首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Arachnids are the most abundant land predators. Despite the importance of their functional roles as predators and the necessity to understand their diet for conservation, the trophic ecology of many arachnid species has not been sufficiently studied. In the case of the wandering spider, Phoneutria boliviensis F. O. Pickard‐Cambridge, 1897, only field and laboratory observational studies on their diet exist. By using a DNA metabarcoding approach, we compared the prey found in the gut content of males and females from three distant Colombian populations of P. boliviensis. By DNA metabarcoding of the cytochrome c oxidase subunit I (COI), we detected and identified 234 prey items (individual captured by the spider) belonging to 96 operational taxonomic units (OTUs), as prey for this wandering predator. Our results broaden the known diet of P. boliviensis with at least 75 prey taxa not previously registered in fieldwork or laboratory experimental trials. These results suggest that P. boliviensis feeds predominantly on invertebrates (Diptera, Lepidoptera, Coleoptera, and Orthoptera) and opportunistically on small squamates. Intersex and interpopulation differences were also observed. Assuming that prey preference does not vary between populations, these differences are likely associated with a higher local prey availability. Finally, we suggest that DNA metabarcoding can be used for evaluating subtle differences in the diet of distinct populations of P. boliviensis, particularly when predation records in the field cannot be established or quantified using direct observation.  相似文献   

2.
DNA metabarcoding enables efficient characterization of species composition in environmental DNA or bulk biodiversity samples, and this approach is making significant and unique contributions in the field of ecology. In metabarcoding of animals, the cytochrome c oxidase subunit I (COI) gene is frequently used as the marker of choice because no other genetic region can be found in taxonomically verified databases with sequences covering so many taxa. However, the accuracy of metabarcoding datasets is dependent on recovery of the targeted taxa using conserved amplification primers. We argue that COI does not contain suitably conserved regions for most amplicon-based metabarcoding applications. Marker selection deserves increased scrutiny and available marker choices should be broadened in order to maximize potential in this exciting field of research.  相似文献   

3.
A thorough understanding of ecological networks relies on comprehensive information on trophic relationships among species. Since unpicking the diet of many organisms is unattainable using traditional morphology‐based approaches, the application of high‐throughput sequencing methods represents a rapid and powerful way forward. Here, we assessed the application of DNA metabarcoding with nearly universal primers for the mitochondrial marker cytochrome c oxidase I in defining the trophic ecology of adult brown shrimp, Crangon crangon, in six European estuaries. The exact trophic role of this abundant and widespread coastal benthic species is somewhat controversial, while information on geographical variation remains scant. Results revealed a highly opportunistic behaviour. Shrimp stomach contents contained hundreds of taxa (>1,000 molecular operational taxonomic units), of which 291 were identified as distinct species, belonging to 35 phyla. Only twenty ascertained species had a mean relative abundance of more than 0.5%. Predominant species included other abundant coastal and estuarine taxa, including the shore crab Carcinus maenas and the amphipod Corophium volutator. Jacobs’ selectivity index estimates based on DNA extracted from both shrimp stomachs and sediment samples were used to assess the shrimp's trophic niche indicating a generalist diet, dominated by crustaceans, polychaetes and fish. Spatial variation in diet composition, at regional and local scales, confirmed the highly flexible nature of this trophic opportunist. Furthermore, the detection of a prevalent, possibly endoparasitic fungus (Purpureocillium lilacinum) in the shrimp's stomach demonstrates the wide range of questions that can be addressed using metabarcoding, towards a more robust reconstruction of ecological networks.  相似文献   

4.
The accuracy and reliability of DNA metabarcoding analyses depend on the breadth and quality of the reference libraries that underpin them. However, there are limited options available to obtain and curate the huge volumes of sequence data that are available on public repositories such as NCBI and BOLD. Here, we provide a pipeline to download, clean and annotate mitochondrial DNA sequence data for a given list of fish species. Features of this pipeline include (a) support for multiple metabarcode markers; (b) searches on species synonyms and taxonomic name validation; (c) phylogeny assisted quality control for identification and removal of misannotated sequences; (d) automatically generated coverage reports for each new GenBank release update; and (e) citable, versioned DOIs. As an example we provide a ready-to-use curated reference library for the marine and freshwater fishes of the U.K. To augment this reference library for environmental DNA metabarcoding specifically, we generated 241 new MiFish-12S sequences for 88 U.K. marine species, and make available new primer sets useful for sequencing these. This brings the coverage of common U.K. species for the MiFish-12S fragment to 93%, opening new avenues for scaling up fish metabarcoding across wide spatial gradients. The Meta-Fish-Lib reference library and pipeline is hosted at https://github.com/genner-lab/meta-fish-lib .  相似文献   

