首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Seasonal environmental heterogeneity is cyclic, persistent and geographically widespread. In species that reproduce multiple times annually, environmental changes across seasonal time may create different selection regimes that may shape the population ecology and life history adaptation in these species. Here, we investigate how two closely related species of Drosophila in a temperate orchard respond to environmental changes across seasonal time. Natural populations of Drosophila melanogaster and Drosophila simulans were sampled at four timepoints from June through November to assess seasonal change in fundamental aspects of population dynamics as well as life history traits. D. melanogaster exhibit pronounced change across seasonal time: early in the season, the population is inferred to be uniformly young and potentially represents the early generation following overwintering survivorship. D. melanogaster isofemale lines derived from the early population and reared in a common garden are characterized by high tolerance to a variety of stressors as well as a fast rate of development in the laboratory environment that declines across seasonal time. In contrast, wild D. simulans populations were inferred to be consistently heterogeneous in age distribution across seasonal collections; only starvation tolerance changed predictably over seasonal time in a parallel manner as in D. melanogaster. These results suggest fundamental differences in population and evolutionary dynamics between these two taxa associated with seasonal heterogeneity in environmental parameters and associated selection pressures.  相似文献   

2.
Long‐lived animals with a low annual reproductive output need a long time to recover from population crashes and are, thus, likely to face high extinction risk, if the current global environmental change will increase mortality rates. To aid conservation of those species, knowledge on the variability of mortality rates is essential. Unfortunately, however, individual‐based multiyear data sets that are required for that have only rarely been collected for free‐ranging long‐lived mammals. Here, we used a five‐year data set comprising activity data of 1,445 RFID‐tagged individuals of two long‐lived temperate zone bat species, Natterer's bats (Myotis nattereri) and Daubenton's bats (Myotis daubentonii), at their joint hibernaculum. Both species are listed as being of high conservation interest by the European Habitats Directive. Applying mixed‐effects logistic regression, we explored seasonal survival differences in these two species which differ in foraging strategy and phenology. In both species, survival over the first winter of an individual's life was much lower than survival over subsequent winters. Focussing on adults only, seasonal survival patterns were largely consistent with higher winter and lower summer survival but varied in its level across years in both species. Our analyses, furthermore, highlight the importance of species‐specific time periods for survival. Daubenton's bats showed a much stronger difference in survival between the two seasons than Natterer's bats. In one exceptional winter, the population of Natterer's bats crashed, while the survival of Daubenton's bats declined only moderately. While our results confirm the general seasonal survival pattern typical for hibernating mammals with higher winter than summer survival, they also show that this pattern can be reversed under particular conditions. Overall, our study points toward a high importance of specific time periods for population dynamics and suggests species‐, population‐, and age class‐specific responses to global climate change.  相似文献   

3.
4.
5.
Substratum quality and oxygen supply to the interstitial zone are crucial for the reproductive success of salmonid fishes. At present, degradation of spawning grounds due to fine sediment deposition and colmation are recognized as main factors for reproductive failure. In addition, changes in water temperatures due to climate change, damming, and cooling water inlets are predicted to reduce hatching success. We tested the hypothesis that the biological effects of habitat degradation depend strongly on the species‐specific spawning seasons and life‐history strategies (e.g., fall‐ vs. spring‐spawners, migratory vs. resident species) and assessed temperature as an important species‐specific factor for hatching success within river substratum. We studied the species‐specific differences in their responses to such disturbances using egg‐to‐fry survival of Danube Salmon (Hucho hucho), resident brown trout (Salmo trutta fario), and migratory brown trout (Salmo trutta lacustris) as biological endpoint. The egg incubation and hatching success of the salmonids and their dependence on temperature and stream substratum quality were compared. Hatching rates of Danube salmon were lower than of brown trout, probably due to higher oxygen demands and increased interstitial respiration in spring. Increases in maximum water temperature reduced hatching rates of resident and migratory brown trout (both fall‐spawners) but were positively correlated with hatching rates of Danube salmon (a spring‐spawner). Significantly longer incubation periods of resident and migratory brown trout coincided with relatively low stream substratum quality at the end of the egg incubation. Danube salmon seem to avoid low oxygen concentrations in the hyporheic zone by faster egg development favored by higher water temperatures. Consequently, the prediction of effects of temperature changes and altered stream substratum properties on gravel‐spawning fishes and biological communities should consider the observed species‐specific variances in life‐history strategies to increase conservation success.  相似文献   

