首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 859 毫秒
1.
Coral reefs provide essential goods and services but are degrading at an alarming rate due to local and global anthropogenic stressors. The main limitation that prevents the implementation of adequate conservation measures is that connectivity and genetic structure of populations are poorly known. Here, the genetic diversity and connectivity of the brooding scleractinian coral Seriatopora hystrix were assessed at two scales by genotyping ten microsatellite markers for 356 individual colonies. S. hystrix showed high differentiation, both at large scale between the Red Sea and the Western Indian Ocean (WIO), and at smaller scale along the coast of East Africa. As such high levels of differentiation might indicate the presence of more than one species, a haploweb analysis was conducted with the nuclear marker ITS2, confirming that the Red Sea populations are genetically distinct from the WIO ones. Based on microsatellite analyses three groups could be distinguished within the WIO: (1) northern Madagascar, (2) south-west Madagascar together with one site in northern Mozambique (Nacala) and (3) all other sites in northern Mozambique, Tanzania and Kenya. These patterns of restricted connectivity could be explained by the short pelagic larval duration of S. hystrix, and/or by oceanographic factors, such as eddies in the Mozambique Channel (causing larval retention in northern Madagascar but facilitating dispersal from northern Mozambique towards south-west Madagascar). This study provides an additional line of evidence supporting the conservation priority status of the Northern Mozambique Channel and should inform coral reef management decisions in the region.Subject terms: Haplotypes, Structural variation, Conservation biology, Population dynamics, Biogeography  相似文献   

2.
This study assesses the biogeographic classification of the Western Indian Ocean (WIO) on the basis of the species diversity and distribution of reef-building corals. Twenty one locations were sampled between 2002 and 2011. Presence/absence of scleractinian corals was noted on SCUBA, with the aid of underwater digital photographs and reference publications for species identification. Sampling effort varied from 7 to 37 samples per location, with 15 to 45 minutes per dive allocated to species observations, depending on the logistics on each trip. Species presence/absence was analyzed using the Bray-Curtis similarity coefficient, followed by cluster analysis and multi-dimensional scaling. Total (asymptotic) species number per location was estimated using the Michaelis-Menten equation. Three hundred and sixty nine coral species were named with stable identifications and used for analysis. At the location level, estimated maximum species richness ranged from 297 (Nacala, Mozambique) to 174 (Farquhar, Seychelles). Locations in the northern Mozambique Channel had the highest diversity and similarity, forming a core region defined by its unique oceanography of variable meso-scale eddies that confer high connectivity within this region. A distinction between mainland and island fauna was not found; instead, diversity decreased radially from the northern Mozambique Channel. The Chagos archipelago was closely related to the northern Mozambique Channel region, and analysis of hard coral data in the IUCN Red List found Chagos to be more closely related to the WIO than to the Maldives, India and Sri Lanka. Diversity patterns were consistent with primary oceanographic drivers in the WIO, reflecting inflow of the South Equatorial Current, maintenance of high diversity in the northern Mozambique Channel, and export from this central region to the north and south, and to the Seychelles and Mascarene islands.  相似文献   

3.
Prokaryotic epiphytes on leaves of three seagrass species, Thalassodendron ciliatum, Thalassia hemprichii, and Cymodocea rotundata, from two Kenyan coastal sites, Nyali (a high‐nutrient site) and Vipingo (a low‐nutrient site), were characterized genetically and morphologically. Denaturing gradient gel electrophoresis (DGGE) and clone libraries of PCR‐amplified 16S rRNA gene fragments were used to study prokaryotes associated with these seagrasses. In general, the epiphytic coverage was greater in the high‐nutrient site, while the microbial diversity was linked to seagrass species rather than the study sites. Cytophaga–Flavobacteria–Bacteroides (CFB) were associated with T. ciliatum and T. hemprichii mainly in the nutrient‐poor site, while α‐, β‐, and γ‐proteobacteria were associated with all three species at the two study sites. Some bacteria phylotypes were closely related to sequences of microorganisms previously recovered from wastewaters or other contaminated sources, indicating the influx of land‐based wastes into these coastal lagoon ecosystems. The abundance of potential nitrogen (N2)‐fixing cyanobacteria on C.  rotundata, particularly in the low‐nutrient site, suggested that this association may have been acquired to meet N demands. Unicellular cyanobacteria were dominant and associated with C. rotundata and T. hemprichii (with those on T. hemprichii being closely related to cyanobacterial symbiotic species), while T. ciliatum was almost devoid of cyanobacterial associations at the same site (Nyali), which suggests specificity in the cyanobacteria–seagrass associations. The abundance of prokaryotic epiphytes was considered to be linked to water depth and tidal exposure.  相似文献   