5.
DNA复合条形码在太白山土壤动物多样性研究中的应用   总被引:1,自引:0,他引:1  
宋飏  黄原 《生态学报》2016,36(14):4531-4539
DNA复合条形码技术(metabarcoding)将DNA条形码与高通量测序技术相结合,快速便捷地鉴定群落混合样本中的物种,成为监测群落中物种组成和丰富度的可靠方法。采用这一方法分析了秦岭太白山5种不同生境的中小型土壤动物多样性,共得到土壤动物3门9纲28目199科。群落组成分析显示生境的变化对土壤动物群落组成有一定的影响。α多样性分析显示土壤动物群落丰富度指数最高的生境为针叶林,最低的为农田;土壤动物群落多样性指数最高的生境为针叶林,最低的为落叶小叶林。群落相似性分析显示高山草甸、针叶林和农田3种生境的土壤动物群落组成相似性较高,落叶小叶林和落叶阔叶林的土壤动物群落组成与这3种生境的差异较大,落叶小叶林与落叶阔叶林的土壤动物群落组成差异也较大。  相似文献   

6.
底栖动物是淡水生态系统中物种多样性最高的类群,也是应用最广泛的水质监测指示生物之一。传统的底栖动物监测以形态学为基础,耗时费力,无法满足流域尺度大规模监测的需求。环境DNA-宏条形码技术是一种新兴的生物监测方法,其与传统方法相比优势在于采样方法简单、低成本、高灵敏度,不受生物样本和环境状况的影响,不依赖分类专家和鉴定资料,能够快速准确地对多个类群进行大规模、高通量的物种鉴定。然而,在实际应用中该方法的效果受诸多因素的影响,不同的方法、流程往往会产生差异较大的结果。鉴于此,着重分析总结了应用环境DNA-宏条形码技术监测底栖动物的关键影响因素,包括样品采集与处理流程、分子标记选择、引物设计、PCR偏好性、参考数据库的完整性及相应的优化。并基于此探讨了提高环境DNA-宏条形码技术在底栖动物监测效率和准确率的途径,以期为底栖动物环境DNA-宏条形码监测方案的制定提供可靠的参考。最后对该技术在底栖动物监测和水质评价中的最新发展方向进行了展望。  相似文献   

7.
8.
DNA barcoding and metabarcoding are revolutionizing the study and survey of biodiversity. In order to assign taxonomic labels to the DNA sequence data retrieved, these methods are strongly dependent on comprehensive and accurate reference databases. Producing reliable databases linking biological sequences and taxonomic data can be—and often has been—done using mainstream tools such as spreadsheet software. However, spreadsheets quickly become insufficient when the amount of data increases to thousands of taxa and sequences to be matched, and validation operations become more complex and are error prone if done in a manual way. Thus, there is a clear need for providing scientists with user-friendly, reliable and powerful tools to manipulate and manage DNA reference databases in tractable, sound and efficient ways. Here, we introduce the R package refdb as an environment for semi-automatic and assisted construction of DNA reference libraries. The refdb package is a reference database manager offering a set of powerful functions to import, organize, clean, filter, audit and export the data. It is broadly applicable in metabarcoding data generally obtained in biodiversity and biomonitoring studies. We present the main features of the package and outline how refdb can speed up reference database generation, management and handling, and thus contribute to standardization and repeatability in barcoding and metabarcoding studies.  相似文献   

