首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
In the conventional P-450 dependent hydroxylation reaction, the Fe(III) resting state of the enzyme, by a single electron transfer, is reduced to Fe(II), which reacts with O(2) to produce a Fe(III)-O-O intermediate. The latter following the transfer of another electron furnishes a ferric-peroxyanion, Fe(III)-O-O(-), which after protonation leads to the fission of the O-O bond resulting in the formation of Fe(V)O, the key player in the hydroxylation process. Certain members of the P-450 family, including CYP17 and CYP19, catalyze, at the same active site, not only the hydroxylation process but also an acyl-carbon bond cleavage reaction which has been interpreted to involve the nucleophilic attack of the ferric-peroxyanion, Fe(III)-O-O(-), on the acyl carbon to furnish a tetrahedral intermediate which fragments, leading to acyl-carbon cleavage. Evidence is presented to show that in the case of CYP17 the attack of Fe(III)-O-O(-) on the target carbon is promoted by cytochrome b(5), which acts as a conformational regulator of CYP17. It is this regulation of CYP17 that provides a safety mechanism which ensures that during corticoid biosynthesis, which involves 17α-hydroxylation by CYP17, androgen formation is avoided. Finally, a brief account is presented of the inhibitors, of the two enzymes, which have been designed on the basis of their mechanism of action. Article from the Special issue on 'Targeted Inhibitors'.  相似文献   

2.
The oxy-ferrous complex is the first of three branching intermediates in the catalytic cycle of cytochrome P450, in which the total efficiency of substrate turnover is curtailed by the side reaction of autoxidation. For human membrane-bound cytochromes P450, the oxy complex is believed to be the primary source of cytotoxic superoxide and peroxide, although information on the properties and stability of this intermediate is lacking. Here we document stopped-flow spectroscopic studies of the formation and decay of the oxy-ferrous complex in the most abundant human cytochrome P450 (CYP3A4) as a function of temperature in the substrate-free and substrate-bound form. CYP3A4 solubilized in purified monomeric form in nanoscale POPC bilayers is functionally and kinetically homogeneous. In substrate-free CYP3A4, the oxy complex is extremely unstable with a half-life of approximately 30 ms at 5 degrees C. Saturation with testosterone or bromocriptine stabilizes the oxy-ferrous intermediate. Comparison of the autoxidation rates with the available data on CYP3A4 turnover kinetics suggests that the oxy complex may be an important route for uncoupling.  相似文献   

3.
Testosterone 6beta-hydroxylation is a prototypic reaction of cytochrome P450 (P450) 3A4, the major human P450. Biomimetic reactions produced a variety of testosterone oxidation products with 6beta-hydroxylation being only a minor reaction, indicating that P450 3A4 has considerable control over the course of steroid hydroxylation because 6beta-hydroxylation is not dominant in a thermodynamically controlled oxidation of the substrate. Several isotopically labeled testosterone substrates were prepared and used to probe the catalytic mechanism of P450 3A4: (i) 2,2,4,6,6-(2)H(5); (ii) 6,6-(2)H(2); (iii) 6alpha-(2)H; (iv) 6beta-(2)H; and (v) 6beta-(3)H testosterone. Only the 6beta-hydrogen was removed by P450 3A4 and not the 6alpha, indicating that P450 3A4 abstracts hydrogen and rebounds oxygen only at the beta face. Analysis of the rates of hydroxylation of 6beta-(1)H-, 6beta-(2)H-, and 6beta-(3)H-labeled testosterone and application of the Northrop method yielded an apparent intrinsic kinetic deuterium isotope effect ((D)k) of 15. The deuterium isotope effects on k(cat) and k(cat)/K(m) in non-competitive reactions were only 2-3. Some "switching" to other hydroxylations occurred because of 6beta-(2)H substitution. The high (D)k value is consistent with an initial hydrogen atom abstraction reaction. Attenuation of the high (D)k in the non-competitive experiments implies that C-H bond breaking is not a dominant rate-limiting step. Considerable attenuation of a high (D)k value was also seen with a slower P450 3A4 reaction, the O-dealkylation of 7-benzyloxyquinoline. Thus P450 3A4 is an enzyme with regioselective flexibility but also considerable regioselectivity and stereoselectivity in product formation, not necessarily dominated by the ease of C-H bond breaking.  相似文献   

