首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The timing of germination is a key life‐history trait that may strongly influence plant fitness and that sets the stage for selection on traits expressed later in the life cycle. In seasonal environments, the period favourable for germination and the total length of the growing season are limited. The optimal timing of germination may therefore be governed by conflicting selection through survival and fecundity. We conducted a field experiment to examine the effects of timing of germination on survival, fecundity and overall fitness in a natural population of the annual herb Arabidopsis thaliana in north‐central Sweden. Seedlings were transplanted at three different times in late summer and in autumn covering the period of seed germination in the study population. Early germination was associated with low seedling survival, but also with high survival and fecundity among established plants. The advantages of germinating early more than balanced the disadvantage and selection favoured early germination. The results suggest that low survival among early germinating seeds is the main force opposing the evolution of earlier germination and that the optimal timing of germination should vary in space and time as a function of the direction and strength of selection acting during different life‐history stages.  相似文献   

2.
To examine how early-emerging seedlings take advantage of establishment in a deciduous forest, we explored the relationships among the emergence date, growth stage and major causes of mortality (damping-off by fungi and predation by rodents) in seedlings of Fagus crenata. The emergence of current-year seedlings and their survival and damage were followed at short (3–7 days in early spring) intervals for a growing season. The growth stage was divided into two stages, with only cotyledons (CT stage) and with true leaves (TL stage). The survival rate was negatively correlated with the emergence date, indicating the advantage of early seedling emergence. This advantage was largely explained by the lower occurrence of damping-off. In contrast, seedling predation occurred independently of the emergence date, but depended strongly on the developmental stage. Rodents consumed a considerable number of seeds during the early period after emergence, and strongly preferred CT-stage over TL-stage seedlings throughout the growing season. Therefore, seedling predation was inferred to be concentrated in a relatively short period while the remaining seeds were depleted and CT-stage seedlings were abundant. The seedling stage synchronously shifted from the CT to TL stage. This growth-stage transition was independent of the emergence date and appeared to correspond with the timing of seed depletion. Delayed stage transition resulted in a disproportionately high risk of damping-off later in the season. Our results indicate that early seedling emergence is advantageous for F. crenata for resistance to pathogens and that the timing of growth-stage progression of seedlings appears important to escape predation because of the distinct food preference of predators.  相似文献   

3.
Abstract. The effects of topography, soil moisture, wind and grazing on the emergence and survival of seedlings of Festuca spp. were examined in the steppe zone of Patagonia, Argentina. Ungrazed and grazed field treatment plots were established on a plain and a north-facing slope at the Media Luna Ranch (43° 36′S, 71° 25′W). On the leeward and windward sides of each of 15 Festuca plants, 0.1 m × 0.4 m quadrats were censused bimonthly for seedling emergence and survival over three growing seasons. Three categories were distinguished: recently germinated and up to the first leaf, two to four leaves, and from five leaves up to one tiller. Soil moisture content, litter cover and frost heaving effects were also determined for each treatment at each sampling date. Festuca spp. showed two emergence peaks, one in late fall and the other in early to mid-spring. Seedling emergence was significantly correlated with soil moisture content in the 0–5 cm of the soil during the three growing seasons. Seedlings that emerged in the fall had higher survivorship than those that emerged in spring. Seedling emergence and survival was significantly (p < 0.01) lower on slopes, in the grazing treatment, and on windward sides of adult plants. In this grassland, an increase in the availability of safe sites for seedling emergence and survival might be achieved by protecting vegetation from grazing, particularly on north-facing slopes.  相似文献   

4.
We studied the effects of hand weeding of second‐year plants of the biennial garlic mustard (Alliaria petiolata) on first‐year plants (seedlings) and native ground layer vegetation. Garlic mustard is a Eurasian species that has invaded deciduous forest ground layers in eastern North America. Treatments consisted of a control and an early or late weeding of second‐year garlic mustard. The early treatment (early March) was applied before garlic mustard seeds had germinated and when most native species were dormant. The late treatment (mid‐May) occurred after plants had bolted, flowering was occurring, and most native species and new garlic mustard seedlings were actively growing. Pre‐treatment data were obtained in 2004 and treated and control plots were sampled in 2005, 2006, and 2007. No significant treatment effects were observed in 2004 or 2005. In 2006, mean cover of first‐year plants was higher in the early weeding treatment than in the late weeding treatment and control. In 2007, mean cover of first‐year garlic mustard was higher in the control than in either of the two weeding treatments. There were no significant treatment effects in any year on native vegetation cover, bare ground, or the five most abundant native species. Our data indicate that (1) late weeding of garlic mustard provided more effective control than early weeding because late weeding allows second‐year plants to compete with garlic mustard seedlings for a longer period of time and (2) competition between first‐ and second‐year plants is responsible for alternating dominance of first‐year and second‐year garlic mustard plants.  相似文献   

