首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
冷季型草坪草对高温胁迫的生理生态适应机理研究进展   总被引:1,自引:0,他引:1  
高温是制约草坪草(尤其是冷季型草坪草)生长的重要生态因子之一。然而,草坪草本身都具有一定的耐热性,特别是通过其体内的一些生理和生化机制能够抵御和适应一定程度和时间的热胁迫,比如通过植物体内细胞膜膜脂组分的变化、抗氧化系统对氧自由基的清除、热激蛋白的合成以及一些其它物质代谢的渗透调节以获得耐热性,从而缓减高温对其的伤害。本文结合作者数年的研究成果,就这两个方面综述了国内外的研究进展并提出了目前有关这些方面研究的不足以及今后研究的重点,以便为揭示冷季型草坪草在夏季所受高温伤害机理以及热适应机理提供科学的理论依据和实践指导。  相似文献   

2.
Fungi in Antarctica   总被引:1,自引:0,他引:1  
Fungi are generally easily dispersed and are able to colonize a very wide variety of different substrata and to withstand many different environmental conditions. Because of these characteristics they spread all over the world. The Antarctic mycoflora is quite diversified within the different climatic regions of the continent. Most Antarctic microfungi are cosmopolitan; some of them are propagules transported to Antarctica but unable to grow under the Antarctic conditions, while others, termed indigenous, are well adapted and able to grow and reproduce even at low temperatures, mostly as psychrotolerant, or fast sporulating forms, able to conclude their life-cycles in very short time. In the most extreme and isolated areas of the continent, such as the Antarctic Dry Valleys, endemic species showing physiological and morphological adaptations have locally evolved. Most Antarctic fungi, as well as fungi from other dry and cold habitats, are adapted to low temperatures, repeated freeze and thawing cycles, low water availability, osmotic stress, desiccation, low nutrients availability and high UV radiation. Sometimes single strategies are not specific for single stress factors and allow these microorganisms to cope with more than one unfavourable condition.  相似文献   

3.
It is well documented that global warming is unequivocal. Dairy production systems are considered as important sources of greenhouse gas emissions; however, little is known about the sensitivity and vulnerability of these production systems themselves to climate warming. This review brings different aspects of dairy cow production in Central Europe into focus, with a holistic approach to emphasize potential future consequences and challenges arising from climate change. With the current understanding of the effects of climate change, it is expected that yield of forage per hectare will be influenced positively, whereas quality will mainly depend on water availability and soil characteristics. Thus, the botanical composition of future grassland should include species that are able to withstand the changing conditions (e.g. lucerne and bird's foot trefoil). Changes in nutrient concentration of forage plants, elevated heat loads and altered feeding patterns of animals may influence rumen physiology. Several promising nutritional strategies are available to lower potential negative impacts of climate change on dairy cow nutrition and performance. Adjustment of feeding and drinking regimes, diet composition and additive supplementation can contribute to the maintenance of adequate dairy cow nutrition and performance. Provision of adequate shade and cooling will reduce the direct effects of heat stress. As estimated genetic parameters are promising, heat stress tolerance as a functional trait may be included into breeding programmes. Indirect effects of global warming on the health and welfare of animals seem to be more complicated and thus are less predictable. As the epidemiology of certain gastrointestinal nematodes and liver fluke is favourably influenced by increased temperature and humidity, relations between climate change and disease dynamics should be followed closely. Under current conditions, climate change associated economic impacts are estimated to be neutral if some form of adaptation is integrated. Therefore, it is essential to establish and adopt mitigation strategies covering available tools from management, nutrition, health and plant and animal breeding to cope with the future consequences of climate change on dairy farming.  相似文献   