4.
The prosthetic heme group in the CYP4A family of cytochrome P450 enzymes is covalently attached to an I-helix glutamic acid residue. This glutamic acid is conserved in the CYP4 family but is absent in other P450 families. As shown here, the glutamic acid is linked, presumably via an ester bond, to a hydroxyl group on the heme 5-methyl group. Mutation of the glutamic acid to an alanine in CYP4A1, CYP4A3, and CYP4A11 suppresses covalent heme binding. In wild-type CYP4A3 68% of the heme is covalently bound to the heterologously expressed protein, but in the CYP4A3/E318D mutant, 47% of the heme is unchanged, 47% is present as noncovalently bound 5-hydroxymethylheme, and only 6% is covalently bound to the protein. In the CYP4A3/E318Q mutant, the majority of the heme is unaltered, and <2% is covalently linked. The proportion of covalently bound heme in the recombinant CYP4A proteins increases with time under turnover conditions. The catalytic activity is sensitive in some, but not all, CYP4A enzymes to the extent of covalent heme binding. Mutations of Glu(318) in CYP4A3 decrease the apparent k(cat) values for lauric acid hydroxylation. The key conclusions are that (a) covalent heme binding occurs via an ester bond to the heme 5-methyl group, (b) covalent binding of the heme is mediated by an autocatalytic process, and (c) fatty acid oxidation is sensitive in some CYP4A enzymes to the presence or absence of the heme covalent link.  相似文献   

5.
A derivative of rhodamine 110 has been designed and assessed as a probe for cytochrome P450 activity. This probe is the first to utilize a 'trimethyl lock' that is triggered by cleavage of an ether bond. In vitro, fluorescence was manifested by the CYP1A1 isozyme with k(cat)/K(M)=8.8x10(3)M(-1)s(-1) and K(M)=0.09microM. In cellulo, the probe revealed the induction of cytochrome P450 activity by the carcinogen 2,3,7,8-tetrachlorodibenzo-p-dioxin, and its repression by the chemoprotectant resveratrol.  相似文献   

6.
The interactions of protein components of the xenobiotic-metabolizing cytochrome P450 system, CYP6A1, P450 reductase, and cytochrome b5 from the house fly (Musca domestica) have been characterized. CYP6A1 activity is determined by the concentration of the CYP6A1-P450 reductase complex, regardless of which protein is present in excess. Both holo- and apo-b5 stimulated CYP6A1 heptachlor epoxidase and steroid hydroxylase activities and influenced the regioselectivity of testosterone hydroxylation. The conversion of CYP6A1 to its P420 form was decreased by the addition of apo-b5. The effects of cytochrome b5 may involve allosteric modification of the P450 enzyme that modify the conformation of the active site. The overall stoichiometry of the P450 reaction was substrate-dependent. High uncoupling of CYP6A1 was observed with generation of hydrogen peroxide, in excess over the concomitant testosterone hydroxylation or heptachlor epoxidation. Inclusion of cytochrome b5 in the reconstituted system improved efficiency of oxygen consumption and electron utilization from NADPH, or coupling of the P450 reaction. Depending on the reconstitution conditions, coupling efficiency varied from 8 to 25% for heptachlor epoxidation, and from 11 to 70% for testosterone hydroxylation. Because CYP6A1 is a P450 involved in insecticide resistance, this suggests that xenobiotic metabolism by constitutively overexpressed P450s may be linked to significant oxidative stress in the cell that may carry a fitness cost.  相似文献   