5.
To clarify recruitment patterns of Photinia glabra, which is an evergreen, broad‐leaved, bird‐dispersed tree species, we analyzed spatial distribution in P. glabra recruits at each growth stage and demography of current‐year seedlings with respect to distributions of adults in a warm‐temperate secondary forest, western Japan. Although individuals ≥ 5 cm diameter at breast height (DBH) that had nearly produced fruits showed a random distribution, seedlings (≥ 1 year old, < 10‐cm stem length [SL]), small saplings (10 ≤ SL < 30 cm) and large saplings (≥ 30‐cm SL, < 5‐cm DBH) were clumped and associated with reproductive adults at approximately 2–3‐m scales, nearly equal to their average crown radius. Based on monitoring the demography of current‐year seedlings, emerged seedling density profoundly decreased, and no seedlings survived at longer than an adult's crown scales, with distance‐dependent mortality as a result of disease and herbivory not greatly affecting the current‐year seedling mortality. Thus, aggregated seed dispersal under the crown of adult P. glabra would directly influence the distribution of recruits for P. glabra in this forest. Of the bird‐dispersed tree species in this forest, P. glabra produced the highest amount of fruits during large crop years, and their fruits ripened during the late seasonal period (early January), suggesting that birds might be strongly attracted to these species, in turn leading to seeds being deposited mostly under the tree crowns. We propose that dispersal limitation would occur, even in a bird‐dispersed tree species such as P. glabra, owing to plant–bird interactions in the forest.  相似文献   

6.
Niche diversification is prominent among the mechanisms proposed to explain tropical rain forest tree diversity, with many studies focusing on trade‐offs among shade tolerance and growth. Less obvious is the impact of occasional, ephemeral and often minor disturbances on tree seedling survival. We propose that differential tolerances to soil waterlogging can contribute to the distribution of tree seedling communities along microtopographical gradients. We test this hypothesis experimentally by evaluating survival and performance of planted seedlings across microtopographical gradients in a periodically inundated tropical rain forest environment. Survival and relative growth rates were assessed for six Shorea (Dipterocarpaceae) species in Sepilok Forest Reserve (Sabah, Malaysia) over a 2‐yr period, during which seedlings were subjected to two brief flooding events. The species were selected on the basis of soil habitat affinities, with two species being primarily associated with low‐lying alluvial flats subject to inundation, two being associated with non‐flooded mudstone hills, and two species occurring in both habitats. Seedling performance was related to microtopographic elevation within and among plots and to soil moisture among plots. The faster growing species, Shorea argentifolia, Shorea leprosula and Shorea parvifolia, tended to be more vulnerable to high soil moisture in terms of mortality than the three species with lower growth rates. Within plots, soil moisture was inversely correlated with microelevation, and seedlings located at higher microelevations had an increased probability of survival. Microtopographical differences in seedling position could therefore contribute to species assembly processes through differential mortality, particularly in areas subject to minor and ephemeral flooding events.  相似文献   

