首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Low bone mineral density (BMD) is a major risk factor for osteoporotic fracture. Studies of BMD in families and twins have shown that this trait is under strong genetic control. To identify regions of the genome that contain quantitative trait loci (QTL) for BMD, we performed independent genomewide screens, using two complementary study designs. We analyzed unselected nonidentical twin pairs (1,094 pedigrees) and highly selected, extremely discordant or concordant (EDAC) sib pairs (254 pedigrees). Nonparametric multipoint linkage (NPL) analyses were undertaken for lumbar spine and total-hip BMD in both cohorts and for whole-body BMD in the unselected twin pairs. The maximum evidence of linkage in the unselected twins (spine BMD, LOD 2.7) and the EDAC pedigrees (spine BMD, LOD 2.1) was observed at chromosome 3p21 (76 cM and 69 cM, respectively). These combined data indicate the presence, in this region, of a gene that regulates BMD. Furthermore, evidence of linkage in the twin cohort (whole-body BMD; LOD 2.4) at chromosome 1p36 (17 cM) supports previous findings of suggestive linkage to BMD in the region. Weaker evidence of linkage (LOD 1.0-2.3) in either cohort, but not both, indicates the locality of additional QTLs. These studies validate the use, in linkage analysis, of large cohorts of unselected twins phenotyped for multiple traits, and they highlight the importance of conducting genome scans in replicate populations as a prelude to positional cloning and gene discovery.  相似文献   

2.
Linkage of interleukin 6 locus to human osteopenia by sibling pair analysis   总被引:4,自引:0,他引:4  
Osteopenia and osteoporosis are common human conditions considered to result from the interplay of multiple genetic and environmental factors. Twin and family studies have yielded strong correlations between levels of bone mass and a number of genetic factors. The genes involved could regulate metabolism, formation and resorption of bone, all processes that determine bone mass. We tested 192 sibling pairs of adult Japanese women from 136 families for genetic linkage between osteopenia and allelic variants of four candidate genes (interleukin-6, interleukin-6 receptor, calcium-sensing receptor, and matrix gla protein) using qualitative and quantitative methods, and using as genetic markers dinucleotide-repeat polymorphisms present in or near each of those loci. The interleukin-6 locus showed evidence of linkage to osteopenia analyzed as a qualitative trait, with mean allele sharing of 0.40 (P=0.0001) in discordant pairs and 0.55 (P=0.04) in concordant affected pairs. Variation at this locus was also linked to decreased bone mineral density measured as a quantitative trait (P=0.02). Analyses limited only to the post-menopausal women showed similar or even stronger results. No other locus among those tested showed any evidence of linkage by either method. The results provided strong evidence that genetic variation at the interleukin-6 locus affects regulation of bone mineral metabolism and confers risk for osteopenia and osteoporosis in adult women.  相似文献   

3.
Genetic determinants of bone mass.   总被引:14,自引:0,他引:14  
A genetic contribution to bone mass determination was first described in the early 70s. Elucidation of gene contribution to this has since been attempted through studies analyzing associations between bone mass acquisition and/or maintenance and polymorphic variations of several genes. The first to be described was the vitamin D receptor gene (VDR), initially claimed to contribute to almost 75% of the genetic variation in bone mineral density (BMD) in twin and general population studies. Not all of the studies published to date conclude that a clear relationship exists between polymorphic VDR alleles and BMD, and the molecular basis for the VDR gene polymorphisms influence on bone mineralization has not yet been clarified. Since then, other genes with a significant role in bone metabolism such as estradiol receptor, collagen type 1alpha1, TGF-beta1, interleukin-6, calcitonin receptor, alpha2-HS-glycoprotein, osteocalcin, calcium-sensing receptor, interleukin-1 receptor antagonist, beta3-adrenergic receptor, apolipoprotein E, PTH, IGF-I and glucocorticoid receptor have been analyzed. Some polymorphic variations in these genes have been associated in some works with significant differences in BMD, with even more significant contributions when associations of different gene polymorphisms were analyzed. Again, the molecular basis for the contribution of these alleles to bone mass determination has not yet been described. A different approach has been attempted by linkage analysis of loci involved in bone density in pedigrees with low BMD using BMD as a quantitative trait. Recent results do not confirm, in these families, any association with any of the previously reported genes, but rather with other as yet unidentified genes. The genetic contribution to mild variations in the general population, as a result of environmental and endogenous individual influences, probably differs completely from that providing a pathologic BMD.  相似文献   