4.
Understanding how genetic diversity is maintained across patchy marine environments remains a fundamental problem in marine biology. The Coral Triangle, located in the Indo‐West Pacific, is the centre of marine biodiversity and has been proposed as an important source of genetic diversity for remote Pacific reefs. Several studies highlight Micronesia, a scattering of hundreds of small islands situated within the North Equatorial Counter Current, as a potentially important migration corridor. To test this hypothesis, we characterized the population genetic structure of two ecologically important congeneric species of reef‐building corals across greater Micronesia, from Palau to the Marshall Islands. Genetic divergences between islands followed an isolation‐by‐distance pattern, with Acropora hyacinthus exhibiting greater genetic divergences than A. digitifera, suggesting different migration capabilities or different effective population sizes for these closely related species. We inferred dispersal distance using a biophysical larval transport model, which explained an additional 15–21% of the observed genetic variation compared to between‐island geographical distance alone. For both species, genetic divergence accumulates and genetic diversity diminishes with distance from the Coral Triangle, supporting the hypothesis that Micronesian islands act as important stepping stones connecting the central Pacific with the species‐rich Coral Triangle. However, for Ahyacinthus, the species with lower genetic connectivity, immigration from the subequatorial Pacific begins to play a larger role in shaping diversity than input from the Coral Triangle. This work highlights the enormous dispersal potential of broadcast‐spawning corals and identifies the biological and physical drivers that influence coral genetic diversity on a regional scale.  相似文献   

5.
Climatic–oceanographic stress and coral reef diversity were mapped in the western Indian Ocean (WIO) in order to determine if there were associations between high diversity coral reefs and regions with low‐to‐moderate climate stress. A multivariate stress model developed to estimate environmental exposure to stress, an empirical index of the coral community's susceptibility to stress, and field data on numbers of fish and corals taxa from 197 WIO sites were overlain to evaluate these associations. Exposure to stress was modeled from satellite data based on nine geophysical–biological oceanographic characteristics known to influence coral bleaching (i.e. temperature, light, and current variables). The environmental stress model and the coral community's susceptibility index were moderately correlated (r=?0.51) with southern and eastern parts of the WIO identified as areas with low environmental stress and coral communities with greater dominance of bleaching stress‐sensitive taxa. Numbers of coral and fish taxa were positive and moderately correlated (r=0.47) but high diversity regions for fish were in the north and west while diversity was highest for corals in central regions from Tanzania to northwestern Madagascar. Combining three and four of these variables into composite maps identified a region from southern Kenya to northern Mozambique across to northern–eastern Madagascar and the Mascarene Islands and the Mozambique–South Africa border as areas where low‐moderate environmental exposure overlaps with moderate‐high taxonomic diversity. In these areas management efforts aimed at maintaining high‐diversity and intact ecosystems are considered least likely to be undermined by climate disturbances in the near term. Reducing additional human disturbances, such as fishing and pollution, in these areas is expected to improve the chances for their persistence. These reefs are considered a high priority for increased local, national, and international management efforts aimed at establishing coral reef refugia for climate change impacts.  相似文献   

6.
Seagrass grazing is an intrinsic disturbance in primarily tropical and subtropical areas. While there is a general parabolic response in seagrass growth to grazing intensity, there is less knowledge on the role of grazing frequency, as well as potential interactions between grazing intensity and frequency. This study experimentally investigated physiological responses in Thalassia hemprichii to simulated (leaf cutting) grazing regimes with different intensities (25% vs. 75%) and frequencies (1 times vs. 3 times) over 35 days in Chwaka Bay (Zanzibar, Tanzania). The results showed that the two high-intensity treatments (75% removal) had 37–41% lower growth rate than the low-intensity/low-frequency treatment, and rhizome sugar and starch content were both affected in a similar way. A 36% lower starch content in the simulated low-intensity/high-frequency regime (25% × 3) compared to the one of low-intensity/low-frequency (25% × 1) also shows an interaction between grazing intensity and frequency. This suggests that high-intensity (and to some extent frequency) grazing regimes, in comparison to low-intensity regimes, could negatively affect T. hemprichii growth, energy reserves, and thereby the ability to deal with additional stress like light limitation or grazing.  相似文献   