7.
Abstract. The tree species comprising Pinus‐Juniperus woodlands are rapidly expanding into shrub‐grasslands throughout their range. Observational studies indicate that establishment is facilitated by nurse plants, but little information exists on the mechanisms involved. I examined both abiotic and biotic factors influencing Pinus monophylla establishment in Artemisia tridentata steppe with expanding populations of P. monophylla and Juniperus osteosperma. I determined soil water contents, temperatures, and nutrient characteristics for the primary establishment microhabitats, i.e. under Pinus, under Juniperus, under Artemisia, tree interspace and sage interspace, and evaluated the emergence and survival response of two seedling cohorts over a 3‐yr period for the different microhabitats. I also examined the effects of seed burial and predation on seedling establishment. Microhabitats under trees and shrubs had higher extractable P and K, higher organic matter, total nitrogen and cation exchange capacity than interspace microhabitats. Soil water contents (0–15 cm) were lower in interspaces than under shrubs or trees due to dry surface (0–5 cm) soils. Soil temperatures (at 1 and 15 cm) were lowest under trees, intermediate under shrubs, and highest in interspaces. Timing and rate of seedling emergence were temperature dependent with the order of emergence paralleling mean growing season temperatures: tree interspace = shrub interspace > under shrub > under Juniperus under Pinus. Seed burial was required for rooting and the highest emergence occurred from depths of 1 and 3 cm indicating that caching by birds and rodents is essential and that animals bury seeds at adequate if not optimal depths for emergence. Seedlings required microenvironmental modification for survival; all seedlings, including those that emerged from seeds and transplants, died within the first year in interspace microhabitats. Survival in under‐tree or under‐shrub microhabitats depended on soil water availability and corresponded closely to soil water contents over the 3‐yr study. Under‐shrub microhabitats had more favourable soil and micro‐environmental characteristics than under‐tree microhabitats and had the highest seedling life spans for the first‐year seedling cohort. Predation of Pinus seedlings by rodents was a significant cause of mortality with caged transplants exhibiting life spans that were 74% longer overall than uncaged transplants. Emergence and survival of P. monophylla within the expanding woodland were dependent upon a complex set of interacting factors including growing season conditions, microhabitat characteristics, and animal species.  相似文献   

8.
Question: What is the effect of gap size on the seedling emergence, growth and survival of four common tree species in wooded pastures? Location: A pasture in the Jura mountains, Switzerland. Methods: Seeds were sown in a complete three‐way factorial design with eight blocks in May 2003. Each block consisted of a competition treatment (four gap sizes including zero) and a mowing treatment (mown and unmown). Emergence, survival and total biomass of tree seedlings of three species (Picea abies, Acer pseudoplatanus and Fagus sylvatica) were measured. A fourth species (Abies alba) failed to germinate. Results: Gaps had a positive influence on the early stages of tree development for all species. Larger gaps favoured growth and survival more than small gaps. Seedling growth was higher when vegetation around the openings was mown. Mowing the vegetation at gap size zero enhanced both growth and survival compared to unmown vegetation. Mown gaps larger than zero had increased seedling desiccation but decreased seedling predation. Species showed similar trends in their emergence and growth responses to gap size and mowing treatments but for Picea emergence rate was higher and survivorship was lower than for Acer and Fagus. Conclusions: Gap size does matter for tree seedling success but even in more favourable large gaps only a small percentage of seedlings emerged and survived. The effects of gaps on tree seedling establishment are complex as a result of interactions between biotic and abiotic changes caused by gaps.  相似文献   

9.
Abstract Exotic grasses are becoming increasingly abundant in Neotropical savannas, with Melinis minutiflora Beauv. being particularly invasive. To better understand the consequences for the native flora, we performed a field study to test the effect of this species on the establishment, survival and growth of seedlings of seven tree species native to the savannas and forests of the Cerrado region of Brazil. Seeds of the tree species were sown in 40 study plots, of which 20 were sites dominated by M. minutiflora, and 20 were dominated by native grasses. The exotic grass had no discernable effect on initial seedling emergence, as defined by the number of seedlings present at the end of the first growing season. Subsequent seedling survival in plots dominated by M. minutiflora was less than half that of plots dominated by native species. Consequently, at the end of the third growing season, invaded plots had only 44% as many seedlings as plots with native grasses. Above‐ground grass biomass of invaded plots was more than twice that of uninvaded plots, while seedling survival was negatively correlated with grass biomass, suggesting that competition for light may explain the low seedling survival where M. minutiflora is dominant. Soils of invaded plots had higher mean Ca, Mg and Zn, but these variables did not account for the higher grass biomass or the lower seedling survival in invaded plots. The results indicate that this exotic grass is having substantial effects on the dynamics of the tree community, with likely consequences for ecosystem structure and function.  相似文献   

10.
Logging in tropical forests may create large canopy openings. These gaps provide suitable conditions for some opportunistic shrubs and herbs to take advantage of the surge in resources and rapidly colonize disturbed sites. This dense plant cover may limit forest regeneration by interfering with tree seedling establishment, growth, and survival by altering the light and nutrients available to seedlings, modifying herbivore behavior, or a number of other factors. In Kibale National Park (Uganda), old logging sites are mainly covered by dense stands of Acanthus pubescens Engl., which appear to inhibit tree regeneration. We wanted to identify the ecological processes underlying this regeneration collapse. To do so, we designed a factorial experiment to evaluate the influences of herbivory and vegetation cover on the growth and survival of tree seedlings. We compared the survival and growth of transplanted tree seedlings in A. pubescens stands and logged forests, in the presence or absence of the understory vegetation layer (logged forest) or vegetation cover (A. pubescens), and with or without herbivory. We found no evidence to support the hypothesis that herbivory is significantly higher under dense A. pubescens cover. Seedling survival was not influenced by the environment. Seedling growth, however, was positively influenced by the removal of A. pubescens, suggesting that changes in resource availability associated with the presence of A. pubescens, may be important for regeneration. Our results suggest that sustained cutting of A. pubescens cover could foster the growth of established seedlings and could lead to tree regeneration and habitat restoration.  相似文献   