7.
Mechanistic studies of mammalian cytochrome P450s are often obscured by the phase heterogeneity of solubilized preparations of membrane enzymes. The various protein-protein aggregation states of microsomes, detergent solubilized cytochrome or a family of aqueous multimeric complexes can effect measured substrate binding events as well as subsequent steps in the reaction cycle. In addition, these P450 monooxygenases are normally found in a membrane environment and the bilayer composition and dynamics can also effect these catalytic steps. Here, we describe the structural and functional characterization of a homogeneous monomeric population of cytochrome P450 3A4 (CYP 3A4) in a soluble nanoscale membrane bilayer, or Nanodisc [Nano Lett. 2 (2002) 853]. Cytochrome P450 3A4:Nanodisc assemblies were formed and purified to yield a 1:1 ratio of CYP 3A4 to Nanodisc. Solution small angle X-ray scattering was used to structurally characterize this monomeric CYP 3A4 in the membrane bilayer. The purified CYP 3A4:Nanodiscs showed a heretofore undescribed high level of homotropic cooperativity in the binding of testosterone. Soluble CYP 3A4:Nanodisc retains its known function and shows prototypic hydroxylation of testosterone when driven by hydrogen peroxide. This represents the first functional characterization of a true monomeric preparation of cytochrome P450 monooxygenase in a phospholipid bilayer and elucidates new properties of the monomeric form.  相似文献   

8.
Mitochondrial cytochrome P450 11A1 (CYP11A1 or P450 11A1) is the only known enzyme that cleaves the side chain of cholesterol, yielding pregnenolone, the precursor of all steroid hormones. Pregnenolone is formed via three sequential monooxygenation reactions that involve the progressive production of 22R-hydroxycholesterol (22HC) and 20α,22R-dihydroxycholesterol, followed by the cleavage of the C20-C22 bond. Herein, we present the 2.5-Å crystal structure of CYP11A1 in complex with the first reaction intermediate, 22HC. The active site cavity in CYP11A1 represents a long curved tube that extends from the protein surface to the heme group, the site of catalysis. 22HC occupies two-thirds of the cavity with the 22R-hydroxyl group nearest the heme, 2.56 Å from the iron. The space at the entrance to the active site is not taken up by 22HC but filled with ordered water molecules. The network formed by these water molecules allows the “soft” recognition of the 22HC 3β-hydroxyl. Such a mode of 22HC binding suggests shuttling of the sterol intermediates between the active site entrance and the heme group during the three-step reaction. Translational freedom of 22HC and torsional motion of its aliphatic tail are supported by solution studies. The CYP11A1–22HC co-complex also provides insight into the structural basis of the strict substrate specificity and high catalytic efficiency of the enzyme and highlights conserved structural motifs involved in redox partner interactions by mitochondrial P450s.  相似文献   

9.
The kinetics of formation and breakdown of the putative active oxygenating intermediate in cytochrome P450, a ferryl-oxo-(pi) porphyrin cation radical (Compound I), have been analyzed in the reaction of a thermostable P450, CYP119, with meta-chloroperoxybenzoic acid (m-CPBA). Upon rapid mixing of m-CPBA with the ferric form of CYP119, an intermediate with spectral features characteristic of a ferryl-oxo-(pi) porphyrin cation radical was clearly observed and identified by the absorption maxima at 370, 610, and 690 nm. The rate constant for the formation of Compound I was 3.20 (+/-0.3) x 10(5) m(-1) s(-1) at pH 7.0, 4 degrees C, and this rate decreased with increasing pH. Compound I of CYP119 decomposed back to the ferric form with a first order rate constant of 29.4 +/- 3.4 s(-1), which increased with increasing pH. These findings form the first kinetic analysis of Compound I formation and decay in the reaction of m-CPBA with ferric P450.  相似文献   

