首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Fire is an important ecological process that shapes vegetation structure and habitat for faunal assemblages globally. Prescribed burns are increasingly being used in conservation and management to restore fire regimes in fire‐suppressed vegetation communities. Small threatened macropods require structurally complex habitat that allows them to evade detection by predators. Given that fire can alter vegetation structure, it can be viewed as a strong ecological force in shifting the dynamics between predator and prey species. Previous studies in temperate Australia have shown that prescribed burns in the presence of European Red Fox (Vulpes vulpes) and feral Cat (Felis catus) can have negative impacts on small macropods and medium‐sized mammals. Post‐fire response of threatened small macropods and their predators has not been experimentally examined in subtropical Australia despite this region providing refugia for the Long‐nosed Potoroo (Potorous tridactylus) and Red‐legged Pademelon (Thylogale stigmatica). We conducted a before‐after‐control‐impact fire experiment at two paired sites after low–moderate intensity burns typical of cool season prescribed burns. We used camera trapping to investigate changes in activity of threatened small macropods and their predators. We also recorded vegetation change. Despite large reductions in ground and shrub cover, activity of small macropods and the Dingo (Canis dingo) did not change in response to fires. Therefore, the threat of dingo predation appears to have remained unchanged following the fires. Although feral cats and foxes were present, they showed negligible activity across our sites. Our study suggests that small‐scale patchy ecological burns may not lead to increased predation of small macropods in our landscape. We attribute this to sufficient post‐fire refugia and very low densities of foxes.  相似文献   

2.
Habitat modification and invasive species are among the most important contemporary drivers of biodiversity loss. These two threatening processes are often studied independently and few studies have focused on how they interact to influence species declines. Here we assess the predation pressure placed on the threatened great desert skink (Liopholis kintorei) and how this interacts with fire‐induced habitat modifications. We collected daily track data of potential predators for 1 month at 30 great desert skink burrow‐systems where vegetation cover varied significantly after experimental burns. We used these data to evaluate potential predation pressure at the burrow‐system and assess whether fire influenced predator pressure. We supplemented this analysis by documenting predation via the inspection of large mammalian predator scats collected from great desert skink habitat. The level of feral cat activity at a burrow‐system entrance was significantly higher than that of any other potential predator, however fire had no effect on the visitation rates of feral cats, dingoes or large snakes to great desert skink burrow‐systems. The remains of great desert skink were found significantly more frequently in feral cat scats, compared to fox and dingo scats. We provide the first direct evidence that feral cats are a significant predator for great desert skink, thus supporting the hypothesis that feral cat predation is a key threatening process. Feral cat activity was not influenced by small‐scale experimental burns, however, this does not preclude an effect of larger scale fires and we recommend further research exploring this possible interaction.  相似文献   

3.
The high failure rate of threatened species translocations has prompted many managers to fence areas to protect wildlife from introduced predators. However, conservation fencing is expensive, restrictive and exacerbates prey naïveté reducing the chance of future co‐existence between native prey and introduced predators. Here, we ask whether two globally threatened mammal species protected in fenced reserves, with a history of predation‐driven decline and reintroduction failure, could co‐exist with introduced predators. We defined co‐existence as population persistence for at least 3 years and successful recruitment. We manipulated the density of feral cats within a large fenced paddock and measured the impact on abundance and reproduction of 353 reintroduced burrowing bettongs and 47 greater bilbies over 3 years. We increased cat densities from 0.038 to 0.46 per square km and both threatened species survived, reproduced and increased their population size. However, a previous reintroduction trial of 66 bettongs into the same paddock found one red fox (Vulpes vulpes), at a density of 0.027 per square km, drove the bettong population extinct within 12 months. Our results show that different predator species vary in their impact and that despite a history of reintroduction failure, threatened mammal species can co‐exist with low densities of feral cats. There may be a threshold density below which it is possible to maintain unfenced populations of reintroduced marsupials. Understanding the numerical relationships between population densities of introduced predators and threatened species is urgently needed if these species are to be re‐established at landscape scales. Such knowledge will enable a priori assessment of the risk of reintroduction failure thereby increasing the likelihood of reintroduction success and reducing the financial and ethical cost of failed translocations.  相似文献   

