ruddy ducks is continued, genetic introgression will compromise the unique behavioural and ecological adaptations of white-headed ducks and consequently their survival as a genetically and evolutionary distinct species.  相似文献   

19.
Most species and therefore most hybrid zones have historically been defined using phenotypic characters. However, both speciation and hybridization can occur with negligible morphological differentiation. Recently developed genomic tools provide the means to better understand cryptic speciation and hybridization. The Northwestern Crow (Corvus caurinus) and American Crow (Corvus brachyrhynchos) are continuously distributed sister taxa that lack reliable traditional characters for identification. In this first population genomic study of Northwestern and American crows, we use genomic SNPs (nuDNA) and mtDNA to investigate the degree of genetic differentiation between these crows and the extent to which they may hybridize. Our results indicate that American and Northwestern crows have distinct evolutionary histories, supported by two nuDNA ancestry clusters and two 1.1%‐divergent mtDNA clades dating to the late Pleistocene, when glacial advances may have isolated crow populations in separate refugia. We document extensive hybridization, with geographic overlap of mtDNA clades and admixture of nuDNA across >900 km of western Washington and western British Columbia. This broad hybrid zone consists of late‐generation hybrids and backcrosses, but not recent (e.g., F1) hybrids. Nuclear DNA and mtDNA clines had concordant widths and were both centred in southwestern British Columbia, farther north than previously postulated. Overall, our results suggest a history of reticulate evolution in American and Northwestern crows, perhaps due to recurring neutral expansion(s) from Pleistocene glacial refugia followed by lineage fusion(s). However, we do not rule out a contributing role for more recent potential drivers of hybridization, such as expansion into human‐modified habitats.  相似文献   

20.
Natural hybrids between Ficus septica and two closely related dioecious species, F. fistulosa and F. hispida, were confirmed using amplified fragment length polymorphisms (AFLP) and chloroplast DNA markers. Ficus species have a highly species‐specific pollination mutualism with agaonid wasps. Therefore, the identification of cases in which breakdown in this sophisticated system occurs and the circumstances under which it happens is of interest. Various studies have confirmed that Ficus species are able to hybridize and that pollinator‐specificity breakdown can occur under certain conditions. This study is the first example in which hybrid identity and the presence of hybrids in the natural distribution of parental species for Ficus have been confirmed with molecular markers. Hybrid individuals were identified on three island locations in the Sunda Strait region of Indonesia. These findings support Janzen's (1979) hypothesis that breakdown in pollinator specificity is more likely to occur on islands. We hypothesized that hybrid events could occur when the population size of pollinator wasps was small or had been small in one of the parental species. Later generation hybrids were identified, indicating that backcrossing and introgression did occur to some extent and that therefore, hybrids could be fertile. The small number of hybrids found indicated that there was little effect of hybridization on parental species integrity over the study area. Although hybrid individuals were not common, their presence at multiple sites indicated that the hybridization events reported here were not isolated incidences. Chloroplast DNA haplotypes of hybrids were not derived solely from one species, suggesting that the seed donor was not of the same parental species in all hybridization events.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号