10.
Cytochrome P450 CYP17A1 catalyzes a series of reactions that lie at the intersection of corticoid and androgen biosynthesis and thus occupies an essential role in steroid hormone metabolism. This multifunctional enzyme catalyzes the 17α-hydroxylation of Δ4- and Δ5-steroids progesterone and pregnenolone to form the corresponding 17α-hydroxy products through its hydroxylase activity, and a subsequent 17,20-carbon–carbon scission of pregnene-side chain produce the androgens androstenedione (AD) and dehydroepiandrosterone (DHEA). While the former hydroxylation reaction is believed to proceed through a conventional “Compound I” rebound mechanism, it has been suggested that the latter carbon cleavage is initiated by an iron-peroxy intermediate. We report on the role of Thr306 in CYP17 catalysis. Thr306 is a member of the conserved acid/alcohol pair thought to be essential for the efficient delivery of protons required for hydroperoxoanion heterolysis and formation of Compound I in the cytochromes P450. Wild type and T306A CYP17A1 self-assembled in Nanodiscs were used to quantitate turnover and coupling efficiencies of CYP17’s physiological Δ4- and Δ5-substrates. We observed that T306A co-incorporated in Nanodiscs with its redox partner cytochrome P450 oxidoreductase, coupled NADPH only by 0.9% and 0.7% compared to the wild type (97% and 22%) during the conversion of pregnenolone and progesterone, respectively, to the corresponding 17-OH products. Despite increased oxidation of pyridine nucleotide, hydroxylase activity was drastically diminished in the T306A mutant, suggesting a high degree of uncoupling in which reducing equivalents and protons are funneled into non-productive pathways. This is similar to previous work with other P450 catalyzed hydroxylation. However, catalysis of carbon–carbon bond scission by the T306A mutant was largely unimpeded by disruption of the CYP17A1 acid-alcohol pair. The unique response of CYP17A1 lyase activity to mutation of Thr306 is consistent with a reactive intermediate formed independently of proton delivery in the active site, and supports involvement of a nucleophilic peroxo-anion rather than the traditional Compound I in catalysis.  相似文献   

11.
Human lymphoblastoid cell lines transgenic for human CYP450s were evaluated for the identification of toxic metabolites of the anticonvulsant drug carbamazepine (CBZ). Human CYP450 isoforms expressed by these cell lines included 1A1, 1A2, 2E1, 2A6 and 3A4. A dose-dependent inhibition of population growth from 50–200 g/ml CBZ was detected by measuring cell number and respiration. The inhibition increased with the growth rate of the various lines, which correlated inversely with the presence of CYP450s, and may have been caused by CBZ itself. Cytotoxicity was observed only at the highest dose and in the line lacking transfected CYP450s. Microsomal preparations from hCYP3A4/OR cells converted CBZ into its principal oxidative metabolite, carbamazepine-10,11-epoxide (CBZ-E), at a rate of 630 pmol/min per mg protein, confirming a major role of CYP3A4 in this reaction. However, no CBZ-E (or any metabolite) was recovered from any whole-cell incubation even though hCYP3A4 cells readily converted testosterone to 6ß-hydroxytestosterone. This suggests that differences exist between whole-cell and microsomal preparations of lymphoblastoid cells in their ability to metabolize CBZ.Abbreviations BSTFA N,O-bis(trimethylsilyl)trifluoroacetamide - CBZ carbamazepine - CBZ-E carbamazepine-10, 11-epoxide - CYP450 cytochrome P450 - CYP3A4 cytochrome P450, isoform 3A4 - DMSO dimethyl sulfoxide - GC-MS gas chromatography-mass spectrometry - HPLC high-performance liquid chromatography - MTT (3-[4,5-dimethylthiazol-2-y1]-2,5-diphenyl)tetrazolium - SIM selected-ion monitoring - TMS trimethylsilyl  相似文献   

12.
Cytochrome P450 CYP71A13 of Arabidopsis lyrata is a heme protein involved in biosynthesis of indole-3-acetonitrile which leads to the formation of indolyl-3-acetic acid. It catalyzes a unique reaction: formation of a carbon-nitrogen triple bond and dehydration of indolyl-3-acetaldoxime. Homology model of this 57 kDa polypeptide revealed that the heme existed between H-helix and J- helix in the hydrophobic pocket, although both helixes are involved in catalytic activity, where Gly305 and Thr308, 311 of H- helix were involved in its stabilization. The substrate indole-3-acetaldoxime was tightly fitted into the substrate pocket with the aromatic ring being surrounded by amino acid residues creating a hydrophobic environment. The smaller size of the substrate binding pocket in cytochrome P450 CYP71A13 was due to the bulkiness of the two amino acid residues Phe182 and Trp315 pointing into the substrate binding cavity. The apparent role of the heme in cytochrome P450 CYP71A13 was to tether the substrate in the catalysis by indole-3-acetaldoxime dehydratase. Since the crystal structure of cytochrome P450 CYP71A13 has not yet been solved, the modeled structure revealed mechanism of substrate recognition and catalysis.  相似文献   