4.
峰值骨密度是由遗传和环境因素及其相互作用共同决定的复杂性状。维生素D受体基因、雌激素α受体基因、白介素6基因、副甲状腺素基因、Ⅰ型胶原α2基因、骨钙素基因、α2巯基糖蛋白基因是与骨代谢相关的7个重要的候选基因。本研究旨在检测这7个候选基因之间的相互作用对中国女性峰值骨密度的影响。样本为中国上海的361个无关、健康的绝经前女性,均为汉族人,年龄为20—44岁。采用Hologic QDR2000+双能X射线扫描仪对腰椎与髋部的骨密度进行了检测。采用聚合酶链式反应-限制性片段长度多态分析方法对每个个体的以下8个多态性标记位点进行基因分型:维生素D受体基因的Apa Ⅰ位点,雌激素α受体基因的PvuⅡ和XbaⅠ位点,白介素6基因的BsrB Ⅰ位点,副甲状腺素基因的BstB Ⅰ位点,Ⅰ型胶原α2基因的Msp Ⅰ位点,骨钙素基因的Hind Ⅲ位点,娃巯基糖蛋白基因的SacⅠ位点。采用二元方差分析对基因相互作用与骨密度的关系进行研究。结果表明,白介素基因和雌激素α受体基因(PvuⅡ)的相互作用对髋部(P=0.019)、转子间区(P=0.016)和股骨颈(P=0.019)的骨密度有显著作用。在这3个部位,GGPp基因型携带者比GGpp基因型携带者的骨密度值分别高出18.0%、19.5%和14.8%。另外观察到醒巯基糖蛋白基因与自介素6基因的相互作用对股骨颈骨密度有显著影响(P=0.046)。GGSS基因型携带者的股骨颈骨密度值比GGSs基因型携带者高出18.8%。该项群体水平的统计分析表明:对于中国女性峰值骨密度的遗传决定,白介素基因和雌激素α受体基因、α2巯基糖蛋白基因的相互作用显著。  相似文献   

5.
It has been known for over 20 years that osteoporosis is highly influenced by genetic factors. Bone mineral density (BMD) has also been shown to be highly heritable. Other known risk factors for osteoporotic fractures such as reduced bone quality, femoral neck geometry and bone turnover are now also known to be heritable. Susceptibility to osteoporosis is mediated, in all likelihood, by multiple genes each having small effect. Different approaches are being used currently to identify the many genes responsible. These include linkage studies in man and experimental animals as well as candidate gene studies and alterations in gene expression. Linkage studies have identified multiple quantitative trait loci (QTL) for regulation of BMD and, with twin studies, have indicated that the effects of these loci are partly site-dependent and sex-specific. On the whole, the genes responsible for BMD regulation at these QTL have not yet been isolated. Most studies have used the candidate gene approach. The vitamin D receptor gene (VDR), the collagen type I alpha 1 gene (COLIA1) and estrogen receptor gene (ER) alpha have been most widely investigated and found to play a role in regulating BMD, but the effects are modest and together probably account for less than 5% of the heritable contribution to BMD. Genes may vary in their influence of particular intermediate phenotypes, and we now know that not all genes influencing BMD will be important in fracture. In addition, the study of other diseases such as osteoarthritis and metabolic bone syndromes may prove fruitful in highlighting genes which overlap to osteoporosis as well. As large scale genetic testing becomes more cost-effective, recent findings have illustrated the potential of novel approaches. These include combining large multi-national populations for candidate gene analysis, meta-analyses, DNA pooling studies and gene expression studies.  相似文献   