9.
Freshwater ecosystems face multiple threats to their stability globally. Poyang Lake is the largest lake in China, but its habitat has been seriously degraded because of human activities and natural factors (e.g. climate change), resulting in a decline in freshwater biodiversity. Zooplankton are useful indicators of environmental stressors because they are sensitive to external perturbations. DNA metabarcoding is an approach that has gained significant traction by aiding ecosystem conservation and management. Here, the seasonal and spatial variability in the zooplankton diversity were analyzed in the Poyang Lake Basin using DNA metabarcoding. The results showed that the community structure of zooplankton exhibited significant seasonal and spatial variability using DNA metabarcoding, where the community structure was correlated with turbidity, water temperature, pH, total phosphorus, and chlorophyll‐a. These results indicated habitat variations affected by human activities and seasonal change could be the main driving factors for the variations of zooplankton community. This study also provides an important reference for the management of aquatic ecosystem health and conservation of aquatic biodiversity.  相似文献   

10.
DNA metabarcoding is routinely used for biodiversity assessment, in particular targeting highly diverse groups for which limited taxonomic expertise is available. Various protocols are currently in use, although standardization is key to its application in large-scale monitoring. DNA metabarcoding of arthropod bulk samples can be conducted either destructively from sample tissue, or nondestructively from sample fixative or lysis buffer. Nondestructive methods are highly desirable for the preservation of sample integrity but have yet to be experimentally evaluated in detail. Here, we compare diversity estimates from 14 size-sorted Malaise trap samples processed consecutively with three nondestructive approaches (one using fixative ethanol and two using lysis buffers) and one destructive approach (using homogenized tissue). Extraction from commercial lysis buffer yielded comparable species richness and high overlap in species composition to the ground tissue extracts. A significantly divergent community was detected from preservative ethanol-based DNA extraction. No consistent trend in species richness was found with increasing incubation time in lysis buffer. These results indicate that nondestructive DNA extraction from incubation in lysis buffer could provide a comparable alternative to destructive approaches with the added advantage of preserving the specimens for postmetabarcoding taxonomic work but at a higher cost per sample.  相似文献   

11.
Environmental DNA (eDNA) techniques refer to utilizing the organisms’ DNA extracted from environment samples to genetically identify target species without capturing actual organisms. eDNA metabarcoding via high‐throughput sequencing can simultaneously detect multiple fish species from a single water sample, which is a powerful tool for the qualitative detection and quantitative estimates of multiple fish species. However, sequence counts obtained from eDNA metabarcoding may be influenced by many factors, of which primer bias is one of the foremost causes of methodological error. The performance of 18 primer pairs for COI, cytb, 12S rRNA, and 16S rRNA mitochondrial genes, which are all frequently used in fish eDNA metabarcoding, were evaluated in the current study. The ribosomal gene markers performed better than the protein‐coding gene markers during in silico screening, resulting in higher taxonomic coverage and appropriate barcode lengths. Four primer pairs—AcMDB07, MiFish‐U, Ve16S1, and Ve16S3—designed for various regions of the 12S and 16S rRNA genes were screened for tank metabarcoding in a case study targeting six freshwater fish species. The four primer pairs were able to accurately detect all six species in different tanks, while only MiFish‐U, Ve16S1, and Ve16S3 revealed a significant positive relationship between species biomass and read count for the pooled tank data. The positive relationship could not be found in all species within the tanks. Additionally, primer efficiency differed depending on the species while primer preferential species varied in different fish assemblages. This case study supports the potential for eDNA metabarcoding to assess species diversity in natural ecosystems and provides an alternative strategy to evaluate the performance of candidate primers before application of eDNA metabarcoding in natural ecosystems.  相似文献   

12.
Current methods for monitoring marine fish (including bony fishes and elasmobranchs) diversity mostly rely on trawling surveys, which are invasive, costly, and time‐consuming. Moreover, these methods are selective, targeting a subset of species at the time, and can be inaccessible to certain areas. Here, we used environmental DNA (eDNA), the DNA present in the water column as part of shed cells, tissues, or mucus, to provide comprehensive information about fish diversity in a large marine area. Further, eDNA results were compared to the fish diversity obtained in pelagic trawls. A total of 44 5 L‐water samples were collected onboard a wide‐scale oceanographic survey covering about 120,000 square kilometers in Northeast Atlantic Ocean. A short region of the 12S rRNA gene was amplified and sequenced through metabarcoding generating almost 3.5 million quality‐filtered reads. Trawl and eDNA samples resulted in the same most abundant species (European anchovy, European pilchard, Atlantic mackerel, and blue whiting), but eDNA metabarcoding resulted in more detected bony fish and elasmobranch species (116) than trawling (16). Although an overall correlation between fishes biomass and number of reads was observed, some species deviated from the common trend, which could be explained by inherent biases of each of the methods. Species distribution patterns inferred from eDNA metabarcoding data coincided with current ecological knowledge of the species, suggesting that eDNA has the potential to draw sound ecological conclusions that can contribute to fish surveillance programs. Our results support eDNA metabarcoding for broad‐scale marine fish diversity monitoring in the context of Directives such as the Common Fisheries Policy or the Marine Strategy Framework Directive.  相似文献   