4.
Heat stress has detrimental effects on livestock via diverse immune and physiological changes; heat-stressed animals are rendered susceptible to diverse diseases. However, there is relatively little information available regarding the altered immune responses of domestic animals in heat stress environments, particularly in cattle steers. This study aimed to determine the changes in the immune responses of Holstein and Jersey steers under heat stress. We assessed blood immune cells and their functions in the steers of two breeds under normal and heat stress conditions and found that immune cell proportions and functions were altered in response to different environmental conditions. Heat stress notably reduced the proportions of CD21+MHCII+ B cell populations in both breeds. We also observed breed-specific differences. Under heat stress, in Holstein steers, the expression of myeloperoxidase was reduced in the polymorphonuclear cells, whereas heat stress reduced the WC1+ γδ T cell populations in Jersey steers. Breed-specific changes were also detected based on gene expression. In response to heat stress, the expression of IL-10 and IL-17A increased in Holstein steers alone, whereas that of IL-6 increased in Jersey steers. Moreover, the mRNA expression pattern of heat shock protein genes such as Hsp70 and Hsp90 was significantly increased in only Holstein steers. Collectively, these results indicate that altered blood immunological profiles may provide a potential explanation for the enhanced susceptibility of heat-stressed steers to disease. The findings of this study provide important information that will contribute to developing new strategies to alleviate the detrimental effects of heat stress on steers.  相似文献   

5.
6.
Heat Stress in Wheat during Reproductive and Grain-Filling Phases   总被引:4,自引:0,他引:4  
Ambient temperatures have increased since the beginning of the century and are predicted to continue rising under climate change. Such increases in temperature can cause heat stress: a severe threat to wheat production in many countries, particularly when it occurs during reproductive and grain-filling phases. Heat stress reduces plant photosynthetic capacity through metabolic limitations and oxidative damage to chloroplasts, with concomitant reductions in dry matter accumulation and grain yield. Genotypes expressing heat shock proteins are better able to withstand heat stress as they protect proteins from heat-induced damage. Heat tolerance can be improved by selecting and developing wheat genotypes with heat resistance. Wheat pre-breeding and breeding may be based on secondary traits like membrane stability, photosynthetic rate and grain weight under heat stress. Nonetheless, improvement in grain yield under heat stress implies selecting genotypes for grain size and rate of grain filling. Integrating physiological and biotechnological tools with conventional breeding techniques will help to develop wheat varieties with better grain yield under heat stress during reproductive and grain-filling phases. This review discusses the impact of heat stress during reproductive and grain-filling stages of wheat on grain yield and suggests strategies to improve heat stress tolerance in wheat.  相似文献   

7.
Heat stress in feedlot cattle causes reduced performance, and in the most severe cases, death of the animals, thus causing the loss of millions of dollars in revenue to the cattle industry. A study was designed to evaluate dynamics of thermoregulation and feeding activities when feeder cattle were exposed to simulated heat waves, in comparison with repeated sinusoidal hot and thermoneutral environments. Nine beef steers were randomly assigned to an individual pen in one of three environmental chambers. Each chamber was subjected to each of three temperature regimes (Heatwave simulation from Rockport, Mo., 1995, Heatwave simulation from Columbia, Mo., 1999, and Controlled heat stress treatment of 32±7°C) for a period of 18 days, according to a Latin square treatment design, with a 10-day thermoneutral period (18±7°C) separating treatment periods. Respiration rate, core body temperature, heat production, feed intake, and feeding behavior were measured on each animal for the duration of the experiment. Differences were found in all treatments for all parameters except feeding behavior. It was shown that the two simulated heat waves elicited very different thermoregulatory responses. Based on these results the heat wave centered at Rockport, Mo. in 1995 was devastating because the animals were not acclimated to hot conditions, thus causing an acute response to heat stress. The responses of cattle to conditions at Columbia, Mo. showed some acclimation to heat prior to the peak stress days, and therefore a dampened response was seen. It appears the extreme conditions at Columbia, Mo., 1999 were made severe by environmental conditions not simulated during this study (low wind speed and intensive solar radiation). Overall, it was determined while a cyclic heat stress treatment is a representative model to test heat stress in cattle, further heat stress experiments should be conducted in an actual feedlot.Mention of trade names or commercial products in this article is solely for the purpose of providing specific information and does not imply recommendation or endorsement by the U.S. Department of Agriculture. 9th Street Drive, West Palmetto, FL 34221, USA.  相似文献   