6.
The association of morphological divergence with ecological segregation among closely related species could be considered as a signal of divergent selection in ecological speciation processes. Environmental signals such as diet can trigger phenotypic evolution, making polymorphic species valuable systems for studying the evolution of trophic‐related traits. The main goal of this study was to analyze the association between morphological differences in trophic‐related traits and ecological divergence in two sympatric species, Astyanax aeneus and A. caballeroi, inhabiting Lake Catemaco, Mexico. The trophic differences of a total of 70 individuals (35 A. aeneus and 35 A. caballeroi) were examined using stable isotopes and gut content analysis; a subset of the sample was used to characterize six trophic and six ecomorphological variables. In our results, we recovered significant differences between both species in the values of stable isotopes, with higher values of δ15N for A. caballeroi than for A. aeneus. Gut content results were consistent with the stable isotope data, with a higher proportion of invertebrates in A. caballeroi (a consumption of invertebrates ten times higher than that of A. aeneus, which in turn consumed three times more vegetal material than A. caballeroi). Finally, we found significant relationship between ecomorphology and stable isotopes (r = .24, p < .01), hence, head length, preorbital length, eye diameter, and δ15N were all positively correlated; these characteristics correspond to A. caballeroi. While longer gut and gill rakers, deeper bodies, and vegetal material consumption were positively correlated and corresponded to A. aeneus. Our results are consistent with the hypothesis that morphological divergence in trophic‐related traits could be associated with niche partitioning, allowing the coexistence of closely related species and reducing interspecific competition.  相似文献   

7.
The biogeographic history of the Chihuahuan Desert is known to be complex, and there is evidence of the effects of physiographic and climatic events in species diversification and demographic population changes in many taxa. Here, using DNA sequence data, we studied the influence of the physiographic and climatic events that occurred in the Chihuahuan Desert during the Pliocene–Pleistocene transition on the speciation and evolutionary history of the sister lizard species Sceloporus cyanostictus and S. gadsdeni. First, based on mtDNA and nDNA sequences, we estimated the divergence times of the sister species. Then, based on mtDNA sequences, we investigated the demographic history of both species within a phylogeographic framework. The divergence time was inferred to be 1.48 Mya, date that corresponds to the existence of a large lake in the Mapimian subprovince, between the current geographic locations of S. cyanostictus and S. gadsdeni. This lake could have acted as a barrier, leading to the speciation of both species. For the demographic history of the two species, we identified two distinct patterns: the population expansion of S. gadsdeni within the Last Glacial Maximum and the potential population decline of S. cyanostictus. Our results can be used as a guide for the study of other aspects that could be critical to developing conservation actions that ensure the survival of not only S. gadsdeni and S. cyanostictus, but also other co‐occurring lizard species.  相似文献   

