首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
When the immobilized cells are employed in packed-bed bioreactors several problems appear. To overcome these drawbacks, a new bioreactor based on the use of pulsed systems was developed [1]. In this work, we study the glucose fermentation by immobilized Saccharomyces cerevisiae in a packed-bed bioreactor. A comparative study was then carried out for continuous fermentation in two packed-bed bioreactors, one of them with pulsed flow. The determination of the axial dispersion coefficients indicates that by introducing the pulsation, the hydraulic behaviour is closer to the plug flow model. In both cases, the residence time tested varied from 0.8 to 2.6 h. A higher ethanol concentration and productivity (increases up to 16%) were achieved with the pulsated reactors. The volumes occupied by the CO2 were 5.22% and 9.45% for fermentation with/without pulsation respectively. An activity test of the particles from the different sections revealed that the concentration and viability of bioparticles from the two bioreactors are similar. From the results we conclude that the improvements of the process are attributable to a mechanical effect rather than to physiological changes of microorganisms.List of Symbols D m2/s dispersion coefficient - K is l/g inhibition substrate constant - K ip l/g inhibition ethanol constant - K s g/l Apparent affinity constant - P g/l ethanol concentration - q p g/(gh) specific ethanol productivity - Q p g/(lh) overall ethanol productivity - q s g/(gh) specific glucose consumption rate - Q s g/(lh) glucose consumption rate - S g/l residual glucose concentration - S(in0) g/l initial glucose concentration - V max g/(lh) maximum rate - Y p/s g/g yield in product  相似文献   

2.
Two chromium-resistant bacteria (IFR-2 and IFR-3) capable of reducing/transforming Cr(VI) to Cr(III) were isolated from tannery effluents. Isolates IFR-2 and IFR-3 were identified as Staphylococcus aureus and Pediococcus pentosaceus respectively by 16S rRNA gene sequence analyses. Both isolates can grow well on 2,000 mg/l Cr(VI) (as K2Cr2O7) in Luria-Bertani (LB) medium. Reduction of Cr(VI) was found to be growth-associated in both isolates and IFR-2 and IFR-3 reduced 20 mg/l Cr(VI) completely in 6 and 24 h respectively. The Cr(VI) reduction due to chromate reductase activity was detected in the culture supernatant and cell lysate but not at all in the cell extract supernatant of both isolates. Whole cells of IFR-2 and IFR-3 converted 24 and 30% of the initial Cr(VI) concentration (1 mg/l) in 45 min respectively at 37°C. NiCl2 stimulated the growth of IFR-2 whereas HgCl2 and CdCl2 significantly inhibited the growth of both isolates. Optimum temperature and pH for growth of and Cr(VI) reduction by both isolates were found to be between 35 and 40°C and pH 7.0 to 8.0. The two bacterial isolates can be good candidates for detoxification of Cr(VI) in industrial effluents.  相似文献   

3.
A novel method is proposed to produce both phytase and single-cell protein in recombinant Pichia pastoris fermentation using monosodium glutamate wastewater (MSGW) as the basal medium. Recombinant P. pastoris MR33 transformed with a phytase gene (AppA-m) from Escherichia coli was constructed and showed capability to utilize ammonium as the only nitrogen source. The fermentation medium was optimized in shake flasks by single-factor test and response surface methodology. A fed-batch system containing 30% MSGW, 50 g/l glucose, 1.58 g/l CaSO4, 5.18 g/l MgSO4 and 6.67 g/l KH2PO4 was developed in a 3.7-l bioreactor. The maximum phytase activity in the MSGW medium reached 3,380 U/ml, 84.2% of that in chemically defined medium, and the dry cell weight was 136 g/l. The single-cell protein (SCP; 46.66% dry cell weight) contains a variety of amino acids and is low in fat, which is ideal for utilization in animal feed. Thus, it is feasible to use MSGW medium for the production of enzymes that can be expressed in P. pastoris.  相似文献   