13.
Clustering approaches are pivotal to handle the many sequence variants obtained in DNA metabarcoding data sets, and therefore they have become a key step of metabarcoding analysis pipelines. Clustering often relies on a sequence similarity threshold to gather sequences into molecular operational taxonomic units (MOTUs), each of which ideally represents a homogeneous taxonomic entity (e.g., a species or a genus). However, the choice of the clustering threshold is rarely justified, and its impact on MOTU over-splitting or over-merging even less tested. Here, we evaluated clustering threshold values for several metabarcoding markers under different criteria: limitation of MOTU over-merging, limitation of MOTU over-splitting, and trade-off between over-merging and over-splitting. We extracted sequences from a public database for nine markers, ranging from generalist markers targeting Bacteria or Eukaryota, to more specific markers targeting a class or a subclass (e.g., Insecta, Oligochaeta). Based on the distributions of pairwise sequence similarities within species and within genera, and on the rates of over-splitting and over-merging across different clustering thresholds, we were able to propose threshold values minimizing the risk of over-splitting, that of over-merging, or offering a trade-off between the two risks. For generalist markers, high similarity thresholds (0.96–0.99) are generally appropriate, while more specific markers require lower values (0.85–0.96). These results do not support the use of a fixed clustering threshold. Instead, we advocate careful examination of the most appropriate threshold based on the research objectives, the potential costs of over-splitting and over-merging, and the features of the studied markers.  相似文献   

14.
A simplified but highly effective approach for the post‐mortem evaluation of predation on several targeted members of an arthropod assemblage that does not require the development of pest‐specific enzyme‐linked immunosorbent assay (ELISA) (e.g. pest‐specific monoclonal antibodies) or PCR assays (DNA primers) is described. Laboratory feeding studies were conducted to determine if predation events could be detected from predators that consumed prey marked with foreign protein. I determined that large and small rabbit immunoglobulin G (IgG)‐marked prey can be detected by a rabbit‐IgG‐specific ELISA in the guts of chewing and piercing–sucking type predators. I then conducted multifaceted inclusion and exclusion field cage studies to qualify the degree of interguild and intraguild predation occurring among a complex arthropod assemblage during four separate light phase treatments. The field cages contained an arthropod assemblage consisting of 11 or 12 species of predaceous arthropods and three pest species. The three pests introduced into the cages included third instar Trichoplusia ni marked with rabbit IgG, third instar Lygus hesperus marked with chicken IgG and Pectinophora gossypiella sentinel egg masses. The inclusion cages allowed foraging fire ants, Solenopis xyloni, to freely enter the cages while the exclusion cages contained barriers that prevented ant entry. The results obtained using the conventional inclusion/exclusion field cage methodology revealed that there was substantial interguild and intraguild predation occurring on the majority of the arthropods in the assemblage, particularly in those cages that included ants. I then precisely identified which predators in the assemblage were feeding on the three targeted pests by conducting three post‐mortem gut content analyses on each individual predator (1503 individuals) in the assemblage. Specifically, P. gossypiella egg predation events were detected using an established P. gossypiella‐egg‐specific ELISA, and third instar T. ni and L. hesperus predation events were detected using rabbit‐IgG‐specific and chicken‐IgG‐specific ELISAs, respectively. Generally, the gut ELISAs revealed that Collops vittatus, Spanagonicus albofasciatus and Geocoris punctipes readily preyed on P. gossypiella eggs; Nabis alternatus, Zelus renardii and spiders (primarily Misumenops celer) readily preyed on marked L. hesperus nymphs, and spiders, S. albofasciatus and N. alternatus readily preyed on T. ni larvae. Furthermore, the cage methods and the post‐mortem predator gut ELISAs revealed very few distinctive patterns of predation with regard to the light cycle the assemblage was exposed to.  相似文献   