7.
The genetic structure and morphometric differentiation of mangrove crab Perisesarma guttatum populations were examined among shelf connected locations along a latitudinal gradient on the East African coast. Over 2200 specimens were sampled from 23 mangrove sites for geometric morphometrics analysis. Population genetic analyses of mitochondrial cytochrome c oxidase subunit I (COI) DNA sequences were used to evaluate connectivity among populations. A total of 73 haplotypes were detected, and almost no haplotypes were found in common between two highly supported phylogeographic clades: southern Mozambique (Inhaca Island and Maputo Bay) and a northern clade that included north Mozambique, Tanzania and Kenya. These two clades were identified based on the species' populations pairwise genetic differentiation and geographical location. ΦST values were considerably high between the two clades, indicating the presence of significant population genetic structure between Kenya and South Mozambique. However, each clade was composed of genetically similar populations along the latitudinal gradient, and no significant population structure was found within each clade because the Φst values were not significant. The morphometric analysis corroborated the division into two clades (i.e. Inhaca Island/Maputo Bay and northern populations) and also detected less shape variation among populations that were few kilometres apart. The significant spatial genetic structuring between the southern and the northern populations of P. guttatum along the geographic gradient under study, combined with morphological differences, suggests that these populations may be considered as cryptic species. © 2010 The Linnean Society of London, Biological Journal of the Linnean Society, 2010, 99 , 28–46.  相似文献   

8.
Population genetics has been increasingly applied to study large sharks over the last decade. Whilst large shark species are often difficult to study with direct methods, improved knowledge is needed for both population management and conservation, especially for species vulnerable to anthropogenic and climatic impacts. The tiger shark, Galeocerdo cuvier, is an apex predator known to play important direct and indirect roles in tropical and subtropical marine ecosystems. While the global and Indo‐West Pacific population genetic structure of this species has recently been investigated, questions remain over population structure and demographic history within the western Indian (WIO) and within the western Pacific Oceans (WPO). To address the knowledge gap in tiger shark regional population structures, the genetic diversity of 286 individuals sampled in seven localities was investigated using 27 microsatellite loci and three mitochondrial genes (CR, COI, and cytb). A weak genetic differentiation was observed between the WIO and the WPO, suggesting high genetic connectivity. This result agrees with previous studies and highlights the importance of the pelagic behavior of this species to ensure gene flow. Using approximate Bayesian computation to couple information from both nuclear and mitochondrial markers, evidence of a recent bottleneck in the Holocene (2,000–3,000 years ago) was found, which is the most probable cause for the low genetic diversity observed. A contemporary effective population size as low as 111 [43,369] was estimated during the bottleneck. Together, these results indicate low genetic diversity that may reflect a vulnerable population sensitive to regional pressures. Conservation measures are thus needed to protect a species that is classified as Near Threatened.  相似文献   

9.
Understanding spatial patterns of gene flow and genetic structure is essential for the conservation of marine ecosystems. Contemporary ocean currents and historical isolation due to Pleistocene sea level fluctuations have been predicted to influence the genetic structure in marine populations. In the Indo‐Australian Archipelago (IAA), the world's hotspot of marine biodiversity, seagrasses are a vital component but population genetic information is very limited. Here, we reconstructed the phylogeography of the seagrass Thalassia hemprichii in the IAA based on single nucleotide polymorphisms (SNPs) and then characterized the genetic structure based on a panel of 16 microsatellite markers. We further examined the relative importance of historical isolation and contemporary ocean currents in driving the patterns of genetic structure. Results from SNPs revealed three population groups: eastern Indonesia, western Indonesia (Sunda Shelf) and Indian Ocean; while the microsatellites supported five population groups (eastern Indonesia, Sunda Shelf, Lesser Sunda, Western Australia and Indian Ocean). Both SNPs and microsatellites showed asymmetrical gene flow among population groups with a trend of southwestward migration from eastern Indonesia. Genetic diversity was generally higher in eastern Indonesia and decreased southwestward. The pattern of genetic structure and connectivity is attributed partly to the Pleistocene sea level fluctuations modified to a smaller level by contemporary ocean currents.  相似文献   