4.
A mathematical model is described for the simultaneous saccharification and ethanol fermentation (SSF) of sago starch using amyloglucosidase (AMG) and Zymomonas mobilis. By introducing the degree of polymerization (DP) of oligosaccharides produced from sago starch treated with -amylase, a series of Michaelis-Menten equations were obtained. After determining kinetic parameters from the results of simple experiments carried out at various substrate and enzyme concentrations and from the subsite mapping theory, this model was adapted to simulate the SSF process. The results of simulation for SSF are in good agreement with experimental results.List of Symbols g/g rate coefficient of production - max 1/h maximum specific growth rate - E %, v/w AMG concentration - G 1 mmol/l glucose concentration - G c mmol/l glucose concentration consumed - G f mmol/l glucose concentration formed - G n mmol/l n-mer maltooligosaccharide concentration - K i g/l ethanol inhibition constant for ethanol production - K g mmol/l glucose inhibition constant for glucose production - K p mmol/l glucose limitation constant for ethanol production - K x mmol/l glucose limitation constant for cell growth - K m,n mmol/l Michaelis-Menten constant for n-mer oligosaccharide - k e %, v/w enzyme limitation constant - k es proportional constant - k max, n 1/s maximal velocity for n-mer digestion - k s g/l substrate limitation constant - m s g/g maintenance energy - MW n g/mol molecular weight of n-mer oligosaccharide - P g/l ethanol concentration - P 0 g/l initial ethanol concentration - P m g/l maximal ethanol concentration - Q pm g/(g · h) maximum specific ethanol production rate - S n mmol/h branched n-mer oligosaccharide concentration - S 0 g/l initial starch concentration - S sta g/l starch concentration - S tot g/l total sugar concentration - V max, n 1/h maximum digestion rate of n-mer oligosaccharide - V 0 g/(l · h) initial glucose formation rate - X g/l cell mass - X 0 g/l initial cell mass - Y p/s g/g ethanol yield - Y x/s g/g cell mass yield  相似文献   

5.
The process of anaerobic digestion is viewed as a series of reactions which can be described kinetically both in terms of substrate utilization and methane production. It is considered that the rate limiting factor in the digestion of complex wastewaters is hydrolysis and this cannot be adequately described using a Monod equation. In contrast readily assimilable wastewaters conform well to this approach. A generalized equation has thus been derived, based on both the Monod and Contois equations, which serves extreme cases. The model was verified experimentally using continuous feed anaerobic digesters treating palm oil mill effluent (POME) and condensation water from a thermal concentration process. POME represents a complex substrate comprising of unhydrolyzed materials whereas the condensation water is predominantly short chain volatile fatty acids. Substrate removal and methane production in both cases could be predicted accurately using the generalized equation presented.List of Symbols A (=KskY/Kh) Kinetic parameter - B Specific methane yield, 1 of CH4/g of substrate added B0 Maximum specific methane yield, 1 of CH4/g of substrate added at infinity - C Empirical constant in Contois equation - F Volumetric substrate removal rate, g/l day - k Hydrolysed substrate transport rate coefficient, 1/days - K (=YC) Kinetic parameter in Chen-Hashimoto equation - K h Substrate hydrolysis rate coefficient, 1/days - K s Half-saturation constant for hydrolysed substrate, g/l - M v Volumetric methane production rate, 1 of CH4/l day - MS Mineral solids, g/l - MSS Mineral suspended soilds, g/l - POME Palm oil mill effluent - R (=Sr/ST0) Refractory coefficient - S h Concentration of hydrolysed substrate, g/l - S u Intracellular concentration of hydrolysed substrate, g/l - S 0 Input biodegradable substrate concentration, g/l - S Biodegradable substrate concentration in the effluent or in the digester, g/l - S r Refractory feed substrate concentration, g/l - S T0 (=S0+Sr) Total feed substrate concentration, g/l - S T (S+Sr) Total substrate concentration in the effluent, g/l - TS Total solids, g/l - TSS Total suspended solids, g/l - VFA Total volatile fatty acids, g/l - VS Volatile solids, g/l - VSS Volatile suspended solids, g/l - X Biomass concentration, g/l - Y Biomass yield coefficient, biomass/substrate mass - Hydraulic retention time, days. - Specific growth rate of microorganisms, l/days - m Maximum specific growth rate of microorganisms, l/days The authors wish to express their gratitude to the Departamento de Postgrado y Especialización del CSIC and to the Consejería de Educación y Ciencia de la Junta de Andalucia for their financial support of this work.  相似文献   