15.
Diatoms are excellent ecological indicators of water quality because they are broadly distributed, they show high species diversity and they respond rapidly to human pressures. In Europe, the Water Framework Directive (WFD) gives the legal basis for the use of this indicator for water quality assessment and its management. Several quality indices, like the Specific Polluosensitivity Index (SPI), were developed to assess the ecological quality status of rivers based on diatom communities. It is based on morphological identifications and count of diatom species present in natural biofilms using a microscope. This methodology requires high taxonomic skills and several hours of analysis per sample as 400 individuals must be identified to species level. Since several years, a molecular approach based on DNA metabarcoding combined to High-Throughput Sequencing (HTS) is developed to characterize species assemblages in environmental samples which is potentially faster and cheaper. The ability of this approach to provide reliable diatom inventories has been demonstrated and its application to water quality assessment is currently being improved. Despite optimization of the DNA metabarcoding process with diatoms, few studies had yet extended it at the scale of a freshwater monitoring network and evaluated the reliability of its quality assessment compared to the classical morphological approach.In the present study we applied DNA metabarcoding to the river monitoring network of the tropical Island Mayotte. This island is a French département since 2011 and the WFD has to be applied. This offered the opportunity to scale up the comparison of molecular and morphological approaches and their ability to produce comparable community inventories and water quality assessments. Benthic diatoms were sampled following WFD standards in 45 river sites in 2014 and 2015 (80 samples). All samples were submitted in parallel to the molecular and the morphological approaches. DNA metabarcoding was carried out using Genelute DNA extraction method, rbcL DNA barcode and PGM sequencing, while microscopic counts were carried out for the classical methodology. Diatom community structures in terms of molecular (OTUs) and of morphological (species) were significantly correlated. However, only 13% of the species was shared by both approaches, with qualitative and quantitative variation due to i) the incompleteness of the reference library (82% of morphological species are not represented in the database), ii) limits in taxonomic knowledge and iii) biases in the estimation of relative abundances linked to diatom cell biovolume. However, ecological quality status assessed with the molecular and morphological SPI values were congruent, and little affected by sequencing depth. DNA metabarcoding of diatom communities allowed a reliable estimation of the quality status for most of the rivers at the scale of the full biomonitoring network of Mayotte Island.  相似文献   

16.
Given the global decline of many invertebrate food resources, it is fundamental to understand the dietary requirements of insectivores. We give new insights into the functional relationship between the spatial habitat use, food availability, and diet of a crepuscular aerial insectivore, the European Nightjar (Caprimulgus europaeus) by relating spatial use data with high‐throughput sequencing (HTS) combined with DNA metabarcoding. Our study supports the predictions that nightjars collect a substantial part of their daily nourishment from foraging locations, sometimes at considerable distance from nesting sites. Lepidopterans comprise 65% of nightjars'' food source. Nightjars tend to select larger species of Lepidoptera (>19 mm) which suggests that nightjars optimize the efficiency of foraging trips by selecting the most energetically favorable—larger—prey items. We anticipate that our findings may shed additional light on the interactions between invertebrate communities and higher trophic levels, which is required to understand the repercussions of changing food resources on individual‐ and population‐level processes.  相似文献   

17.
Little is known about manta ray population size, structure and connectivity in the Philippines. In collaboration with dive operators, non-governmental organizations and authorities, sightings of manta rays were collated into a single national database. Using in-water photographs and videos gathered through citizen science and dedicated research efforts, this study compiled sightings between 2004 and 2020, showing 22 separate sites throughout the archipelago with manta rays present. A total of 392 individual reef manta rays (Mobula alfredi) and 107 oceanic manta rays (Mobula birostris) were identified from the collected footage. Four specific sites in the provinces of Masbate and Palawan together hosted 89% of all identified individuals and accounted for 95% of sightings, highlighting these areas are key aggregation sites. This study also reports the movements of M. birostris within the Philippines, based on photo-identification of three individuals moving 150 km between Cebu and Masbate. Despite the growing number of recreational divers in Daanbantayan and San Jacinto, an 80% decline in M. birostris sightings was observed at these sites. To ensure effective future conservation, it is recommended that efforts focus on the identification and protection of manta ray hotspots and migratory corridors, the creation of a sustainable tourism framework and, most important, the implementation of mitigation strategies to reduce fisheries interactions.  相似文献   