11.
Fire is the most important disturbance factor in Cypress (Austrocedrus chilensis) forests in Patagonia, Argentina. This ecosystem recovers poorly after fire, and direct sowing could be a potentially useful restoration practice. To evaluate the effect of season of sowing, post‐fire plant cover (PC), and climatic variability on seedling emergence and survival, three direct sowing studies were established in two burned cypress stands: Trevelin (xeric conditions) and El Bolsón (mesic conditions). Two studies were conducted in winter (2000 and 2001) and one in spring (2001). Precipitation was higher than the mean during the 2000–2001 growing season and lower during 2001–2002. At both sites, emergence and survival were much higher for winter‐ than for spring‐sown seedlings. In the xeric stand, emergence and survival of winter‐sown seedlings increased with medium and high PC values, after the humid and dry summers, respectively. However, most spring‐sown seedlings did not emerge, and those that did were short‐lived. Because of the more favorable growing conditions in the mesic stand, PC had no effect on emergence and only favored first year survival of winter‐sown seedlings after the dry summer. Spring‐sown seedlings showed no association with PC in the mesic site, probably because the first summer was exceptionally humid. We speculate that shading plants exert a positive effect on cypress seedling establishment, likely by reducing the stress from high temperatures and low water availability. Sowing of small patches under the protection of understory vegetation could be useful in restoring burned cypress stands.  相似文献   

12.
Invasive plants and urban run‐off constrain efforts to restore sedge meadow wetlands. We asked if native graminoids can self‐restore following the removal of Typha × glauca (hybrid cattail), and if not, what limits their recovery? After we harvested Typha and depleted its rhizome starch reserves, Carex spp. expanded vegetatively (approximately 1 m over 2 years) but not by recruiting seedlings. A seedling emergence experiment showed that seed banks were depleted where Typha had eliminated the sedge meadow over a decade ago (based on aerial photo analysis). Carex seedling emergence was 75–90% lower where Carex was absent than where it remained in the plant community, and at least 17 species that were abundant 30 years ago were absent from the seed bank and extant vegetation. By varying hydroperiod, we showed that prolonged flooding prevented emergence of Carex seedlings and that a fluctuating hydroperiod reduced emergence and ultimately killed all Carex seedlings. In contrast, Typha seedlings emerged and survived regardless of hydroperiod. Thus, slow vegetative expansion by Carex, depauperate seed banks, and altered hydroperiods all constrain self‐restoration. To compensate for multiple constraints on self‐restoration, we recommend a long‐term management approach that capitalizes on flooding and the capacity of Carex spp. to regrow vegetatively. We suggest annually harvesting swaths of Typha at the edges of clones, before or during flood events, to allow gradual, vegetative self‐restoration of Carex spp.  相似文献   

13.
Large seeds contain more stored resources, and seedlings germinating from large seeds generally cope better with environmental stresses such as shading, competition and thick litter layers, than seedlings germinating from small seeds. A pattern with small‐seeded species being associated with open habitats and large‐seeded species being associated with closed (shaded) habitats has been suggested and supported by comparative studies. However, few studies have assessed the intra‐specific relationship between seed size and recruitment, comparing plant communities differing in canopy cover. Here, seeds from four plant species commonly occurring in ecotones between open and closed habitats (Convallaria majalis, Frangula alnus, Prunus padus and Prunus spinosa) were weighed and sown individually (3200 seeds per species) in open and closed‐canopy sites, and seedling emergence and survival recorded over 3 years. Our results show a generally positive, albeit weak, relationship between seed size and recruitment. In only one of the species, C. majalis, was there an association between closed canopy habitat and a positive seed size effect on recruitment. We conclude that there is a weak selection gradient favouring larger seeds, but that this selection gradient is not clearly related to habitat.  相似文献   