10.
El Niño‐Southern Oscillation (ENSO) events can cause dramatic changes in marine communities. However, we know little as to how ENSO events affect tropical seagrass beds over decadal timescales. Therefore, a diverse array of seagrass (Thalassia hemprichii) habitat types were surveyed once every 3 months for 16 years (January 2001 to February 2017) in a tropical intertidal zone that is regularly affected by both ENSO events and anthropogenic nutrient enrichment. La Niña and El Niño events had distinct effects on the biomass and growth of T. hemprichii. During La Niña years, higher (a) precipitation levels and (b) seawater nitrogen concentrations led to increases in seagrass leaf productivity, canopy height, and biomass. However, the latter simultaneously stimulated the growth of periphyton on seagrass leaves; this led to decreases in seagrass cover and shoot density. More frequent La Niña events could, then, eventually lead to either a decline in intertidal seagrass beds or a shift to another, less drought‐resistant seagrass species in those regions already characterized by eutrophication due to local anthropogenic activity.  相似文献   

11.
Aim Cryptoblepharus is a genus of small arboreal or rock‐dwelling scincid lizards, widespread through the Indo‐Pacific and Australian regions, with a disjunct outlier in the Malagasy region. The taxonomy within this genus is controversial, with different authors ranking the different forms (now some 36) at various levels, from different species to subspecies of a single species, Cryptoblepharus boutonii. We investigated the biogeography and genetic differentiation of the Cryptoblepharus from the Western Indian Ocean region, in order to understand their origin and history. Location Western Indian Ocean region. Methods We analysed sequences of mitochondrial DNA (partial 12s and 16s rRNA genes, 766 bp) from 48 specimens collected in Madagascar, Mauritius, the four Comoros islands and East Africa, and also in New Caledonia, representing the Australo‐Pacific unit of the distribution. Results Pairwise sequence divergences of c. 3.1% were found between the New Caledonian forms and the ones from the Western Indian Ocean. Two clades were identified in Madagascar, probably corresponding to the recognized forms cognatus and voeltzkowi, and two clades were identified in the Comoro islands, where each island population formed a distinct haplotype clade. The East African samples form a monophyletic unit, with some variation existing between Pemba, Zanzibar and continental Tanzania populations. Individuals from Mauritius form a divergent group, more related to populations from Moheli and Grand Comore (Comoros islands) than to the others. Main conclusions The level of divergence between the populations from the Western Indian Ocean and Australian regions and the geographic coherence of the variation within the Western Indian Ocean group are concordant with the hypothesis of a colonization of this region by a natural transoceanic dispersal (from Australia or Indonesia). The group then may have diversified in Madagascar, from where it separately colonized the East African coast, the Comoros islands (twice), and Mauritius. The genetic divergence found is congruent with the known morphological variation, but its degree is much lower than typically seen between distinct species of reptiles.  相似文献   

12.
In order to devise adequate conservation and management strategies for endangered species, it is important to incorporate a reliable understanding of its spatial population structure, detecting the existence of demographic partitions throughout its geographical range and characterizing the distribution of its genetic diversity. Moreover, in species that occupy fragmented habitats it is essential to know how landscape characteristics may affect the genetic connectivity among populations. In this study we use eight microsatellite markers to analyze population structure and gene flow patterns in the complete geographic range of the endangered rodent Ctenomys porteousi. Also, we use landscape genetics approaches to evaluate the effects of landscape configuration on the genetic connectivity among populations. In spite of geographical proximity of the sampling sites (8–27 km between the nearest sites) and the absence of marked barriers to individual movement, strong population structure and low values of gene flow were observed. Genetic differentiation among sampling sites was consistent with a simple model of isolation by distance, where peripheral areas showed higher population differentiation than those sites located in the central area of the species’ distribution. Landscape genetics analysis suggested that habitat fragmentation at regional level has affected the distribution of genetic variation among populations. The distance of sampling sites to areas of the landscape having higher habitat connectivity was the environmental factor most strongly related to population genetic structure. In general, our results indicate strong genetic structure in C. porteousi, even at a small spatial scale, and suggest that habitat fragmentation could increase the population differentiation.  相似文献   