18.
DNA metabarcoding can contribute to improving cost‐effectiveness and accuracy of biological assessments of aquatic ecosystems, but significant optimization and standardization efforts are still required to mainstream its application into biomonitoring programmes. In assessments based on freshwater macroinvertebrates, a key challenge is that DNA is often extracted from cleaned, sorted and homogenized bulk samples, which is time‐consuming and may be incompatible with sample preservation requirements of regulatory agencies. Here, we optimize and evaluate metabarcoding procedures based on DNA recovered from 96% ethanol used to preserve field samples and thus including potential PCR inhibitors and nontarget organisms. We sampled macroinvertebrates at five sites and subsampled the preservative ethanol at 1 to 14 days thereafter. DNA was extracted using column‐based enzymatic (TISSUE) or mechanic (SOIL) protocols, or with a new magnetic‐based enzymatic protocol (BEAD), and a 313‐bp COI fragment was amplified. Metabarcoding detected at least 200 macroinvertebrate taxa, including most taxa detected through morphology and for which there was a reference barcode. Better results were obtained with BEAD than SOIL or TISSUE, and with subsamples taken 7–14 than 1–7 days after sampling, in terms of DNA concentration and integrity, taxa diversity and matching between metabarcoding and morphology. Most variation in community composition was explained by differences among sites, with small but significant contributions of subsampling day and extraction method, and negligible contributions of extraction and PCR replication. Our methods enhance reliability of preservative ethanol as a potential source of DNA for macroinvertebrate metabarcoding, with a strong potential application in freshwater biomonitoring.  相似文献   

19.
Due to morphological resemblance, polypterid fishes are used as extant analogues of Late Devonian lobe‐finned sarcopterygians to identify the features that allowed the evolution of a terrestrial lifestyle in early tetrapods. Previous studies using polypterids showed how terrestrial locomotion capacity can develop, and how air ventilation for breathing was possible in extinct tetrapodomorphs. Interestingly, one polypterid species, the reedfish Erpetoichthys calabaricus, has been noted being capable of capturing prey on land. We now identified the mechanism of terrestrial prey‐capture in reedfish. We showed that this species uses a lifted trunk and downward inclined head to capture ground‐based prey, remarkably similar to the mechanism described earlier for eel‐catfish. Reedfish similarly use the ground support and flexibility of their elongated body to realize the trunk elevation and dorsoventral flexion of the anterior trunk region, without a role for the pectoral fins. However, curving of the body to lift the trunk may not have been an option for the Devonian tetrapodomorphs as they are significantly less elongated than reedfish and eel‐catfish. This would imply that, in contrast to the eel‐like extant species, evolution of the capacity to capture prey on land in early tetrapods may be linked to the evolution of the pectoral system to lift the anterior part of the body.  相似文献   

20.
Piscivorous birds in aquatic ecosystems exert predation pressure on fish populations. But the site-specific impact on fish populations, including stocked and commercially used fish species, remains disputed. One of the key questions for the management of piscivorous birds and fish is determining the origin of prey and thus which fish populations are targeted by the birds. We addressed this question by provenancing otoliths (earstones) of fish obtained from regurgitated pellets of piscivorous birds by otolith microchemistry analysis. We retrieved otoliths from regurgitated pellets of great cormorants (Phalacrocorax carbo sinensis) collected every 2 weeks for 2 years from breeding and roosting colonies at Chiemsee in Bavaria, Germany, and classified them according to family or species. We collected water samples from Chiemsee and potential surrounding foraging grounds. We measured the strontium (Sr) 87Sr/86Sr isotope ratio and Sr mass fraction of water and otoliths using (laser ablation) inductively coupled plasma-mass spectrometry. We assigned otoliths from regurgitated pellets to habitat clusters of origin by comparing the Sr isotopic and elemental composition of otoliths and waterbodies. In 36% of cormorant pellets collected at Chiemsee, prey was assigned to waterbodies distinct from Chiemsee. Furthermore, cormorants used different foraging sites during 1 day. Microchemical provenancing of prey remains can contribute to identifying foraging sites of piscivorous birds and to what extend the birds switched among foraging sites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号