8.
In subtropical China, large‐scale phylogeographic comparisons among multiple sympatric plants with similar ecological preferences are scarce, making generalizations about common response to historical events necessarily tentative. A phylogeographic comparison of two sympatric Chinese beeches (Fagus lucida and F. longipetiolata, 21 and 28 populations, respectively) was conducted to test whether they have responded to historical events in a concerted fashion and to determine whether their phylogeographic structure is exclusively due to Quaternary events or it is also associated with pre‐Quaternary events. Twenty‐three haplotypes were recovered for F. lucida and F. longipetiolata (14 each one and five shared). Both species exhibited a species‐specific mosaic distribution of haplotypes, with many of them being range‐restricted and even private to populations. The two beeches had comparable total haplotype diversity but F. lucida had much higher within‐population diversity than F. longipetiolata. Molecular dating showed that the time to most recent common ancestor of all haplotypes was 6.36 Ma, with most haplotypes differentiating during the Quaternary. [Correction added on 14 October 2013, after first online publication: the time unit has been corrected to ‘6.36’.] Our results support a late Miocene origin and southwards colonization of Chinese beeches when the aridity in Central Asia intensified and the monsoon climate began to dominate the East Asia. During the Quaternary, long‐term isolation in subtropical mountains of China coupled with limited gene flow would have lead to the current species‐specific mosaic distribution of lineages.  相似文献   

9.
Host–parasite interactions are ubiquitous in nature. However, how parasite population genetic structure is shaped by the interaction between host and parasite life history remains understudied. Studies comparing multiple parasites infecting a single host can be used to investigate how different parasite life history traits interplay with host behaviour and life history. In this study, we used 10 newly developed microsatellite loci to investigate the genetic structure of a parasitic bat fly (Basilia nana). Its host, the Bechstein's bat (Myotis bechsteinii), has a social system and roosting behaviour that restrict opportunities for parasite transmission. We compared fly genetic structure to that of the host and another parasite, the wing‐mite, Spinturnix bechsteini. We found little spatial or temporal genetic structure in B. nana, suggesting a large, stable population with frequent genetic exchange between fly populations from different bat colonies. This contrasts sharply with the genetic structure of the wing‐mite, which is highly substructured between the same bat colonies as well as temporally unstable. Our results suggest that although host and parasite life history interact to yield similar transmission patterns in both parasite species, the level of gene flow and eventual spatiotemporal genetic stability is differentially affected. This can be explained by the differences in generation time and winter survival between the flies and wing‐mites. Our study thus exemplifies that the population genetic structure of parasites on a single host can vary strongly as a result of how their individual life history characteristics interact with host behaviour and life history traits.  相似文献   

10.
The potential of the 18S rRNA V9 metabarcoding approach for diet assessment was explored using MiSeq paired‐end (PE; 2 × 150 bp) technology. To critically evaluate the method′s performance with degraded/digested DNA, the diets of two zooplanktivorous fish species from the Bay of Biscay, European sardine (Sardina pilchardus) and European sprat (Sprattus sprattus), were analysed. The taxonomic resolution and quantitative potential of the 18S V9 metabarcoding was first assessed both in silico and with mock and field plankton samples. Our method was capable of discriminating species within the reference database in a reliable way providing there was at least one variable position in the 18S V9 region. Furthermore, it successfully discriminated diet between both fish species, including habitat and diel differences among sardines, overcoming some of the limitations of traditional visual‐based diet analysis methods. The high sensitivity and semi‐quantitative nature of the 18S V9 metabarcoding approach was supported by both visual microscopy and qPCR‐based results. This molecular approach provides an alternative cost and time effective tool for food‐web analysis.  相似文献   

11.
The effect of divergent natural selection on the evolution of behavioral traits has long been a focus of behavioral ecologists. Predation, due to its ubiquity in nature and strength as a selective agent, has been considered an important environmental driver of behavior. Predation is often confounded with other environmental factors that could also play a role in behavioral evolution. For example, environments that contain predators are often more ecologically complex and “risky” (i.e., exposed and dangerous). Previous work shows that individuals from risky environments are often more bold, active, and explorative than those from low‐risk environments. To date, most comparative studies of environmentally driven behavioral divergence are limited to comparisons among populations within species that occur in divergent selective environments but neglect comparisons between species following speciation. This limits our understanding of how behavior evolves post‐speciation. The Central American live‐bearing fish genus Brachyrhaphis provides an ideal system for examining the relationship between selective environments and behavior, within and between species. Here, we test for differences in boldness between sister species B. roseni and B. terrabensis that occur in streams with and without piscivorous predators, respectively. We found that species do differ in boldness, with species that occur with predators being bolder than those that do not. Within each species, we found that sexes differed in boldness, with males being bolder than females. We also tested for a relationship between size (a surrogate for metabolic rate) and boldness, but found no size effects. Therefore, sex, not size, affects boldness. These results are consistent with the hypothesis that complex and risky environments favor individuals with more bold behavioral traits, but they are not consistent with the hypothesis that size (and therefore metabolic rate) drives divergence in boldness. Finally, our results provide evidence that behavioral trait divergence continues even after speciation is complete.  相似文献   