4.
As evidence mounts that the feral Cat (Felis catus) is a significant threat to endemic Australian biodiversity and impedes reintroduction attempts, uncertainty remains about the impact a residual population of cats following control will have on a mammal reintroduction programme. Also, behavioural interactions between cats and their prey continue to be an area of interest. Within the framework of an ecosystem restoration project, we tested the hypotheses that successful reintroductions of some medium‐sized mammals are possible in locations where feral cats are controlled (but not eradicated) in the absence of European Red Fox (Vulpes vulpes), and that hare‐wallabies that dispersed from their release area are more vulnerable to cat predation compared with those that remain at the release site. We used radiotelemetry to monitor the survivorship and dispersal of 16 Rufous Hare‐wallabies (Lagorchestes hirsutus spp.) and 18 Banded Hare‐wallabies (Lagostrophus fasciatus fasciatus) reintroduced to four sites within Shark Bay, Western Australia. Nearly all foxes were removed and feral cats were subject to ongoing control that kept their indices low relative to prerelease levels. All monitored hare‐wallabies were killed by cats within eight and 10 months following release. Significant predation by feral cats was not immediate: most kills occurred in clusters, with periods of several months where no mortalities occurred. Once a hare‐wallaby was killed, however, predation continued until each population was eliminated. Animals remaining near their release site survived longer than those that dispersed. The aetiology of predation events observed offers new insights into patterns of feral cat behaviour and mammal releases. We propose a hypothesis that these intense per capita predation events may reflect a targeted hunting behaviour in individual feral cats. Even where feral cats are controlled, the outcome from consistent predation events will result in reintroduction failures. Managers considering the reintroduction of medium‐sized mammals in the presence of feral cats should, irrespective of concurrent cat control, consider the low probability of success. We advocate alternative approaches to cat‐baiting alone for the recovery of cat‐vulnerable mammals such as hare‐wallabies.  相似文献   

5.
Predation risk is one of the largest costs associated with foraging in small mammals. Small mammals select microhabitat features such as tree and shrub canopy cover, woody debris and vegetative ground cover that can lower the risk of detection from predators and provide greater protection if discovered. Small mammals also increase foraging activity and decrease selection for cover when cloud cover increases and moon illumination is less. Often researchers assume small mammals in urban areas respond to these cues in the same manner as in natural areas, but these cues themselves are altered in urban zones. In this study, we investigated how Amur honeysuckle (Lonicera maackii) and coarse woody debris (CWD) affected giving‐up density (GUD) in white‐footed mice (Peromyscus leucopus). Each of three habitat treatments (open flood channel, the edge and interior of the honeysuckle patch) contained cover treatments with coarse woody debris present or absent. The six treatment combinations were compared to environmental variables (temperature, humidity and illumination) and habitat variables to test their effect on GUD. Peromyscus leucopus foraged to lower densities in areas with CWD present and also under the honeysuckle canopy, using this invasive shrub to decrease predation risk, potentially increasing survivability within this urban park. Increased human presence negatively affected foraging behavior across treatments. Human presence and light pollution significantly influenced P. leucopus, modifying their foraging behavior and demonstrating that both fine‐ and coarse‐scale urban factors can affect small mammals. Foraging increased as humidity increased, particularly under the honeysuckle canopy. Changes in illumination due to moonlight and cloud cover did not affect foraging behavior, suggesting urban light pollution may have altered behavioral responses to changes in light levels. Lonicera maackii seemed to facilitate foraging in P. leucopus, even though it adversely affects the plant community, suggesting that its impact may not be entirely negative.  相似文献   