13.
Cytochromes P450cam and P450BM3 oxidize alpha- and beta-thujone into multiple products, including 7-hydroxy-alpha-(or beta-)thujone, 7,8-dehydro-alpha-(or beta-)thujone, 4-hydroxy-alpha-(or beta-)thujone, 2-hydroxy-alpha-(or beta-)thujone, 5-hydroxy-5-isopropyl-2-methyl-2-cyclohexen-1-one, 4,10-dehydrothujone, and carvacrol. Quantitative analysis of the 4-hydroxylated isomers and the ring-opened product indicates that the hydroxylation proceeds via a radical mechanism with a radical recombination rate ranging from 0.7 +/- 0.3 x 10(10) s(-1) to 12.5 +/- 3 x 10(10) s(-1) for the trapping of the carbon radical by the iron-bound hydroxyl radical equivalent. 7-[2H]-alpha-Thujone has been synthesized and used to amplify C-4 hydroxylation in situations where uninformative C-7 hydroxylation is the dominant reaction. The involvement of a carbon radical intermediate is confirmed by the observation of inversion of stereochemistry of the methyl-substituted C-4 carbon during the hydroxylation. With an L244A mutation that slightly increases the P450(cam) active-site volume, this inversion is observed in up to 40% of the C-4 hydroxylated products. The oxidation of alpha-thujone by human CYP1A2, CYP2C9, CYP2C19, CYP2D6, CYP2E1, and CYP3A4 occurs with up to 80% C-4 methyl inversion, in agreement with a dominant radical hydroxylation mechanism. Three minor desaturation products are produced, with at least one of them via a cationic pathway. The cation involved is proposed to form by electron abstraction from a radical intermediate. The absence of a solvent deuterium isotope effect on product distribution in the P450cam reaction precludes a significant role for the P450 ferric hydroperoxide intermediate in substrate hydroxylation. The results indicate that carbon hydroxylation is catalyzed exclusively by a P450 ferryl species via radical intermediates whose detailed properties are substrate- and enzyme-dependent.  相似文献   

14.
The two-protein complex between putidaredoxin (Pdx) and cytochrome P450(cam) (CYP101) is the catalytically competent species for camphor hydroxylation by CYP101. We detected a conformational change in CYP101 upon binding of Pdx that reorients bound camphor appropriately for hydroxylation. Experimental evidence shows that binding of Pdx converts a single X-proline amide bond in CYP101 from trans or distorted trans to cis. Mutation of proline 89 to isoleucine yields a mixture of both bound camphor orientations, that seen in Pdx-free and that seen in Pdx-bound CYP101. A mutation in CYP101 that destabilizes the cis conformer of the Ile 88-Pro 89 amide bond results in weaker binding of Pdx. This work provides direct experimental evidence for involvement of X-proline isomerization in enzyme function.  相似文献   

15.
Usia T  Watabe T  Kadota S  Tezuka Y 《Life sciences》2005,76(20):2381-2391
Five methylenedioxyphenyl lignans, (-)-clusin (1), (-)-dihydroclusin (2), (-)-yatein (3), (-)-hinokinin (4), and (-)-dihydrocubebin (5), were isolated from Piper cubeba as potent and selective inhibitors against cytochrome P450 3A4 (CYP3A4). In this study, we investigated the mechanism of inhibition of CYP3A4 by these lignans and the possibility of their mechanism-based inhibition. Using [N-methyl-14C]erythromycin as a substrate, all lignans appear to be showed mixed-type of inhibition with apparent Ki of 1.96-4.07 microM. Furthermore, all lignans (1-5) inhibited CYP3A4 in a time-, concentration-, and NADPH-dependent manners and thus appear to be the mechanism-based inhibitors of CYP3A4. The apparent inactivation parameter, K(I) for these compounds were in the range of 0.054-0.373 microM, whereas the k(inact) values were 0.225-0.320 min-1. Among them, (-)-clusin (1) and (-)-dihydroclusin (2) were found to be the most potent CYP3A4 inactivator with apparent K(I) and k(inact) values of 0.082, 0.054 microM and 0.253, 0.310 min-1, respectively. Spectral scanning of microsomes with these lignans yielded an absorbance at 455 nm, suggesting that all of them appear to inactivate the cytochrome P450 via the formation of a metabolite intermediate complex. This pattern is consistent with the metabolism of the methylenedioxyphenyl compounds. These results indicate that (-)-clusin (1), (-)-dihydroclusin (2), (-)-yatein (3), (-)-hinokinin (4), and (-)-dihydrocubebin (5) are effective mechanism-based inhibitors of CYP3A4.  相似文献   