12.
13.
Over the last three decades, climate abnormalities have been reported to be involved in biodiversity decline by affecting population dynamics. A growing number of studies have shown that the North Atlantic Oscillation (NAO) influences the demographic parameters of a wide range of plant and animal taxa in different ways. Life history theory could help to understand these different demographic responses to the NAO. Indeed, theory states that the impact of weather variation on a species’ demographic traits should depend on its position along the fast–slow continuum. In particular, it is expected that NAO would have a higher impact on recruitment than on adult survival in slow species, while the opposite pattern is expected occur in fast species. To test these predictions, we used long‐term capture–recapture datasets (more than 15,000 individuals marked from 1965 to 2015) on different surveyed populations of three amphibian species in Western Europe: Triturus cristatus, Bombina variegata, and Salamandra salamandra. Despite substantial intraspecific variation, our study revealed that these three species differ in their position on a slow–fast gradient of pace of life. Our results also suggest that the differences in life history tactics influence amphibian responses to NAO fluctuations: Adult survival was most affected by the NAO in the species with the fastest pace of life (Tcristatus), whereas recruitment was most impacted in species with a slower pace of life (Bvariegata and Ssalamandra). In the context of climate change, our findings suggest that the capacity of organisms to deal with future changes in NAO values could be closely linked to their position on the fast–slow continuum.  相似文献   

14.
Freshwater species often show high levels of endemism and risk of extinction owing to their limited dispersal abilities. This is exemplified by the stenotopic freshwater crab, Johora singaporensis which is one of the world's 100 most threatened species, and currently inhabits less than 0.01 km2 of five low order hill streams within the highly urbanized island city‐state of Singapore. We compared populations of J. singaporensis with that of the non‐threatened, widespread, abundant, and eurytopic freshwater crab, Parathelphusa maculata, and found surprisingly high congruence between their population genomic histories. Based on 2,617 and 2,470 genome‐wide SNPs mined via the double‐digest restriction‐associated DNA sequencing method for ~90 individuals of J. singaporensis and P. maculata, respectively, the populations are strongly isolated (FST = 0.146–0.371), have low genetic diversity for both species (also for COI), and show signatures of recent genetic bottlenecks. The most genetically isolated populations for both species are separated from other populations by one of the oldest roads in Singapore. These results suggest that anthropogenic developments may have impacted stream‐dependent species in a uniform manner, regardless of ubiquity, habitat preference, or dispersal modes of the species. While signs of inbreeding were not detected for the critically endangered species, the genetic distinctiveness and low diversity of the populations call for genetic rescue and connecting corridors between the remaining fragments of the natural habitat.  相似文献   

15.
Pleistocene climatic cycles altered species distributions in the Eastern Nearctic of North America, yet the degree of congruent demographic response to the Pleistocene among codistributed taxa remains unknown. We use a hierarchical approximate Bayesian computational approach to test if population sizes across lineages of snakes, lizards, turtles, mammals, birds, salamanders and frogs in this region expanded synchronously to Late Pleistocene climate changes. Expansion occurred in 75% of 74 lineages, and of these, population size trajectories across the community were partially synchronous, with coexpansion found in at least 50% of lineages in each taxonomic group. For those taxa expanding outside of these synchronous pulses, factors related to when they entered the community, ecological thresholds or biotic interactions likely condition their timing of response to Pleistocene climate change. Unified timing of population size change across communities in response to Pleistocene climate cycles is likely rare in North America.  相似文献   