6.
7.
Alien mammalian carnivores have contributed disproportionately to global loss of biodiversity. In Australia, predation by the feral cat and red fox is one of the most significant causes of the decline of native vertebrates. To discover why cats have greater impacts on prey than native predators, we compared the ecology of the feral cat to a marsupial counterpart, the spotted-tailed quoll. Individual prey are 20–200 times more likely to encounter feral cats, because of the combined effects of cats'' higher population densities, greater intensity of home-range use and broader habitat preferences. These characteristics also mean that the costs to the prey of adopting anti-predator behaviours against feral cats are likely to be much higher than adopting such behaviours in response to spotted-tailed quolls, due to the reliability and ubiquity of feral cat cues. These results help explain the devastating impacts of cats on wildlife in Australia and other parts of the world.  相似文献   

8.
Feral Horse (Equus caballus) impacts in northern Kosciuszko National Park, New South Wales, Australia are directly occurring in habitat of the nationally threatened Broad‐toothed Rat (Mastacomys fuscus). This species is endemic primarily to the mountain regions of south‐eastern mainland Australia and Tasmania, with a disjunct population at Barrington Tops. The Broad‐toothed Rat's preferred habitat is being increasingly impacted by browsing and trampling associated with the expansion of feral horse populations. This study surveyed 180 sites supporting preferred habitat for this species to determine Broad‐toothed Rat presence and relative abundance in relation to the level of feral horse impacts within the reserve. There was a significant negative relationship between feral horse impacts and both Broad‐toothed Rat presence and abundance. No scats were identified at localities where feral horse impacts were severe, and at moderate horse impact sites, there was a proportion (34%) without scats found. Locations with low horse impacts had little impact on Broad‐toothed Rat occurrence. As feral horse populations increase, Broad‐toothed Rat populations may be further impacted. Such impacts will be due to the loss of vegetation cover from feral horse trampling and grazing, making animals more vulnerable to predation by predators or impacting on their ability to disperse to more suitable habitat. Habitat remnants and vegetation corridors along drainage lines require protection from feral horses to prevent localized extinctions of Broad‐toothed Rat.  相似文献   

9.
Invasive predators have severe impacts on global biodiversity, and their effects in Australia have been more extreme than on any other continent. The spotted‐tailed quoll (Dasyurus maculatus), an endangered marsupial carnivore, coexists with three eutherian carnivores, the red fox (Vulpes vulpes), feral cat (Felis catus) and wild dog (Canis lupus ssp.) with which it did not coevolve. No previous study has investigated dietary overlap between quolls and the suite of three eutherian carnivores. By analysing scats, we aimed to quantify dietary overlap within this carnivore assemblage in eastern Australia, and to detect any differences that may facilitate coexistence. We also sought evidence of intraguild predation. Dietary overlap between predators was extensive, with the greatest similarity occurring between foxes and cats. However, some differences were apparent. For example, cats mainly consumed smaller prey, and wild dogs larger prey. Quolls showed greater dietary overlap with foxes and cats than with dogs. Intraguild predation was evident, with fox remains occurring in 3% of wild dog scats. Our results suggest wild dogs competitively dominate invasive foxes, which in turn are likely to compete with the endangered quoll.  相似文献   

10.
Habitat use by feral cats and dingoes was examined within a heterogeneous semi‐arid woodland site in central Australia over 2 years. Density estimates of feral cats based on tracks were higher in mulga habitat than in open habitat. Isodar analysis implied that this pattern of habitat use by feral cats was consistent with the consumer‐resource model of density‐dependent habitat selection, which is an ideal free solution. The reason why mulga supported higher densities of feral cats was unclear. Foraging success of feral cats may be higher in the mulga because the stalk and ambush hunting tactics typically employed by felids are well suited to dense cover. Mulga may also have offered feral cats more protection from dingo predation. Dingo activity was distributed uniformly across habitats. The dingo isodar was statistically non‐significant, suggesting that habitat selection by dingoes was independent of density.  相似文献   