13.
14.
Phylogenetic placement of bottlenose dolphins from Zanzibar, East Africa and putative population differentiation between animals found off southern and northern Zanzibar were examined using variation in mtDNA control region sequences. Samples (n= 45) from animals bycaught in fishing gear and skin biopsies collected during boat surveys were compared to published sequences (n= 173) of Indo‐Pacific bottlenose dolphin, Tursiops aduncus, from southeast Australian waters, Chinese/Indonesian waters, and South African waters (which recently was proposed as a new species) and to published sequences of common bottlenose dolphin, Tursiops truncatus. Bayesian and maximum parsimony analyses indicated a close relationship between Zanzibar and South African haplotypes, which are differentiated from both Chinese/Indonesian and Australian T. aduncus haplotypes. Our results suggest that the dolphins found off Zanzibar should be classified as T. aduncus alongside the South African animals. Further, analyses of genetic differentiation showed significant separation between the T. aduncus found off northern and southern Zanzibar despite the relatively short distance (approximately 80 km) between these areas. Much less differentiation was found between southern Zanzibar and South Africa, suggesting a more recent common evolutionary history for these populations than for the northern and southern Zanzibar populations.  相似文献   

15.
Aim Caridean shrimp are diverse and abundant inhabitants of seagrass beds. Anthropogenic disturbances have already reduced and fragmented seagrass habitat, and the rate of change is likely to increase in the future. It is therefore becoming increasingly important to build a basis of understanding of connectivity among populations of seagrass‐associated fauna. Phycomenes zostericola is closely associated with seagrass and makes an ideal study species with which to explore patterns of connectivity and the influence of biogeographic boundaries and historical sea‐level changes on seagrass‐associated species. We hypothesized that strong currents and the high potential of P. zostericola for dispersal and adult movement would result, for the most part, in panmixia. We also hypothesized that if structure was evident, it would occur close to known biogeographic boundaries in Queensland. Location Phycomenes zostericola is an abundant shrimp species distributed throughout Queensland’s seagrass habitats. Nineteen seagrass sites from the Torres Strait Islands and Queensland coastlines were sampled. Methods Molecular sequence data for a 590 base pair fragment of the mitochondrial gene cytochrome c oxidase subunit I (COI) was analysed for 279 specimens of P. zostericola. Phylogeographic patterns were analysed using nested clade phylogeographic analysis (NCPA); an isolation‐by‐distance effect was tested using a Mantel test; the effect of biogeographic boundaries was tested using an analysis of molecular variance (AMOVA), and also a spatial analysis of molecular variance (SAMOVA); demographic expansions were tested for using Tajima’s D, Fu’s FS and timing estimated using mismatch analysis; the timing of vicariant events was estimated using coalescent analysis (im program). Results Contrary to our original hypothesis, the strong marine currents are not a connective influence among populations of P. zostericola. Regional genetic structure and an isolation‐by‐distance effect are enhanced by existing coastal biogeographic boundaries. Population genetic structure and demographic history are intricately linked to the effects of a tumultuous Pleistocene sea‐level history on the Queensland continental shelf. Main conclusions Connectivity diminishes among populations of P. zostericola over scales larger than a few hundred kilometres. As seagrass habitats world‐wide become increasingly fragmented, low levels of connectivity will result in an isolated future for P. zostericola and other species reliant on seagrass as habitat.  相似文献   