6.
Summary The batch fermentation of whey permeate to lactic acid was improved by supplementing the broth with enzyme-hydrolyzed whey protein. A mathematical model based on laboratory results predicts to a 99% confidence limit the kinetics of this fermentation. Cell growth, acid production and protein and sugar use rates are defined in quantifiable terms related to the state of cell metabolism. The model shows that the constants of the Leudeking-Piret model are not true constants, but must vary with the medium composition, and especially the peptide average molecular weight. The kinetic mechanism on which the model is based also is presented.Nomenclature K i lactic acid inhibition constant (g/l) - K pr protein saturation constant during cell growth (g/l) - K pr protein saturation constant during maintenance (g/l) - K s lactose saturation constant (g/l) - [LA] lactic acid concentration (g/l) - [PR] protein concentration (g/l) - [S] lactose concentration (g/l) - t time (h) - [X] cell mass concentration (g/l) - , fermentation constants of Leudeking and Piret - specific growth rate (l/h) - Y g, LA/S acid yield during cell growth (g acid/g sugar) - Y m, LA/S acid yield during maintenance (g acid/g sugar) - Y x/pr yield (g cells/g protein) - specific sugar use rate during cell growth (g sugar/h·g cell) - specific sugar use rate during maintenance (g sugar/h·cell)  相似文献   

7.
Summary The inclusion of specific salts in Zymomonas mobilis batch sucrose fermentations can limit by-product formation. Sorbitol and fructo-oligosaccharide formation can be reduced and ethanol production enhanced by manipulating mineral salt concentrations. Chloride salts reduced the production of biomass and sorbitol in favour of fructo-oligosaccharide formation at concentrations lower than 10 g NaCl/l or MgCl2. Higher concentrations led to the accumulation of glucose and fructose. Low concentrations of KH2PO4 (<20 g/l) enhanced biomass formation, and the concomitant reduction in sorbitol and fructo-oligosaccharides favoured enhanced ethanol formation. At concentrations above 20 g/l, its effects were similar to those obtained with the chloride salts. Invertase addition at the start of fermentation increased sorbitol formation, whereas addition after the completion of sucrose hydrolysis resulted in the conversion of fructo-oligosaccharides formed into fructose or ethanol. Fermentation with 250 g/l of sugar-cane syrup ( = 130 g sucrose/l) in the presence of 8 g KH2PO4/l, with 0.05 g invertase/l added on the completion of sucrose hydrolysis, resulted in a conversion efficiency of 94% with complete carbon accountability, and only 7 g sorbitol/l. Offprint requests to: H. W. Doelle  相似文献   

8.
The on-line measurement of the relevant parameters and the control conception for three production processes for fine chemicals by fermentation and biotransformation at the 15 m3 scale were developed. The models describe the bioprocesses which successfully result in fully automated manufacturing steps. Modelling also proved to be a valuable tool for a better insight into biochemical fundamentals of the processes. Moreover, proper use of data logging, modelling and process control was important for quality, since two processes were controlled on-line and quality relevant deviations were registered early. Finally, combining modelling with simulation, we could drastically reduce both development time and cost.List of Symbols F l/h flux - V l volume - U 0 g/l nicotinonitrile concentration influx - U g/l actual nicotinonitrile concentration - q ug/gh specific educt (=nicotinonitrile) transformation rate - x g/l biocatalyst concentration - p 0 g/l nicotinamide concentration influx - p g/l actual nicotinamide concentration - q pg/gh specific product (=nicotinamide) formation rate - k parameter loss of activity - q u, maxg/gh max. specific educt transformation rate - K ug/l saturation constant for nicotinonitrile - K ig/l inhibition constant for nicotinonitrile - K iig/l inhibition constant for nicotinamide - MW Ag/mol molecular weight for nicotinonitrile - MW Bg/mol molecular weight for nicotinamide - NS Nicotinic acid - 6-HNS 6-Hydroxynicotinic acid - r NS, 6HNS g/lh 6-HNS production rate - r 6HNS, X g/lh biomass production rate - r NS, 6HNS, max g/lh max. 6-HNS production rate - S NS g/l actual NS concentration - K S, NS g/l saturation constant for NS - K i, 6HNS g/l inhibition constant for 6-HNS - K o2 g/l saturation constant for oxygen - r 6HNS, X, max g/lh max. biomass production rate - S 6HNS g/l actual 6-HNS concentration - K ii, NS g/l inhibition constant for NS - RQ mol/mol respiration quotient - S xylg/l actual xylene concentration - K i, xylg/ inhibition constant for xylene - K i, DMPYg/ inhibition constant for 2,5-dimethylpyrazine - r Xg/lh biomass production rate - r X, maxg/lh max. biomass production rate - K s, xylg/l saturation constant for xylene - S DMPYg/l actual concentration of DMPY - K i, MPCAg/ inhibition constant for MPCA - K O2g/ saturation constant for oxygen - S MPCAg/l actual MPCA concentration - S O2g/l actual oxygen concentration - r MPCAg/lh MPCA production rate - r MPCA, maxg/lh max. MPCA production rate - k lgl inhibition constant for the intermediates - k s, DMPYgl saturation constant for DMPY  相似文献   