16.
Resource allocation to growth, reproduction, and body maintenance varies within species along latitudinal gradients. Two hypotheses explaining this variation are local adaptation and counter‐gradient variation. The local adaptation hypothesis proposes that populations are adapted to local environmental conditions and are therefore less adapted to environmental conditions at other locations. The counter‐gradient variation hypothesis proposes that one population out performs others across an environmental gradient because its source location has greater selective pressure than other locations. Our study had two goals. First, we tested the local adaptation and counter‐gradient variation hypotheses by measuring effects of environmental temperature on phenotypic expression of reproductive traits in the burying beetle, Nicrophorus orbicollis Say, from three populations along a latitudinal gradient in a common garden experimental design. Second, we compared patterns of variation to evaluate whether traits covary or whether local adaptation of traits precludes adaptive responses by others. Across a latitudinal range, N. orbicollis exhibits variation in initiating reproduction and brood sizes. Consistent with local adaptation: (a) beetles were less likely to initiate breeding at extreme temperatures, especially when that temperature represents their source range; (b) once beetles initiate reproduction, source populations produce relatively larger broods at temperatures consistent with their local environment. Consistent with counter‐gradient variation, lower latitude populations were more successful at producing offspring at lower temperatures. We found no evidence for adaptive variation in other adult or offspring performance traits. This suite of traits does not appear to coevolve along the latitudinal gradient. Rather, response to selection to breed within a narrow temperature range may preclude selection on other traits. Our study highlights that N. orbicollis uses temperature as an environmental cue to determine whether to initiate reproduction, providing insight into how behavior is modified to avoid costly reproductive attempts. Furthermore, our results suggest a temperature constraint that shapes reproductive behavior.  相似文献   

17.
In recent years, there has been a surge in interest in the effects of the microbiota on the host. Increasingly, we are coming to understand the importance of the gut microbiota in modulating host physiology, ecology, behavior, and evolution. One method utilized to evaluate the effect of the microbiota is to suppress or eliminate it, and compare the effect on the host with that of untreated individuals. In this study, we evaluate some of these commonly used methods in the model organism, Drosophila melanogaster. We test the efficacy of a low‐dose streptomycin diet, egg dechorionation, and an axenic or sterile diet, in the removal of gut bacteria within this species in a fully factorial design. We further determine potential side effects of these methods on host physiology by performing a series of standard physiological assays. Our results showed that individuals from all treatments took significantly longer to develop, and weighed less, compared to normal flies. Males and females that had undergone egg dechorionation weighed significantly less than streptomycin reared individuals. Similarly, axenic female flies, but not males, were much less active when analyzed in a locomotion assay. All methods decreased the egg to adult survival, with egg dechorionation inducing significantly higher mortality. We conclude that low‐dose streptomycin added to the dietary media is more effective at removing the gut bacteria than egg dechorionation and has somewhat less detrimental effects to host physiology. More importantly, this method is the most practical and reliable for use in behavioral research. Our study raises the important issue that the efficacy of and impacts on the host of these methods require investigation in a case‐by‐case manner, rather than assuming homogeneity across species and laboratories.  相似文献   