6.
Parathyroid hormone gene with bone phenotypes in Chinese   总被引:3,自引:0,他引:3  
Osteoporosis is a common disorder afflicting old people. The parathyroid hormone (PTH) gene is involved in bone remodeling and calcium homeostasis, and has been considered as an important candidate gene for osteoporosis. In this study, we simultaneously tested linkage and/or association of PTH gene with bone mineral density (BMD) and bone mineral content (BMC), two important risk factors for osteoporosis. A sample of 1263 subjects from 402 Chinese nuclear families was used. The families are composed of both parents and at least one healthy daughter aged from 20 to 45 years. All the subjects were genotyped at the polymorphic BstBI site inside the intron 2 of the PTH gene (a nucleotide substitution of G to A at the position +3244). BMD and BMC were measured at the lumbar spine and the hip region via dual-energy X-ray absorptiometry (DXA). Using QTDT (quantitative trait transmission disequilibrium test), we did not find significant results for association or linkage between the PTH gene and BMD or BMC variation at the spine or hip. Our data do not support the PTH gene as a quantitative trait locus (QTL) underlying the bone phenotypic variation in the Chinese population.  相似文献   

7.
The prevalence of osteoporosis is raising worldwide as improving conditions of living and treatment of other common diseases continuously increases life expectancy. Thus, osteoporosis affects most women above 80 years of age and, at the age of 50, the lifetime risk of suffering an osteoporosis-related fracture approaches 50% in women and 20% in men. Numerous genetic, hormonal, nutritional and life-style factors contribute to the acquisition and maintenance of bone mass. Among them, genetic variations explain as much as 70% of the variance for bone mineral density (BMD) in the population. Dozens of quantitative trait loci (QTLs) for BMD have been identified by genome screening and linkage approaches in humans and mice, and more than 100 candidate gene polymorphisms tested for association with BMD and/or fracture. Sequence variants in the vitamin D receptor (VDR), collagen 1 alpha 1 chain (Col1A1), estrogen receptor alpha (ESR1), interleukin-6 (IL-6) and LDL receptor-related protein 5 (LRP5) genes were all found to be significantly associated with differences in BMD and/or fracture risk in multiple replication studies. Moreover, some genes, such as VDR and IL-6, were shown to interact with non-genetic factors, i.e. calcium intake and estrogens, to modulate BMD. Since these gene variants have also been associated with other complex disorders, including cancer and coronary heart disease, they may represent common genetic susceptibility factors exerting pleiotropic effects during the aging process.  相似文献   

8.
A centromere-based linkage group on the long arm of human chromosome 17   总被引:2,自引:0,他引:2  
A genetic linkage group on the long arm of chromosome 17 is reported. A maximum likelihood of theta = 0.20 between the centromere-based locus D17Z1 and COL1A1 has been found, as well as a theta = 0.10 between COL1A1 and GH1. The most likely order of the three loci is D17Z1-COL1A1-GH1.  相似文献   

9.
Cheung CL  Huang QY  Ng MY  Chan V  Sham PC  Kung AW 《Human genetics》2006,120(3):354-359
Chromosome 1q has previously been linked to bone mineral density (BMD) variation in the general population in several genome-wide linkage studies in both humans and mouse model. The aim of present study is to replicate and fine map the QTL influencing BMD in chromosome 1q in southern Chinese. Twelve microsatellite markers were genotyped for a 57 cΜ region in the chromosome 1q in 306 southern Chinese families with 1,459 subjects. Each of these families was ascertained through a proband with BMD Z-scores less than −1.3 at the hip or spine. BMD (g/cm2) at the L1-4 lumbar spine, femoral neck (FN), trochanter and total hip was measured by dual-energy X-ray absortiometry. Linkage analyses were performed using the variance component linkage analysis method implemented in Merlin software. Four markers (D1S2878, D1S196, D1S452, and D1S218) achieved a LOD score greater than 1.0 with spine BMD, with the maximum multipoint LOD score of 2.36 at the marker D1S196. We did not detect a LOD score greater than 1.0 for BMD at the FN, trochanter, or total hip in multipoint linkage analyses. Our results present the first evidence for the presence of an osteoporosis susceptibility gene on chromosome 1q in non-Caucasian subjects. Further analyses of candidate genes are warranted to identify QTL genes and variants underlying the variations of BMD in this region.  相似文献   