9.
Batch fermentation of sugarcane bagasse hemicellulosic hydrolyzate by the yeast Candida guilliermondii FTI 20037 was performed using controlled pH values (3.5, 5.5, 7.5). The maximum values of xylitol volumetric productivity (Q p=0.76 g/l h) and xylose volumetric consumption (Q s=1.19 g/l h) were attained at pH 5.5. At pH 3.5 and 7.5 the Q p value decreased by 66 and 72%, respectively. Independently of the pH value, Y x/s decreased with the increase in Y p/s suggesting that the xylitol bioconversion improves when the cellular growth is limited. At the highest pH value (7.5), the maximum specific xylitol production value was the lowest (q pmax=0.085 g/l h.), indicating that the xylose metabolism of the yeast was diverted from xylitol formation to cell growth.List of symbols P max xylitol concentration (g/l) - Q x volumetric cell production rate (g/l h) - Q s volumetric xylose uptake rate (g/l h) - Q p volumetric xylitol production rate (g/l h) - q pmax specific xylitol production (g/g h) - q smax specific xylose uptake rate (g/g h) - max specific cell growth rate (h–1) - Y p/s xylitol yield coefficient, g xylitol per g xylose consumed (g/g) - Y p/x xylitol yield coefficient, g xylitol per g dry cell mass produced (g/g) - Y x/s cell yield coefficient, g dry cell mass per g xylose consumed (g/g) - cell percentage of the cell yield from the theoretical value (%) - xylitol percentage of xylitol yield from the theoretical value (%)  相似文献   

10.
The ability of a wild strain of Scenedesmus obliquus, isolated from a heavy metal-contaminated environment, to remove Cd2+ from aqueous solutions was studied at several initial concentrations. Viable biomass removed metal to a maximum extent of 11.4 mgCd/g at 1 mgCd/l, with most Cd2+ being adsorbed onto the cell surface. A commercially available strain (ACOI 598) of the same microalga species was also exposed to the same Cd concentrations, and similar results were obtained for the maximum extent of metal removal. Heat-inactivated cells removed a maximum of 6.04 mgCd/g at 0.5 mgCd/l. The highest extent of metal removal, analyzed at various pH values, was 0.09 mgCd/g at pH 7.0. Both strains of the microalga tested have proven effective in removing a toxic heavy metal from aqueous solutions, hence supporting their choice for bioremediation strategies of industrial effluents.  相似文献   

11.
In order to optimize and evaluate the influence of nitrogen, phosphorus, and inoculum concentrations on the biodegradation of hydrocarbon contaminated effluents, experiments based on central composite design (CCD) method were carried out for 3 days, employing C1 mixed culture and intermittent aeration. The independent variables were nitrogen concentration (X 1), phosphorus concentration (X 2), and inoculum concentration (X 3) and the removal of total petroleum hydrocarbons (TPH) was the dependent variable. The optimized nutrients ratio (C:N:P = 100:20:2.7) and inoculum concentration (1.32 g/l) provided TPH removal of 71.8% after processing for three days. Analysis using gas chromatography identified five hydrocarbons classes: paraffins, isoparaffins, olefins, naphthenics, and aromatics. The naphthenic compounds did not degrade as readily as the other hydrocarbons that were identified. The following degradation percentages were obtained: 87.1% for the paraffins, 77.7% for the isoparaffins, 78.6% for the olefins, 38.4% for the naphthenics, and 71.7% for the aromatics.  相似文献   

12.
Summary High concentration cultivation of Bifidobacterium longum in a fermenter with cross-flow filtration using a ceramic filter is described. Continuous cross-flow filtration allowed complete recycling of the cells to the fermenter and also continuous separation of inhibitory metabolites. The final cell concentration attained in the cultivation was 54.4 g dry wt./l; this was seven times as high as that without cross-flow filtration. The time course of the cultivation with cross-flow filtration was predicted, based on the assumption that the specific growth rate can be expressed only as a function of concentrations of metabolites (acetate and lactate) in a culture broth.Nomenclature D dilution rate (h-1) - m maintenance coefficient (h-1) - OD 570 optimal density at 570 nm - P A acetate concentration (g/l) - P A0 initial acetate concentration (g/l) - P L lactate concentration (g/l) - P L0 initial lactate concentration (g/l) - S lactose (substrate) concentration (g/l) - S 0 initial lactose (substrate) concentration (g/l) - t cultivation time (h) - Y x/s growth yield (g/g) - X dry cell concentration (g/l) - X 0 initial dry cell concentration (g/l) - constant - constant  相似文献   