8.
Being unable to move away from their places of germination, in order to avoid excess metal-induced damages, plants have to evolve different strategies and complex regulatory mechanisms to survive harsh conditions. While both ROS and auxin are documented to be important in plant response to metal stress, the mechanisms underlying the crosstalk between ROS and auxin in metal stress are poorly understood. In this review, we provide an update on the regulation of plant responses to metal-stress by ROS and auxin signaling pathways, primarily, with a focus on the copper, aluminum and cadmium stress. We aim at surveying the mechanisms underlying how metal stress modulates the changes in auxin distribution and the network of ROS and auxin in plant response to metal stress based on recent studies.  相似文献   

9.
Species may respond in three ways to environmental change: adapt, migrate, or go extinct. Studies of latitudinal clines can provide information on whether species have adapted to abiotic stress such as temperature and drought in the past and what the traits underlying adaptation are. We investigated latitudinal trait variation and response to drought in North American populations of Arabidopsis lyrata. Plants from nine populations collected over 13° latitude were grown under well-watered and dry conditions. A total of 1,620 seedlings were raised and 12 phenological, physiological, morphological, and life history traits were measured. Two traits, asymptotic rosette size and the propensity to flower, were significantly associated with latitude: plants from northern locations grew to a larger size and were more likely to flower in the first season. Most traits displayed a plastic response to drought, but plasticity was never related linearly with latitude nor was it enhanced in populations from extreme latitudes with reduced water availability. Populations responded to drought by adopting mixed strategies of resistance, tolerance, and escape. The study shows that latitudinal adaptation in A. lyrata involves the classic life history traits, size at and timing of reproduction. Contrary to recent theoretical predictions, adaptation to margins is based on fixed trait differences and not on phenotypic plasticity, at least with respect to drought.  相似文献   

10.
We investigated the effects of heat stress on the responsiveness to vibrational cues, our measure of perceptual ability, in Myrmeleon bore antlion larvae (Neuroptera: Myrmeleontidae). We reared these trap-building predatory larvae under 2 heat stress regimes (mild, 30°C, and harsh, 36°C), and after they progressed from one instar stage to another, we tested their perceptual ability in common unchallenging conditions. We hypothesized that exposure to the harsh heat stress regime would impose costs resulting in handicapped vibration responsiveness. We found that the harsh heat stress regime generated more stressful conditions for the larvae, as evidenced by increased mortality and postponed molting, and the loss of body mass among larger larvae. Furthermore, among the individuals who remained alive, those originating from the harsh heat stress regime were characterized by higher vibration responsiveness. Our results suggest 2 not mutually exclusive scenarios. Costly heat stress conditions can sieve out individuals characterized by poor perceptual ability or surviving individuals can attempt to hunt more efficiently to compensate for the physiological imbalance caused by heat stress. Both of these mechanisms fit into the ongoing debate over how adaptation and plasticity contribute to shaping insect communities exposed to heat stress.  相似文献   

11.
Despite many challenges faced by animal producers, including environmental problems, diseases, economic pressure, and feed availability, it is still predicted that animal production in developing countries will continue to sustain the future growth of the world's meat production. In these areas, livestock performance is generally lower than those obtained in Western Europe and North America. Although many factors can be involved, climatic factors are among the first and crucial limiting factors of the development of animal production in warm regions. In addition, global warming will further accentuate heat stress-related problems. The objective of this paper was to review the effective strategies to alleviate heat stress in the context of tropical livestock production systems. These strategies can be classified into three groups: those increasing feed intake or decreasing metabolic heat production, those enhancing heat-loss capacities, and those involving genetic selection for heat tolerance. Under heat stress, improved production should be possible through modifications of diet composition that either promotes a higher intake or compensates the low feed consumption. In addition, altering feeding management such as a change in feeding time and/or frequency, are efficient tools to avoid excessive heat load and improve survival rate, especially in poultry. Methods to enhance heat exchange between the environment and the animal and those changing the environment to prevent or limit heat stress can be used to improve performance under hot climatic conditions. Although differences in thermal tolerance exist between livestock species (ruminants > monogastrics), there are also large differences between breeds of a species and within each breed. Consequently, the opportunity may exist to improve thermal tolerance of the animals using genetic tools. However, further research is required to quantify the genetic antagonism between adaptation and production traits to evaluate the potential selection response. With the development of molecular biotechnologies, new opportunities are available to characterize gene expression and identify key cellular responses to heat stress. These new tools will enable scientists to improve the accuracy and the efficiency of selection for heat tolerance. Epigenetic regulation of gene expression and thermal imprinting of the genome could also be an efficient method to improve thermal tolerance. Such techniques (e.g. perinatal heat acclimation) are currently being experimented in chicken.  相似文献   

