首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到7条相似文献,搜索用时 0 毫秒
1.
The success of invasive plants has been attributed to their escape from natural enemies and subsequent evolutionary change in allocation from defence to growth and reproduction. In common garden experiments with Senecio jacobaea, a noxious invasive weed almost worldwide, the invasive populations from North America, Australia, and New Zealand did indeed allocate more resources to vegetative and reproductive biomass. However, invasive plants did not show a complete change in allocation from defence to growth and reproduction. Protection against generalist herbivores increased in invasive populations and pyrrolizidine alkaloids, their main anti‐herbivore compounds, did not decline in invasive populations but were higher overall compared with native populations. In contrast, invasive plants lost additional protection against specialist herbivores adapted to pyrrolizidine alkaloids. Hence, the absence of specialist herbivores in invasive populations resulted in the evolution of lower protection against specialists and increased growth and reproduction, but also allowed a shift towards higher protection against generalist herbivores.  相似文献   

2.
Recent increases in the frequency and size of desert wildfires bring into question the impacts of fire on desert invertebrate communities. Furthermore, consumer communities can strongly impact invertebrates through predation and top‐down effects on plant community assembly. We experimentally applied burn and rodent exclusion treatments in a full factorial design at sites in both the Mojave and Great Basin deserts to examine the impact that fire and rodent consumers have on invertebrate communities. Pitfall traps were used to survey invertebrates from April through September 2016 to determine changes in abundance, richness, and diversity of invertebrate communities in response to fire and rodent treatments. Generally speaking, rodent exclusion had very little effect on invertebrate abundance or ant abundance, richness or diversity. The one exception was ant abundance, which was higher in rodent access plots than in rodent exclusion plots in June 2016, but only at the Great Basin site. Fire had little effect on the abundances of invertebrate groups at either desert site, with the exception of a negative effect on flying‐forager abundance at our Great Basin site. However, fire reduced ant species richness and Shannon's diversity at both desert sites. Fire did appear to indirectly affect ant community composition by altering plant community composition. Structural equation models suggest that fire increased invasive plant cover, which negatively impacted ant species richness and Shannon's diversity, a pattern that was consistent at both desert sites. These results suggest that invertebrate communities demonstrate some resilience to fire and invasions but increasing fire and spread of invasive due to invasive grass fire cycles may put increasing pressure on the stability of invertebrate communities.  相似文献   

3.
4.
5.
Compared with non‐invasive species, invasive plant species may benefit from certain advantageous traits, for example, higher photosynthesis capacity and resource/energy‐use efficiency. These traits can be preadapted prior to introduction, but can also be acquired through evolution following introduction to the new range. Disentangling the origins of these advantageous traits is a fundamental and emerging question in invasion ecology. We conducted a multiple comparative experiment under identical environmental condition with the invasive haplotype M lineage of the wetland grass Phragmites australis and compared the ecophysiological traits of this invasive haplotype M in North America with those of the European ancestor and the conspecific North American native haplotype E lineage, P. australis ssp. americanus. The invasive haplotype M differed significantly from the native North American conspecific haplotype E in several ecophysiological and morphological traits, and the European haplotype M had a more efficient photosynthetic apparatus than the native North American P. australis ssp. americanus. Within the haplotype M lineage, the introduced North American P. australis exhibited different biomass allocation patterns and resource/energy‐use strategies compared to its European ancestor group. A discriminant analysis of principal components separated the haplotype M and the haplotype E lineages completely along the first canonical axis, highly related to photosynthetic gas‐exchange parameters, photosynthetic energy‐use efficiency and payback time. The second canonical axis, highly related to photosynthetic nitrogen use efficiency and construction costs, significantly separated the introduced P. australis in North America from its European ancestor. Synthesis. We conclude that the European P. australis lineage was preadapted to be invasive prior to its introduction, and that the invasion in North America is further stimulated by rapid post‐introduction evolution in several advantageous traits. The multicomparison approach used in this study could be an effective approach for distinguishing preadaptation and post‐introduction evolution of invasive species. Further research is needed to link the observed changes in invasive traits to the genetic variation and the interaction with the environment.  相似文献   

6.
Semiarid sagebrush ecosystems are being transformed by wildfire, rangeland improvement techniques, and exotic plant invasions, but the effects on ecosystem C and N dynamics are poorly understood. We compared ecosystem C and N pools to 1 m depth among historically grazed Wyoming big sagebrush, introduced perennial crested wheatgrass, and invasive annual cheatgrass communities, to examine whether the quantity and quality of plant inputs to soil differs among vegetation types. Natural abundance δ15N isotope ratios were used to examine differences in ecosystem N balance. Sagebrush-dominated sites had greater C and N storage in plant biomass compared to perennial or annual grass systems, but this was predominantly due to woody biomass accumulation. Plant C and N inputs to soil were greatest for cheatgrass compared to sagebrush and crested wheatgrass systems, largely because of slower root turnover in perennial plants. The organic matter quality of roots and leaf litter (as C:N ratios) was similar among vegetation types, but lignin:N ratios were greater for sagebrush than grasses. While cheatgrass invasion has been predicted to result in net C loss and ecosystem degradation, we observed that surface soil organic C and N pools were greater in cheatgrass and crested wheatgrass than sagebrush-dominated sites. Greater biomass turnover in cheatgrass and crested wheatgrass versus sagebrush stands may result in faster rates of soil C and N cycling, with redistribution of actively cycled N towards the soil surface. Plant biomass and surface soil δ15N ratios were enriched in cheatgrass and crested wheatgrass relative to sagebrush-dominated sites. Source pools of plant available N could become 15N enriched if faster soil N cycling rates lead to greater N trace gas losses. In the absence of wildfire, if cheatgrass invasion does lead to degradation of ecosystem function, this may be due to faster nutrient cycling and greater nutrient losses, rather than reduced organic matter inputs.  相似文献   

7.
太湖流域源头溪流氧化亚氮(N_2O)释放特征   总被引:6,自引:0,他引:6  
袁淑方  王为东 《生态学报》2012,32(20):6279-6288
采用密闭箱法研究太湖流域源头溪流N2O释放特征及其影响因素。结果显示:南苕溪N2O释放通量范围在-18.11—397.42μg.m-.2h-1,平均值为(30.37±10.87)μg.m-.2h-1。溪流N2O释放呈现明显的季节模式。冬季释放通量最低,仅为(9.69±7.10)μg.m-.2h-1,夏季释放通量较高,为(17.17±17.35)μg.m-.2h-1;而释放高峰发生于汛期,其N2O释放通量可达(125.97±90.77)μg.m-.2h-1。持续降雨带来的山洪爆发及大量径流输入是造成汛期N2O大量释放的主要原因。从上游源头区至下游农田与城区,N2O释放通量逐渐升高;流域污染梯度对N2O释放通量影响显著。统计分析表明:水体硝态氮负荷是控制流域N2O释放通量变化的主导因素,其他因素如磷含量、溶解氧、地势因素对通量也具有倾向性的显著影响。估算苕溪干流临安段N2O年释放通量可达到0.38 t/a。结果显示:河流人为污染负荷增加时可显著促进河流N2O的释放。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号