13.
Summary The effect of substrate concentration (S 0) on the fermentation parameters of a sugar mixture byPichia stipitis Y 7124 was investigated under anaerobic and microaerobic conditions. Under microaerobiosisP. stipitis maintained high ethanol yield and productivity when initial substrate concentration did not exceed 150 g/l; ethanol yield of about 0.40 g/g and volumetric productivity up to 0.39 g/l per hour were obtained. Optimal specific ethanol productivity (0.2 g/g per hour) was observed withS 0=110 g/l. Under anaerobic conditionsP. stipitis exhibited the highest fermentative performances atS 0=20 g/l; it produced ethanol with a yield of 0.42 g/g, with a specific rate of 1.1 g/g per day. When the initial substrate level increased, specific ethanol productivity declined gradually and ethanol yield was dependent on the degree of utilization of each sugar in the mixture.Abbreviations E m maximum produced ethanol (g/l) - E 0 initial ethanol (g/l) - E v evaporated ethanol (g/l) - Q p volumetric productivity of ethanol (g ethanol/l per hour or g/l per day) - q p specific productivity of ethanol (g ethanol/g cells per hour) - q pm maximum specific productivity of ethanol (g/l per hour) - S 0 initial substrate concentration (g/l) - t f time at which produced ethanol is maximum (h) - Y p/s ethanol yield (g ethanol produced/g substrate utilized) - Y x/s cell yeild (g cells produced/g substrate utilized) - Y xo/xy xylitol yield (g xylitol produced/g xylose utilized) - probability coefficient - specific growth rate coefficient (h-1 or d-1)  相似文献   

14.
Summary The production of sorbitol and gluconic acid by toluene-treated, permeabilized cells of Zymomonas mobilis has been evaluated. From a 60% total sugar solution (300 g/l glucose and 300 g/l fructose), a sorbitol concentration of 290 g/l and a gluconic acid concentration of 283 g/l were achieved after 15 h in a batch process using free toluene-treated cells. A continuous process with immobilized cells was developed and only a small loss of enzyme activity (less than 5%) was evident after 120 h. With a strongly basic anion exchange resin and an eluent of 0.11 M Na2B4O7/0.11 M H3BO3, good separation of sorbitol and gluconic acid was achieved.  相似文献   

15.
Summary Ethanol was produced by a strain ofPichia stipitis adapted to an inhibitory acid wood hydrolysate ofPinus radiata. The best ethanol productivity for batch cultures was 0.21 g/l h at 0.7% ethanol. Varying culture conditions increased ethanol concentration to 0.76%, however the productivity decreased to 0.18 g/l h. A decrease in ethanol concentration in the culture fluid was noted late in the batch which suggested ethanol catabolism. Values of kinetic parameters (K m,K s, max, andV max) were evaluated for this system. The use of calcium alginate immobilized cells in a continuous-flow stirred tank reactor lead to enhanced fermentative performance, namely a maximum productivity of 0.27 g/l h and 1.13% ethanol yield. The immobilized cells in continuous flow reactors represent an attractive option for fermenting sugars released by sulphuric acid hydrolysis ofP. radiata wood.  相似文献   

16.
HLA class 11 molecules were isolated from mouse L cells transfected with a DR gene and an allele, 52a, of locus DR III from an HLA-homozygous cell line, AVL, of the DR3 haplotype. The isolated molecules were found to possess a new allospecificity, named TR81. This specificity behaved allelic to the previously described DR III locus. The TR81 specificity was also present on the DR I gene product of the DR3 haplotype. The nucleotide sequence of the gene encoding TR81 differs from TR81-negative DR genes of the DRw52 family in only two codons, both located in the regions known to be involved in a gene conversion event. Consequently, the following conclusions can be formulated. (a) TR81 is a bi-locus specificity and allelic to TR22 only in its DR III locus localization. (b) The TR81 specificity is the phenotypic counterpart of the gene conversion event which led to the generation of the DR I gene of the DR3 haplotype. (c) One or both individual amino acid substitutions in the first domain of the DR chain are responsible for the TR81 allospecificity. (d) Since TR81 is expressed on the DR I chain of the DR3 haplotype, it is possible that TR81 and DR3 represent the same serological specificity.  相似文献   