12.
Salinity stress has a major impact on plant growth and development. Increasing concentrations of salt in farm soils means that researchers must develop tolerant crops if the global food supply is to be sustained. Salt adaptation involves a complex network of different mechanisms whose responses to high salinity are regulated in an integrated fashion. The salt-stress signaling cascade(s) that activates these mechanisms starts by perceiving the saline environment. However, little is known about the components involved in either the perception or signaling of this stress. The mechanisms that are activated under such conditions include those responsible for ion homeostasis and osmotic adjustment. Here, we review the current understanding of those molecular mechanisms used by plants to respond and adapt to salt stress. Particular attention is paid to the information yielded by genetic analyses of the yeast modelSaccharomyces cerevisiae and the higher-plant model system ofArabidopsis.  相似文献   

13.
Heat stress can cause a significant financial burden to livestock producers by decreasing all productive functions in livestock. The major strategies associated with relieving heat stress in livestock are through use of sheds, fans, or evaporative cooling. Such practices are not possible where the animals are reared in a semi-intensive system. This necessitates developing other strategies to counteract the adverse effects of heat stress. A new strategy involving the feeding of melatonin (MEL) has been evaluated by a few researchers. Melatonin has hypothermic and antioxidant effects and may counter the detrimental effect of heat stress on livestock production. The aim of the paper is to review evidence for and against the use of MEL as an anti-heat stress agent. The early suggestion of a functional antagonism between the pineal and the adrenal gland became additionally reinforced by experimental and clinical findings indicating that MEL may be able to protect the organism against heat stress-induced damages. Melatonin effectively protects against heat stress, by a variety of mechanisms. As animals in tropical countries are exposed to heat stress during much of the year, MEL with its potential beneficial effects may be useful as an anti-heat stress agent to prevent the loss of production.  相似文献   

14.
Surviving changing climate conditions is particularly difficult for organisms such as insects that depend on environmental temperature to regulate their physiological functions. Insects are extremely threatened by global warming, since many do not have enough physiological tolerance even to survive continuous exposure to the current maximum temperatures experienced in their habitats. Here, we review literature on the physiological mechanisms that regulate responses to heat and provide heat tolerance in insects: (i) neuronal mechanisms to detect and respond to heat; (ii) metabolic responses to heat; (iii) thermoregulation; (iv) stress responses to tolerate heat; and (v) hormones that coordinate developmental and behavioural responses at warm temperatures. Our review shows that, apart from the stress response mediated by heat shock proteins, the physiological mechanisms of heat tolerance in insects remain poorly studied. Based on life‐history theory, we discuss the costs of heat tolerance and the potential evolutionary mechanisms driving insect adaptations to high temperatures. Some insects may deal with ongoing global warming by the joint action of phenotypic plasticity and genetic adaptation. Plastic responses are limited and may not be by themselves enough to withstand ongoing warming trends. Although the evidence is still scarce and deserves further research in different insect taxa, genetic adaptation to high temperatures may result from rapid evolution. Finally, we emphasize the importance of incorporating physiological information for modelling species distributions and ecological interactions under global warming scenarios. This review identifies several open questions to improve our understanding of how insects respond physiologically to heat and the evolutionary and ecological consequences of those responses. Further lines of research are suggested at the species, order and class levels, with experimental and analytical approaches such as artificial selection, quantitative genetics and comparative analyses.  相似文献   