14.
The use of aquaculture systems to grow the seagrass Zostera marina (eelgrass) from seeds for restoration projects was evaluated through laboratory and mesocosm studies. Along the mid‐Atlantic coast of North America Z. marina seeds are shed from late spring through early summer, but seeds typically do not begin to germinate until the late fall. Fall is the optimal season to plant both seeds and shoots in this region. We conducted studies to determine if Z. marina seeds can be induced to germinate in the summer and seedlings grown in mesocosms to a size sufficiently large enough for out‐planting in the fall. Seeds in soil‐less culture germinated in the summer when held at 14°C, with percent germination increasing with lower salinities. Cold storage (4°C) of seeds prior to planting in sediments enhanced germination and seedling survival. Growth rates of seedlings were significantly higher in nutrient enriched estuarine sediments. Results from preliminary studies were used in designing a large‐scale culture project in which 15,000 shoots were grown and out‐planted into the Potomac River estuary in the Chesapeake Bay and compared with an equal number of transplanted shoots. These studies demonstrate that growing Z. marina from seeds is an alternative approach to harvesting plants from donor beds when vegetative shoots are required for restoration projects.  相似文献   

15.
  • One of the most important threats to peatland ecosystems is drainage, resulting in encroachment of woody species. Our main aim was to check which features – overstorey or understorey vegetation – are more important for shaping the seedling bank of pioneer trees colonising peatlands (Pinus sylvestris and Betula pubescens). We hypothesised that tree stand parameters will be more important predictors of natural regeneration density than understorey vegetation parameters, and the former will be negatively correlated with species diversity and richness and also with functional richness and functional dispersion, which indicate a high level of habitat filtering.
  • The study was conducted in the ‘Zielone Bagna’ nature reserve (NW Poland). We assessed the structure of tree stands and natural regeneration (of B. pubescens and P. sylvestris) and vegetation species composition. Random forest and DCA were applied to assess relationships between variables studied.
  • Understorey vegetation traits affected tree seedling density (up to 0.5‐m height) more than tree stand traits. Density of older seedlings depended more on tree stand traits. We did not find statistically significant relationships between natural regeneration densities and functional diversity components, except for functional richness, which was positively correlated with density of the youngest tree seedlings.
  • Seedling densities were higher in plots with lower functional dispersion and functional divergence, which indicated that habitat filtering is more important than competition. Presence of an abundant seedling bank is crucial for the process of woody species encroachment on drained peatlands, thus its dynamics should be monitored in protected areas.
  相似文献   

16.
Living plant neighbours, but also their dead aboveground remains (i.e. litter), may individually exert negative or positive effects on plant recruitment. Although living plants and litter co‐occur in most ecosystems, few studies have addressed their combined effects, and conclusions are ambivalent. Therefore, we examined the response in terms of seedling emergence and growth of herbaceous grassland and forest species to different litter types and amounts and the presence of competitors. We conducted a pot experiment testing the effects of litter type (grass, oak), litter amount (low, medium, high) and interspecific competition (presence or absence of four Festuca arundinacea individuals) on seedling emergence and biomass of four congeneric pairs of hemicryptophytes from two habitat types (woodland, grassland). Interactions between litter and competition were weak. Litter presence increased competitor biomass. It also had positive effects on seedling emergence at low litter amounts and negative effects at high litter amounts, while competition had no effect on seedling emergence. Seedling biomass was negatively affected by the presence of competitors, and this effect was stronger in combination with high amounts of litter. Litter affected seedling emergence while competition determined the biomass of the emerged individuals, both affecting early stages of seedling recruitment. High litter accumulation also reduced seedling biomass, but this effect seemed to be additive to competitor effects. This suggests that live and dead plant mass can affect species recruitment in natural systems, but the mechanisms by which they operate and their timing differ.  相似文献   