11.
Cats are among the most successful and damaging invaders on islands and a significant driver of extinction and endangerment. Better understanding of their ecology can improve effective management actions such as eradication. We reviewed 72 studies of insular feral cat diet from 40 islands worldwide. Cats fed on a wide range of species from large birds and medium sized mammals to small insects with at least 248 species consumed (27 mammals, 113 birds, 34 reptiles, 3 amphibians, 2 fish and 69 invertebrates). Three mammals, 29 birds and 3 reptiles recorded in the diet of cats are listed as threatened by the IUCN. However, a few species of introduced mammals were the most frequent prey, and on almost all islands mammals and birds contributed most of the daily food intake. Latitude was positively correlated with the predation of rabbits and negatively with the predation of reptiles and invertebrates. Distance from landmass was positively correlated with predation on birds and negatively correlated with the predation of reptiles. The broad range of taxa consumed by feral cats on islands suggests that they have the potential to impact almost any native species, even the smallest ones under several grams, that lack behavioral, morphological or life history adaptations to mammalian predators. Insular feral cat??s reliance on introduced mammals, which evolved with cat predation, suggests that on many islands, populations of native species have already been reduced.  相似文献   

12.
This paper examines the effect of different levels of protection from predation on feral house mice. Mice were contained in eight 50×50 m outdoor enclosures. Enclosures allowed access to a suite of freeliving vertebrate predators from the surrounding area, including feral foxes, feral cats and Australian raptors. A 10–15% cover of small, felled cypress pine trees was added in strips to low grassland to increase habitat complexity. Mice were not protected from predation when compared with low grassland pens, possibly because predators were able to focus their hunting activity in the strips. However, when felled trees were covered with wire netting, hence providing higher quality refuge, mouse populations achieved higher densities than in low grassland pens. A predator exclusion treatment was used to confirm the refuge effect was due to a reduction in the impact of predation. Survival rates under the different treatments were generally consistent with population level responses, with mice having lower survival in low grassland pens than in high refuge pens. This is the first study with mammals that confirms the importance of refuges from predators for prey populations.  相似文献   

13.
One of the key gaps in understanding the impacts of predation by small mammalian predators on prey is how habitat structure affects the hunting success of small predators, such as feral cats. These effects are poorly understood due to the difficulty of observing actual hunting behaviours. We attached collar-mounted video cameras to feral cats living in a tropical savanna environment in northern Australia, and measured variation in hunting success among different microhabitats (open areas, dense grass and complex rocks). From 89 hours of footage, we recorded 101 hunting events, of which 32 were successful. Of these kills, 28% were not eaten. Hunting success was highly dependent on microhabitat structure surrounding prey, increasing from 17% in habitats with dense grass or complex rocks to 70% in open areas. This research shows that habitat structure has a profound influence on the impacts of small predators on their prey. This has broad implications for management of vegetation and disturbance processes (like fire and grazing) in areas where feral cats threaten native fauna. Maintaining complex vegetation cover can reduce predation rates of small prey species from feral cat predation.  相似文献   

14.
The long‐term impacts of wildfires on animal populations are largely unknown. We used time‐series data based on a tracking index, from coastal NSW spanning 28 years after a wildfire, to investigate the relative influence of habitat structure, species interactions and climate on post‐fire animal population dynamics. The fire had an immediate impact on habitat structure, reducing and simplifying vegetation cover, which then underwent post‐fire successional change including an increase and plateau in tree canopy cover; an increase, stabilization and then decline in shrub cover; and an increase in ground litter cover. Population changes of different animal species were influenced by different components of successional change, but there was also evidence that species interactions were important. For example, bandicoots (Isoodon obesulus and Perameles nasuta combined) increased concurrent with an increase in shrub cover then declined at a faster rate than a direct association with senescing shrub cover would suggest, while the feral cat (Felis catus) population changed with the bandicoot population, suggesting a link between these species. Potoroos (Potorous tridactylus) increased 10 years after the fire concurrent with the closing tree canopy, but there was also evidence of a negative association with feral foxes (Vulpes vulpes). Variation in rainfall did not have significant effects on the population dynamics of any species. Our results suggest that changes in habitat structure play a key role in the post‐fire dynamics of many ground‐dwelling animals and hence different fire regimes are likely to influence animal dynamics through their effects on habitat structure. However, the role of predator–prey interactions, particularly with feral predators, is less clear and further study will require manipulative experiments of predators in conjunction with fire treatments to determine whether feral predator control should be integrated with fire management to improve outcomes for some native species.  相似文献   