10.
Pan F  Xiao P  Guo Y  Liu YJ  Deng HY  Recker RR  Deng HW 《Human genetics》2008,123(4):419-427
Late age at menarche (AAM), an important type of endocrinopathy in females, is associated with lower bone mineral density (BMD), a major risk factor for osteoporosis. The correlation is mainly mediated through common genetic factors, which are largely unknown. A bivariate genome-wide linkage scan was conducted on 2,522 females from 414 Caucasian pedigrees to identify quantitative trait loci influencing both AAM and BMD. The strongest linkage signal was detected on chromosome 22q13. Other regions such as the 3q13, 3p25, 7p15, and 15q13 were also suggested. The inferred promising candidate genes in the linkage regions may contribute to our understanding of pathogenesis of endocrinopathy and osteoporosis in females.  相似文献   

11.
Familial combined hyperlipidemia (FCHL) is a common dyslipidemia predisposing to premature coronary heart disease (CHD). The disease is characterized by increased levels of serum total cholesterol (TC), triglycerides (TGs), or both. We recently localized the first locus for FCHL, on chromosome 1q21-q23. In the present study, a genomewide screen for additional FCHL loci was performed. In stage 1, we genotyped 368 polymorphic markers in 35 carefully characterized Finnish FCHL families. We identified six chromosomal regions with markers showing LOD score (Z) values >1.0, by using a dominant mode of inheritance for the FCHL trait. In addition, two more regions emerged showing Z>2.0 with a TG trait. In stage 2, we genotyped 26 more markers and seven additional FCHL families for these interesting regions. Two chromosomal regions revealed Z>2.0 in the linkage analysis: 10p11.2, Z=3.20 (theta=.00), with the TG trait; and 21q21, Z=2.24 (theta=.10), with the apoB trait. Furthermore, two more chromosomal regions produced Z>2.0 in the affected-sib-pair analysis: 10q11.2-10qter produced Z=2.59 with the TC trait and Z=2.29 with FCHL, and 2q31 produced Z=2.25 with the TG trait. Our results suggest additional putative loci influencing FCHL in Finnish families, some potentially affecting TG levels and some potentially affecting TC or apoB levels.  相似文献   

12.
A genetic linkage study of the RFLPs identified by nine DNA probes localized to the pericentromeric region and long arm of chromosome 17 has been undertaken in 16 families with von Recklinghausen neurofibromatosis (NF1). Close linkage has been shown with the markers CRI-L946 (D17S36), CRI-L581 (D17S37), p17H8 (D17Z1), and pA10-41 (D17S71). The ERBA1 and COL1A1 loci may also be closely linked, but the data are limited. The results for HOX2 and NGFR suggest only loose linkage with the NF1 gene, while no linkage was found between NF1 and the growth hormone locus. No suggestion of nonallelic heterogeneity of NF1 was found in this study.  相似文献   

13.
In humans, peak bone mineral density (BMD) is the primary determinant of osteoporotic fracture risk among older individuals, with high peak BMD levels providing protection against osteoporosis in the almost certain event of bone loss later in life. A genome screen to identify quantitative trait loci (QTLs) contributing to areal BMD (aBMD) and volumetric BMD (vBMD) measurements at the lumbar spine and femoral neck was completed in 595 female F2 rats produced from reciprocal crosses of inbred Fischer 344 and Lewis rats. Significant evidence of linkage was detected to rat Chromosomes 1, 2, 8, and 10, with LOD scores above 8.0. The region on rat Chromosome 8 is syntenic to human Chromosome 15, where linkage to spine and femur BMD has been previously reported and confirmed in a sample of premenopausal women.  相似文献   