16.
The objective of this study was to investigate the effects of iodine (I(2)) and/or selenium (Se) deficiency on thyroid hormones and hepatic xenobiotic metabolizing enzyme systems using a triple animal model. Three-week-old male Wistar rats were fed for seven weeks. Se deficiency was introduced by a diet containing <0.005 mg/kg Se, and I(2) deficiency was produced by sodium perchlorate containing drinking water. The levels of plasma thyroid hormones [total T(4) (TT(4)), total T(3) (TT(3))], thyroid stimulating hormone (TSH); total microsomal cytochrome P450 (CYP450) and cytochrome b5 (CYP b5) levels; activities of microsomal NADPH-cytochrome P450 reductase (P450R), microsomal aniline hydroxylase (CYP2E1), microsomal 7-ethoxyresorufin O-deethylase (EROD), microsomal 7-pentoxyresorufin O-depentylase (PROD) and cytosolic glutathione S-transferase (GST) were determined. In I(2) deficiency total CYP450 levels, activities of CYP2E1, EROD and GST decreased, and CYP b5 content increased significantly. In Se-deficient rats, total CYP450 level and CYP2E1 activity increased, and EROD and GST activities and CYP b5 level decreased significantly. In combined I(2) and Se deficiency, except for CYP450 content and CYP2E1 activity, all enzyme activities and CYP b5 content decreased significantly compared to control group. Overall results of this study have suggested that metabolism of xenobiotics as well as endogenous compounds is affected by Se and I(2) status.  相似文献   

17.
Tiamulin, a diterpene antibiotic, is used for treatment of pulmonary and gastrointestinal infections in swine and poultry. Combined administration of tiamulin and ionophores (e.g. monensin) to farm animals may lead to intoxication manifested in severe clinical symptoms. Tiamulin metabolite complex with cytochrome P450 has been suggested to be the basis of drug-interactions. However, the formation of metabolic intermediate complex is questionable. The effect of tiamulin-treatment on cytochrome P450 activities was investigated in rats. Ethylmorphine and aminopyrine N-demethylation activities as well as monensin metabolism (O-demethylation) increased in liver microsomes of tiamulin-treated (200 mg/kg) animals. CYP3A1 induction caused by tiamulin was confirmed by the results of Western blot analysis. To test metabolic intermediate complex formation as a result of tiamulin treatment, cytochrome P450 activities were also determined in the presence of potassium ferricyanide. The findings together with those of in vitro complex formation suggested that formation of metabolic intermediate complexes of tiamulin with cytochrome P450 could be excluded. On the other hand, the results of inhibition studies showed significant decrease of ethylmorphine or aminopyrine as well as monensin demethylation in the presence of tiamulin. Our results proved that tiamulin has dual effect on cytochromes P450. It is able to induce and directly inhibit CYP3A enzymes, which are predominantly responsible for monensin O-demethylation. The direct effect of tiamulin as an inhibitor might play a more important role in toxicity than its putative effect as a chemical inducer of CYP3A enzymes.  相似文献   