15.
Abstract The forage diggings of medium‐sized ground‐dwelling mammals (bandicoots and potoroos) were recorded over two seasons across 136 forested study sites, representing a stratified sample of the climatic, geological and topographic features of far south‐eastern mainland Australia. Diggings, presumably left by bandicoots, were recorded at a total of 42 sites, and those of potoroos at 27 sites. Statistical models were developed for the occurrence of these diggings, based on environmental attributes measured for each site. At a landscape scale, mean minimum temperature of the coldest month was an important explanatory variable for both groups of animals, with likelihood of their occurrence increasing with increasing temperature during that period. More locally, soil fertility and time since last fire also influenced the occurrence of bandicoot and potoroo diggings, while density of ground cover was additionally important in explaining the occurrence of bandicoot diggings. Bandicoot and potoroo diggings were more likely to occur with decreasing soil fertility and increasing time since fire, while occurrence of bandicoot diggings also increased with increasing density of ground cover. The possible management implications of our findings for conservation of medium‐sized ground‐dwelling mammals in multiple‐use forests are discussed.  相似文献   

16.
Chemical signals left by predators are a potential source of information about the risk of predation, and small mammals are known to take them into account when making decisions. We investigated whether wood mice (Apodemus sylvaticus) are more likely to avoid the faeces of resident predators (red fox Vulpes vulpes and common genet Genetta genetta) vs. a novel predator (European pine marten Martes martes). Odour recognition would increase perceived predation risk and reduce food intake by individual mice. Wood mice response to predators was analysed by live‐trapping using two untreated controls (baited/non‐baited) and traps experimentally manipulated with three predator treatments (faeces of red fox, common genet or pine marten). Traps were baited with 4 g of toasted corn, and food intake by wood mice was determined as the amount of bait remaining in each trap. We found that traps treated with faeces of resident predators were the most avoided, and the number of captures in traps treated with pine marten faeces was similar to the control‐baited traps. The variation found in food intake was explained by the interaction between the types of treatment and breeding condition. Food intake was similar in control‐baited traps and in traps with faeces of pine marten, but when predation risk by resident predators (red fox and common genet) was simulated, breeders reduced food intake significantly as compared to non‐breeders. These results indicate that predator recognition and feeding behaviour under predation risk depend on individual factors and the balance of costs‐benefits in each particular predation risk situation at a given place and time.  相似文献   

17.
Herbivores are thought to respond to the increased risk of attack by predators during foraging activities by concentrating feeding in safe habitats and by reducing feeding in the presence of predators. We tested these hypotheses by comparing tree seedling predation by meadow voles within large outdoor enclosures treated either with scent of large mammalian predators (red fox, bobcat, coyote) or a control scent (vinegar). In addition, we compared the distribution of voles in relation to naturally occurring variation in vegetation cover and the tendency of voles to attack tree seedlings planted in small patches with cover manipulation (intact, reduced or removed cover). Predator scent did not affect the rate or spatial distribution of tree seedling predation by voles, nor did it affect giving up densities (a surrogate of patch quitting harvest rate), survival rates, body size or habitat distribution of voles. In both predator scent and vinegar treatments voles preferred abundant vegetation providing good cover, which was also the site of almost all tree seedling predation. We conclude that large mammalian predator scent does not influence the perception by voles of the general safety of habitat, which is more strongly affected by the presence of cover.  相似文献   