15.
16.
Evidence suggests that global maize yield declines with a warming climate, particularly with extreme heat events. However, the degree to which important maize processes such as biomass growth rate, growing season length (GSL) and grain formation are impacted by an increase in temperature is uncertain. Such knowledge is necessary to understand yield responses and develop crop adaptation strategies under warmer climate. Here crop models, satellite observations, survey, and field data were integrated to investigate how high temperature stress influences maize yield in the U.S. Midwest. We showed that both observational evidence and crop model ensemble mean (MEM) suggests the nonlinear sensitivity in yield was driven by the intensified sensitivity of harvest index (HI), but MEM underestimated the warming effects through HI and overstated the effects through GSL. Further analysis showed that the intensified sensitivity in HI mainly results from a greater sensitivity of yield to high temperature stress during the grain filling period, which explained more than half of the yield reduction. When warming effects were decomposed into direct heat stress and indirect water stress (WS), observational data suggest that yield is more reduced by direct heat stress (?4.6 ± 1.0%/°C) than by WS (?1.7 ± 0.65%/°C), whereas MEM gives opposite results. This discrepancy implies that yield reduction by heat stress is underestimated, whereas the yield benefit of increasing atmospheric CO2 might be overestimated in crop models, because elevated CO2 brings yield benefit through water conservation effect but produces limited benefit over heat stress. Our analysis through integrating data and crop models suggests that future adaptation strategies should be targeted at the heat stress during grain formation and changes in agricultural management need to be better accounted for to adequately estimate the effects of heat stress.  相似文献   

17.
Polmunate land snails are subject to stress conditions in their terrestrial habitat, and depend on a range of behavioural, physiological and biochemical adaptations for coping with problems of maintaining water, ionic and thermal balance. The involvement of the heat shock protein (HSP) machinery in land snails was demonstrated following short-term experimental aestivation and heat stress, suggesting that land snails use HSPs as part of their survival strategy. As climatic variation was found to be associated with HSP expression, we tested whether adaptation of land snails to different habitats affects HSP expression in two closely related Sphincterochila snail species, a desert species Sphincterochila zonata and a Mediterranean-type species Sphincterochila cariosa. Our study suggests that Sphincterochila species use HSPs as part of their survival strategy following desiccation and heat stress, and as part of the natural annual cycle of activity and aestivation. Our studies also indicate that adaptation to different habitats results in the development of distinct strategies of HSP expression in response to stress, namely the reduced expression of HSPs in the desert-inhabiting species. We suggest that these different strategies reflect the difference in heat and aridity encountered in the natural habitats, and that the desert species S. zonata relies on mechanisms and adaptations other than HSP induction thus avoiding the fitness consequences of continuous HSP upregulation.  相似文献   

18.
19.
Theoretical and practical aspects of a problem of adaptation to military-professional work are considered. Neurophysiological mechanisms of adaptation of military men to conditions of hot mountain-desert climate are revealed. Condition of the opioidergic system is shown at fighting stress, and its role in occurrence of illness of adaptation is described. Influence of extreme factors of a hot climate mountain-desert district is accompanied by infringement of interhemisphere mutual relations and psychosomatic changes.  相似文献   

20.
J. Gale  M. Zeroni 《Plant and Soil》1985,89(1-3):57-67
Summary The fitter of two species that use different strategies to overcome the same stress may be the one that expends the least resources to cope with this stress. However, this concept has proven difficult to quantify. It is proposed here that the increase in maintenance respiration in response to stress factors such as high temperature, salinity or a high-oxygen atmosphere (one indirect effect of which is nitrogen deficiency) may provide a measure of the cost of adaptation, in terms of expenditure of assimilated carbon. A corrolary to this is that, where it can be shown that an adaptive strategy results in the expenditure of assimilates, adaptation may be enhanced by increasing carbon assimilation. Results are presented supporting the hypothesis and its corrolary.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号