18.
Screening of cytochrome P450 monoxygenases responsible for the regiospecific hydroxylation of flavones, isoflavones and chalcones was attempted using a P450 library constructed from Streptomyces avermitilis MA4680, Bacillus and Nocardia farcinica IFM10152 strains. As electron transfer redox partners with the P450s in Escherichia coli system, putidaredoxin reductase (PdR) and putidaredoxin (Pdx) from Pseudomonas putida were used. Among the 50 soluble P450s in the library screened, three cytochrome P450s, i.e. CYP107Y1, CYP125A2 and CYP107P2 from S. avermitilis MA4680 showed good hydroxylation activities towards flavones and isoflavones. However, low product yields prevented us from identifying complete structure of the products. By using S. avermitilis MA4680 as their expression host, further analysis identified that CYP107Y1(SAV2377), CYP125A2(SAV5841) and CYP107P2(SAV4539) showed good regiospecific hydroxylation activities towards genistein (4',5,7-trihydroxyisoflavone), chrysin (5,7-dihydroxyisoflavone) and apigenin (4',5,7-dihydroxyisoflavone) to produce 3',4',5,7,-tetrahydroxyisoflavone, B-ring hydroxylated 5,7-dihydroxyflavone and 3',4',5,7,-tetrahydroxyflavone, respectively. Analyses of the reaction products were performed using HPLC, ESI-MS-MS and GC-MS and 1H NMR.  相似文献   

19.
Inui H  Maeda A  Ohkawa H 《Biochemistry》2007,46(35):10213-10221
Microsomal cytochrome P450 3A4 (CYP3A4) catalyzes monooxygenase reactions toward a diverse group of exogenous and endogenous substrates and requires cytochrome b5 (b5) in the oxidation of the typical substrate testosterone. To analyze the molecular interaction among CYP3A4, NADPH-cytochrome P450 oxidoreductase (P450 reductase), and b5, we constructed several fused enzyme genes and expressed them in Saccharomyces cerevisiae. The recombinant fused enzymes CYP3A4-truncated (t)-P450 reductase-t-b5 (3RB) and CYP3A4-t-b5-t-P450 reductase (3BR) in yeast microsomes showed a higher specific activity in 6beta-hydroxylation of testosterone than did the reconstitution premixes of CYP3A4, P450 reductase, and b5. The purified fused enzymes exhibited lower Km values and substantially increased Vmax values in 6beta-hydroxylation of testosterone and oxidation of nifedipine. Moreover, the fused enzymes showed significantly higher activities in cytochrome c reduction than the reconstitution premixes. Although the affinity of 3RB toward cytochrome c was twice as high as that of 3BR, 3BR and 3RB showed nearly the same affinity toward NADPH/NADH. In addition, the heme of the CYP3A4 moiety of 3RB was reduced preferentially and more rapidly than that of 3BR, whereas the heme of the b5 moiety of 3BR was selectively reduced compared with that of 3RB. These results suggest that the conformation of the 3RB molecule was the most suitable for high activity because of appropriate ordering of the CYP3A4, P450 reductase, and b5 moieties for efficient electron flow. Thus, we believe that the b5 moiety plays an important role in the efficient transfer of the second electron in the vicinity of the CYP3A4 moiety.  相似文献   

20.
The one-electron autoxidation of human cytochrome P450 3A4   总被引:1,自引:0,他引:1  
Monomeric cytochrome P450 3A4 (CYP3A4), the most prevalent cytochrome P450 in human liver, can simultaneously bind one, two, or three molecules of substrates and effectors. The difference in the functional properties of such binding intermediates gives rise to homotropic and heterotropic cooperative kinetics of this enzyme. To understand the overall kinetic processes operating in CYP3A4, we documented the kinetics of autoxidation of the oxy-ferrous intermediate of CYP3A4 as a function of testosterone concentration. The rate of autoxidation in the presence of testosterone was significantly lower than that observed with no substrate present. Stability of the oxy-ferrous complex in CYP3A4 and the amplitude of the geminate CO rebinding increased significantly as a result of binding of just one testosterone molecule. In contrast, the slow phase in the kinetics of cyanide binding to the ferric CYP3A4 correlated with a shift of the heme iron spin state, which is only caused by the association of a second molecule of testosterone. Our results show that the first substrate binding event prevents the escape of diatomic ligands from the distal heme binding pocket, stabilizes the oxy-ferrous complex, and thus serves as an important modulator of the uncoupling channel in the cytochromes P450.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号