14.
A genome-wide scan for loci linked to forearm bone mineral density   总被引:17,自引:0,他引:17  
Osteoporosis is a chronic disorder characterized by low bone mass and fragility fractures. It affects more than 25 million men and women in the United States alone. Although several candidate genes, such as the vitamin-D-receptor gene or the estrogen-receptor gene, have been suggested in the pathogenesis of osteoporosis, the genetic dissection of this disorder remains a daunting task. To search systematically for chromosomal regions containing genes that regulate bone mineral density (BMD), we scanned the entire autosomal genome by using 367 polymorphic markers among 218 individuals (153 sibpairs) from 96 nuclear families collected from three townships of Anqing, China. In these 96 families, DNA samples from both parents were available for 82 (85.4%) families. By using age- and gender-adjusted forearm BMD measurements, a peak on chromosome 2 near D2S2141, D2S1400, and D2S405, a region previously linked to spinal BMD, showed evidence of linkage to both proximal and distal forearm BMD (multipoint LOD=2.15 and 2.14 for proximal and distal forearm BMD, respectively). One region on chromosome 13 (multipoint LOD=1.67) in the proximity of D13S788 and D13S800 showed evidence of linkage to distal forearm BMD only. Possible candidate genes included CALM2 (calmodulin 2) at 2p21.3-p21.1, a putative STK (serine/threonine kinase) at 2p23–24, POMC (pro-opiomelanocortin) at 2p23.3, and COL4A1 and COL4A2 (collagen IV alpha-1 and alpha-2 subunits) at 13q34. Because of the limited sample size, the suggestive evidence of linkage of this study should be considered as tentative and needs to be replicated in other larger populations. Received: 19 November 1998 / Accepted: 22 January 1999  相似文献   

15.
Peak bone mineral density (BMD) is a highly heritable trait and is a good predictor of the risk of osteoporosis and fracture in later life. Recent studies have sought to identify the genes underlying peak BMD. Linkage analysis in a sample of 464 premenopausal white sister pairs detected linkage of spine BMD to chromosome 1q (LOD 3.6). An independent sample of 254 white sister pairs has now been genotyped, and it also provides evidence of linkage to chromosome 1q (LOD 2.5) for spine BMD. Microsatellite markers were subsequently genotyped for a 4-cM map in the chromosome 1q region in all available white sister pairs (n=938), and a LOD score of 4.3 was obtained near the marker D1S445. Studies in the mouse have also detected evidence of linkage to BMD phenotypes in the region syntenic to our linkage finding on chromosome 1q. Thus, we have replicated a locus on 1q contributing to BMD at the spine and have found further support for the region in analyses employing an enlarged sample. Studies are now ongoing to identify the gene(s) contributing to peak spine BMD in women.  相似文献   

16.
A linkage map of the Japanese quail (Coturnix japonica) genome was constructed based upon segregation analysis of 72 microsatellite loci in 433 F(2) progeny of 10 half-sib families obtained from a cross between two quail lines of different genetic origins. One line was selected for long duration of tonic immobility, a behavioural trait related to fearfulness, while the other was selected based on early egg production. Fifty-eight of the markers were resolved into 12 autosomal linkage groups and a Z chromosome-specific linkage group, while the remaining 14 markers were unlinked. The linkage groups range from 8 cM (two markers) to 206 cM (16 markers) and cover a total map distance of 576 cM with an average spacing of 10 cM between loci. Through comparative mapping with chicken (Gallus gallus) using orthologous markers, we were able to assign linkage groups CJA01, CJA02, CJA05, CJA06, CJA14 and CJA27 to chromosomes. This map, which is the first in quail based solely on microsatellites, is a major step towards the development of a quality molecular genetic map for this valuable species. It will provide an important framework for further genetic mapping and the identification of quantitative trait loci controlling egg production and fear-related behavioural traits in quail.  相似文献   