16.
Landscape features are known to alter the spatial genetic variation of aboveground organisms. Here, we tested the hypothesis that the genetic structure of belowground organisms also responds to landscape structure. Microsatellite markers were used to carry out a landscape genetic study of two endogeic earthworm species, Allolobophora chlorotica (N = 440, eight microsatellites) and Aporrectodea icterica (N = 519, seven microsatellites), in an agricultural landscape in the North of France, where landscape features were characterized with high accuracy. We found that habitat fragmentation impacted genetic variation of earthworm populations at the local scale. A significant relationship was observed between genetic diversity (He, Ar) and several landscape features in A. icterica populations and A. chlorotica. Moreover, a strong genetic differentiation between sites was observed in both species, with a low degree of genetic admixture and high Fst values. The landscape connectivity analysis at the regional scale, including isolation by distance, least‐cost path and cost‐weighted distance approaches, showed that genetic distances were linked to landscape connectivity in A. chlorotica. This indicates that the fragmentation of natural habitats has shaped their dispersal patterns and local effective population sizes. Landscape connectivity analysis confirmed that a priori favourable habitats such as grasslands may constitute dispersal corridors for these species.  相似文献   

17.
Tollenaere et al. (Journal of Biogeography, 2010, 37 , 398–410) present a phylogeographic analysis of Rattus rattus for the Western Indian Ocean, with particular emphasis on Madagascar, but do not include samples from three island groups centrally located in the Mozambique Channel. Haplotypes from these islands provide additional information on the colonization pathways of R. rattus in the Western Indian Ocean region. For each of the three Îles Éparses groups in the Mozambique Channel, we test the competing hypotheses that colonization by R. rattus was most likely: (1) from the Arabian Peninsula, (2) from East Africa, (3) from Madagascar, or (4) from independent shipping. These results are combined with historical observations of the presence of R. rattus on these islands to give stronger inference on the colonization pathways. Additionally, more accurate colonization dates provide guidance for contemporary conservation management.  相似文献   

18.
In a survey of the Myeik Archipelago, we documented seven seagrass species in the southern region. Three seagrass species (Cymodocea rotundata, Enhalus acoroides, and Halophila ovalis) have previously been reported in the Myeik Archipelago; three species (Halodule pinifolia, Halodule uninervis, Syringodium isoetifolium) are new reports for the archipelago; and one species (Thalassia hemprichii) is a new report for Myanmar.  相似文献   

19.
In the Western Indian Ocean (WIO), local communities are increasingly assuming responsibility for inshore marine resources either on their own or through collaborative management arrangements with governments or non-state actors. In this paper, we trace the evolution and expansion of community management in the WIO and present the first ever inventory and assessment of the region’s locally managed marine areas (LMMAs). We compare the key attributes of these areas to those under government stewardship and assess their relative contributions to progress towards the Convention on Biodiversity (CBD) target of 10% of marine and coastal ecological regions to be effectively conserved by 2020. We also explore the legal frameworks that underpin locally managed marine initiatives in Kenya, Madagascar, Mozambique and Tanzania to assess the potential for future expansion. A principal finding is that whilst LMMAs protect more than 11,000 square kilometres of marine resource in the WIO, they are hampered by underdeveloped local and national legal structures and enforcement mechanisms. In our recommendations to improve local management, we suggest establishing a network of LMMA practitioners in the WIO region to share experiences and best practice.  相似文献   

20.
To clarify differences in community structures and habitat utilization patterns of fishes in Enhalus acoroides- and Thalassia hemprichii-dominated seagrass beds on fringing coral reefs, visual censuses were conducted at Iriomote and Ishigaki islands, southern Japan. The numbers of fish species and individuals were significantly higher in the E. acoroides bed than in the T. hemprichii bed, although the 15 most dominant fishes in each seagrass bed were similar. Cluster and ordination analyses based on the number of individuals of each fish species also demonstrated that fish community structures were similar in the two seagrass beds. Species and individual numbers of coral reef fishes which utilized the seagrass beds numbered less than about 15% of whole coral reef fish numbers, although they comprised about half of the seagrass bed fishes. Of the 15 most dominant species, 5 occurred only in the two seagrass beds, including seagrass feeders. Ten other species were reef species, their habitat utilization patterns not differing greatly between the two seagrass beds. Some reef species, such as Lethrinus atkinsoni and L. obsoletus, showed ontogenetic habitat shifts with growth, from the seagrass beds to the coral areas. These results indicate that community structures and habitat utilization patterns of fishes were similar between E. acoroides- and T. hemprichii-dominated seagrass beds, whereas many coral reef fishes hardly utilized the seagrass beds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号