17.
Regional warming has led to increased productivity near the boreal forest margin in Alaska. To date, the effects of warming on seedling recruitment have received little attention, in spite of forecasted forest expansion. Here, we used stand structure and environmental data from 95 white spruce (Picea glauca) plots sampled across a longitudinal gradient in southwest Alaska to explore factors influencing spruce establishment and recruitment near western treeline. We used total counts of live seedlings, saplings, and trees, representing five life stages, to evaluate whether geospatial, climate, and measured plot covariates predicted abundance, using current abundance distributions as a surrogate for climate conditions in the past. We used generalized linear models to test the null hypothesis that conditions favorable for recruitment were similar along the environmental gradient represented by longitude, by exploring relationships between per‐plot counts of each life stage and the covariates hypothesized to affect abundance. We also examined the relationship between growing degree days (GDD) and seedling establishment over a period of three decades using tree‐ring chronologies obtained from cores taken at a subset of our sites (n = 30). Our results indicated that seedling, sapling, and tree abundance were positively correlated with temperature across the study area. The response to longitude was mixed, with earlier life stages (seedlings, saplings) most abundant at the western end of the gradient, and later life stages (trees) most abundant to the east. The differential relationship between longitude and life‐stage abundance suggests a moving front of white spruce establishment through time, driven by changes in environmental conditions near the species’ western range limit. Likewise, we found a positive relationship between periods of seedling establishment and GDD, suggesting that longer summers and/or greater heat accumulation might enhance establishment, consistent with the positive relationship we found between life‐stage abundance and temperature.  相似文献   

18.
Herbaceous competition and herbivory have been identified as critical barriers to restoration of native tree species in degraded landscapes around the world; however, the combined effects of competition and herbivory are poorly understood. We experimentally manipulated levels of herbivory and herbaceous competition and analyzed the response of tree seedling performance over three growing seasons as a function of species and habitat in north‐central West Virginia. Four native tree species were planted in old field and forest experimental plots: Castanea dentata (American chestnut), Quercus rubra (red oak), Acer saccharum (sugar maple), and Picea rubens (red spruce). Red spruce demonstrated the highest growth increment and greatest survival (64%) and most consistent results among treatments and habitats. Red spruce survival was not reduced in the presence of Odocoileus virginianus (white‐tailed deer) browse and herbaceous competition; however, growth was improved by suppression of herbaceous competition. We suspect that this deciduous forest landscape would regenerate to a red spruce dominated forest if seed source was available. In contrast, the other three species tested had very low survival when exposed to deer and were more responsive to competing vegetation and habitat type. American chestnut had low survival and growth across all treatments, suggesting basic climate limitations. Vigorous natural regeneration of Prunus serotina (black cherry) occurred in forest plots where both competing herbs and deer were excluded. Our results demonstrated the importance of testing multiple potential recruitment barriers and species at once and the need for species and habitat‐specific restoration treatments.  相似文献   

19.
Potentilla matsumurae has a wide distribution from wind-blown fellfields to snowbeds in alpine regions of Japan. The environmental factors influencing seedling establishment differ between the fellfield and snowbed habitats; plants growing in each habitat may therefore have different germination strategies. Using a reciprocal sowing experiment, patterns of seedling emergence and survivorship were examined in both habitat types in the Taisetsu Mountains, Japan. Seeds derived from a fellfield population germinated earlier than did those derived from a snowbed population at both habitats, and the germination of fellfield seeds continued throughout the growing season. The timing of seedling emergence greatly affected subsequent survival at the fellfield. Seedlings that emerged in the first half of the growing season had low survivorship during the first year because of frost and drought damage, but the remaining seedlings had high survivorship during the winter; seedlings that emerged in the latter half of the growing season showed the opposite trend. At the snowbed, seedling survival was high throughout the growing season. Germination experiments in the laboratory highlighted a difference in the sensitivity of seeds from the fellfield and snowbed populations to fluctuating temperatures. These results indicate that intraspecific variation in emergence and survivorship may occur over a small scale in an alpine environment.  相似文献   

20.
Early seedling emergence can increase plant fitness under competition. Seed oil composition (the types and relative amounts of fatty acids in the oils) may play an important role in determining emergence timing and early growth rate in oilseeds. Saturated fatty acids provide more energy per carbon atom than unsaturated fatty acids but have substantially higher melting points (when chain length is held constant). This characteristic forms the basis of an adaptive hypothesis that lower melting point seeds (lower proportion of saturated fatty acids) should be favored under colder germination temperatures due to earlier germination and faster growth before photosynthesis, while at warmer germination temperatures, seeds with a higher amount of energy (higher proportion of saturated fatty acids) should be favored. To assess the effects of seed oil melting point on timing of seedling emergence and fitness, high‐ and low‐melting point lines from a recombinant inbred cross of Arabidopsis thaliana were competed in a fully factorial experiment at warm and cold temperatures with two different density treatments. Emergence timing between these lines was not significantly different at either temperature, which aligned with warm temperature predictions, but not cold temperature predictions. Under all conditions, plants competing against high‐melting point lines had lower fitness relative to those against low‐melting point lines, which matched expectations for undifferentiated emergence times.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号