17.
Production of l(+)-lactic acid by Rhizopus oryzae NRRL 395 was studied in solid medium on sugar-cane bagasse impregnated with a nutrient solution containing glucose and CaCO3. A comparative study was undertaken in submerged and solid-state cultures. The optimal concentrations in glucose were 120 g/l in liquid culture and 180 g/l in solid-state fermentation corresponding to production of l(+)-lactic acid of 93.8 and 137.0 g/l, respectively. The productivity was 1.38 g/l per hour in liquid medium and 1.43 g/l per hour in solid medium. However, the fermentation yield was about 77% whatever the medium. These figures are significant for l(+)-lactic acid production.  相似文献   

18.
A GC method using a novel derivatization reagent, 2′,2′,2-trifluoroethyl chloroformate (TFECF), for the derivatization of primary and secondary aliphatic amines with the formation of carbamate esters is presented. The method is based on a derivatization procedure in a two-phase system, where the carbamate ester is formed. The method is applied to the determination of 1,6-hexamethylene diamine (HDA) in aqueous solutions and human urine, using capillary GC. Detection was performed using thermionic specific detection (TSD) and mass spectrometry (MS)—selective-ion monitoring (SIM) using electron-impact (EI) and chemical ionization (CI) with ammonia monitoring both positive (CI)+ and negative ions (CI). Quantitative measurements were made in the chemical ionization mode monitoring both positive and negative ions. Tetra-deuterium-labelled HDA (TDHDA; H2NC2H2(CH2)4C2H2NH2) was used as the internal standard for the GC—MS analysis. In CI+ the m/z 386 and the m/z 390 ions corresponding to the [M + 18]+ ions (M = molecular ion) of HDA—TFECF and TDHDA—TFECF were measured; in CI the m/z 267 and the m/z 271 ions corresponding to the [M — 101] ions. The overall recovery was found to be 97 ± 5% for a HDA concentration of 1000 μg/l in urine. The minimal detectable concentration in urine was found to be less than 20 μg/l using GC—TSD and 0.5 μg/l using GC—SIM. The overall precision for the work-up procedure and GC analysis was ca. 3% (n = 5) for 1000 μg/l HDA-spiked urine, and ca. 4% (n = 5) for 100 μg/l. The precision using GC—SIM for urine samples spiked to a concentration of 5 μg/l was found to be 6.3% (n = 10).  相似文献   

19.
Biomass behaviour and COD removal in a benchscale activated sludge reactor have been studied alternating anaerobic and aerobic conditions. Particular attention has been paid to the influence of the ratio of the initial substrate concentration (S 0) to the initial biomass concentration (X 0) on the reactor performance. Tests at very low ratios (S 0/X 0<2) demonstrate the existence of a threshold below which the reactor performance is seriously affected (S 0/X 0=0.5). Under conditions of total suppression of cell duplication, substrate maintenance requirements have also been calculated for the microbial consortium present in the activated sludges. The results obtained show that stressed biomass can survive conditions of substrate lack better than unstressed biomass.List of Symbols b h–1 specific death rate - COD g/l chemical oxygen demand - DO g/l dissolved oxygen concentration - K s g/l Monod saturation constant - MLSS g/l mixed liquor suspended solid concentration - P g/l phosphorus concentration - S g/l substrate concentration - S 0 g/l initial substrate concentration - SS g/l suspended solid concentration - t h time - X g/l biomass concentration - X 0 g/l initial biomass concentration - Y SX g/g yield of growth on substrate - max h–1 maximum specific growth rate  相似文献   

20.
Summary The thermotolerant yeast, Kluyveromyces marxianus IMB3 produced 11g ethanol/l during growth at 45°C on media containing 4% (w/v) lactose when immobilized in alginate beads whereas the free cells produced 5g ethanol/l. A magnetically responsive biocatalyst, prepared by incorporating Fe3O4 into the alginate matrix increased ethanol production to 12g/l in batch-fed reactors. Ethanol concentrations were further increased to a maximum of 18g/l by immobilization of the endogenous K. marxianus -galactosidase to the Fe3O4 particles prior to inclusion into the alginate matrix. Maximum ethanol productivity by the system was 87% of the maximum theoretical yield.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号