18.
Abstract Predation is recognized as a major selective pressure influencing population dynamics and evolutionary processes. Prey species have developed a variety of predator avoidance strategies, not least of which is olfactory recognition. However, within Australia, European settlement has brought with it a number of introduced predators, perhaps most notably the red fox (Vulpes vulpes) and domestic cat (Felis catus), which native prey species may be unable to recognize and thus avoid due to a lack of coexistence history. This study examined the response of native Tasmanian swamp rats (Rattus lutreolus velutinus) to predators of different coexistence history (native predator‐ spotted‐tail quoll (Dasyurus maculatus), domestic cats and the recently introduced red fox). We used an aggregate behavioural response of R. l. velutinus to predator integumental odour in order to assess an overall behavioural response to predation risk. Rattus lutreolus velutinus recognized the integumental odour of the native quoll (compared with control odours) but did not respond to either cat or fox scent (compared with control odur). In contrast, analyses of singular behaviours resulted in the conclusion that rats did not respond differentially to either native or introduced predators, as other studies have concluded. Therefore, measuring risk assessment behaviours at the level of overall aggregate response may be more beneficial in understanding and analysing complex behavioural patterns such as predator detection and recognition. These results suggest that fox and cat introductions (and their interactive effects) may have detrimental impacts upon small native Tasmanian mammals due to lack of recognition and thus appropriate responses.  相似文献   

19.
Top predators in terrestrial ecosystems may limit populations of smaller predators that could otherwise become over abundant and cause declines and extinctions of some prey. It is therefore possible that top predators indirectly protect many species of prey from excessive predation. This effect has been demonstrated in some small-scale studies, but it is not known how general or important it is in maintaining prey biodiversity. During the last 150 years, Australia has suffered the world's highest rate of mammal decline and extinction, and most evidence points to introduced mid-sized predators (the red fox and the feral cat) as the cause. Here, we test the idea that the decline of Australia's largest native predator, the dingo, played a role in these extinctions. Dingoes were persecuted from the beginning of European settlement in Australia and have been eliminated or made rare over large parts of the continent. We show a strong positive relationship between the survival of marsupials and the geographical overlap with high-density dingo populations. Our results suggest that the rarity of dingoes was a critical factor which allowed smaller predators to overwhelm marsupial prey, triggering extinction over much of the continent. This is evidence of a crucial role of top predators in maintaining prey biodiversity at large scales in terrestrial ecosystems and suggests that many remaining Australian mammals would benefit from the positive management of dingoes.  相似文献   

20.
Abstract We report on the effects of almost a decade of 1080‐fox baiting on a lizard community in a mosaic Australian habitat. Replicated comparisons of baited versus non‐baited control areas with near‐identical histories of bush fires, grazing and climate showed a higher density of red fox tracks (Canis vulpes) in the non‐baited areas. Furthermore, the fox‐baited areas showed a more than five times higher density of sand goannas (Varanus gouldii), a species that strongly overlaps the red fox in food niche breadth and is itself a direct target of fox predation, in particular its eggs and young. Exclusion of predators from a natural habitat led to significant increases in the density of small lizards, suggesting that predation can drive lizard population dynamics in this ecosystem. Replicated pitfall‐trapping in three habitats in the control areas (with high fox and low goanna density) versus the baited areas (with low fox and high goanna density) showed that fox baiting had positive effects on the density of diurnal scincid lizards in open grassland, whereas the control areas showed higher density of nocturnal gecko lizards. Our interpretation is that fox removal may result in a shift in the top predator towards the sand goanna. Historically, this indigenous, endemic species was the natural top predator. It has co‐evolved with its prey and that may have moulded it into a more efficient lizard predator per encounter than the introduced fox.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号