18.
The impact of fragmentation by human activities on genetic diversity of forest trees is an important concern in forest conservation, especially in tropical forests. Dysoxylum malabaricum (white cedar) is an economically important tree species, endemic to the Western Ghats, India, one of the world's eight most important biodiversity hotspots. As D. malabaricum is under pressure of disturbance and fragmentation together with overharvesting, conservation efforts are required in this species. In this study, range‐wide genetic structure of twelve D. malabaricum populations was evaluated to assess the impact of human activities on genetic diversity and infer the species’ evolutionary history, using both nuclear and chloroplast (cp) DNA simple sequence repeats (SSR). As genetic diversity and population structure did not differ among seedling, juvenile and adult age classes, reproductive success among the old‐growth trees and long distance seed dispersal by hornbills were suggested to contribute to maintain genetic diversity. The fixation index (FIS) was significantly correlated with latitude, with a higher level of inbreeding in the northern populations, possibly reflecting a more severe ecosystem disturbance in those populations. Both nuclear and cpSSRs revealed northern and southern genetic groups with some discordance of their distributions; however, they did not correlate with any of the two geographic gaps known as genetic barriers to animals. Approximate Bayesian computation‐based inference from nuclear SSRs suggested that population divergence occurred before the last glacial maximum. Finally we discussed the implications of these results, in particular the presence of a clear pattern of historical genetic subdivision, on conservation policies.  相似文献   

19.
Abstract Interspecific variation among wood density (WD), wood water content (WWC), tree mortality and diameter at breast height (d.b.h.) increment was examined for 27 tree species (from 13 families), based on a 9‐year interval data obtained from a permanent 1‐ha forest plot setup for long‐term studies of tree dynamics in Kuala Belong rainforest, Brunei, on Borneo Island. The species were also categorized into three adult stature groups of understorey (maximum height ≤15–20 m tall, n = 14), midcanopy (maximum height, 20–30 m tall, n = 8) and canopy/emergent (>maximum height, >30 m tall, n = 5) tree species. All measured traits varied appreciably among species. Tree WD varied between 0.3 and 0.8 g cm−3, and exhibited the least coefficient of variation (14.7%). D.b.h. increment was low, averaging 1.05 (95% confidence limits: 0.57–2.13) mm year−1 and was attributed to predominance of understorey species in the sampled plot. Overall, annual mortality was also low, averaging 2.73% per year. The three adult stature groups differed significantly in d.b.h. increment and WWC but not in tree mortality and WD. Across species and especially more so when phylogenetic effect is minimized, WD was negatively related to tree mortality and d.b.h. increment, while a positive trend was observed between d.b.h. increment and tree mortality. A negative trend was also detected between maximum plant height and WWC, which was interpreted as a consequence of increased evaporative demand and use of xylem stored water by taller trees in order to compensate for hydraulic limitations to water transport induced by frictional resistance. No doubt, the traits chosen may vary spatially, but the consistent interspecific patterns observed in this study among coexisting species of differing adult stature reflect ‘vertical’ niche differentiation and may help to explain population regulation in a multispecies ecosystem like tropical rainforest.  相似文献   

20.
East Asian migratory waterfowl have greatly declined since the 1950s, especially the populations that winter in China. Conservation is severely hampered by the lack of primary information about migration patterns and stopover sites. This study utilizes satellite tracking techniques and advanced spatial analyses to investigate spring migration of the greater white‐fronted goose (Anser albifrons) and tundra bean goose (Anser serrirostris) wintering along the Yangtze River Floodplain. Based on 24 tracks obtained from 21 individuals during the spring of 2015 and 2016, we found that the Northeast China Plain is far‐out the most intensively used stopover site during migration, with geese staying for over 1 month. This region has also been intensely developed for agriculture, suggesting a causal link to the decline in East Asian waterfowl wintering in China. The protection of waterbodies used as roosting area, especially those surrounded by intensive foraging land, is critical for waterfowl survival. Over 90% of the core area used during spring migration is not protected. We suggest that future ground surveys should target these areas to confirm their relevance for migratory waterfowl at the population level, and core roosting area at critical spring‐staging sites should be integrated in the network of protected areas along the flyway. Moreover, the potential bird–human conflict in core stopover area needs to be further studied. Our study illustrates how satellite tracking combined with spatial analyses can provide crucial insights necessary to improve the conservation of declining Migratory species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号