17.
Migraine is the most common type of chronic episodic headache. Several population-based family studies have suggested a strong genetic predisposition to migraine, especially migraine with aura (MA). Although several susceptibility loci have been identified, none of the numerous studies performed to date have led to the identification of a gene responsible for the more common forms of migraine. GABA-A receptors and their modulator sites seem to be involved in the pathophysiological events that underlie migraine. We report on clinical and molecular data from a total of 10 families with MA, in which MA segregates as an autosomal dominant trait and presents with homogeneous clinical features. After excluding linkage with the known candidate loci, we used a functional candidate approach and genotyped these families with markers from the 15q11-q13 genomic region, which contains the genes encoding GABA-A receptor subunits. Evidence of linkage was obtained with a parametric two-point linkage analysis (maximum LOD score of 5.56 at a recombination fraction of 0.001 for marker GABRB3) and was supported by multipoint analysis (maximum LOD score of 6.54 between markers D15S113 and D15S1019). The critical region spanned 3.6 Mb. These results provide the basis for further investigation of the hypothesized relationship between a GABA-A receptor dysfunction and migraine.  相似文献   

18.
一成骨不全家系的COL1A1基因突变检测   总被引:7,自引:0,他引:7  
成骨不全(Osteogenesisimperfecta,OI)是一种由于Ⅰ型胶原形成障碍,导致骨脆性增强为主要症状的 常染色体显性遗传性疾病。临床上主要表现为骨质脆弱、蓝巩膜、耳聋和中等程度的关节畸形等症状。成骨不全 基因分别定位于17q21.31 q22和7q22.1,其致病基因分别为COL1A1和COL1A2。对一常染色体显性遗传的 成骨不全家系进行连锁分析,在COL1A1遗传位点发现紧密连锁(LOD=9.31;θ=.00)。突变检测发现在 COL1A1基因第26内含子5′端剪接位点处存在一由GT转换为AT的致病突变,该突变引起的异常剪接是导致成 骨不全的致病原因之一。  相似文献   

19.
The HLA system and the analysis of multifactorial genetic disease   总被引:4,自引:0,他引:4  
The human leukocyte antigen (HLA) system comprises closely linked genes controlling highly polymorphic proteins involved in the presentation of peptides to the T-cell receptor. Specific alleles at HLA loci are associated with diseases, often those suspected to be of autoimmune aetiology. Many of these associations result from linkage disequilibrium between the HLA gene studied and other HLA genes or non-HLA gebes close by. Owing to its high level of polymorphism and its candidate role in many diseases, HLA was the first system used in many techniques of genetic mapping, such as affected-sib-pair analysis and association (linkage disequilibrium) studies. Much remains unknown about the reasons why diseases are associated with HLA. Experience gained from HLA has, however, shown how other loci involved in complex traits can be identified by studying families with multiple affected cases or sib pairs, followed by linkage-disequilibrium mapping and then analysis of candidate genes.  相似文献   

20.
Lou XY  Ma JZ  Yang MC  Zhu J  Liu PY  Deng HW  Elston RC  Li MD 《Genetics》2006,172(1):647-661
It is well known that pedigree/family data record information on the coexistence in founder haplotypes of alleles at nearby loci and the cotransmission from parent to offspring that reveal different, but complementary, profiles of the genetic architecture. Either conventional linkage analysis that assumes linkage equilibrium or family-based association tests (FBATs) capture only partial information, leading to inefficiency. For example, FBATs will fail to detect even very tight linkage in the case where no allelic association exists, while a violation of the assumption of linkage equilibrium will result in biased estimation and reduced efficiency in linkage mapping. In this article, by using a data augmentation technique and the EM algorithm, we propose a likelihood-based approach that embeds both linkage and association analyses into a unified framework for general pedigree data. Relative to either linkage or association analysis, the proposed approach is expected to have greater estimation accuracy and power. Monte Carlo simulations support our theoretical expectations and demonstrate that our new methodology: (1) is more powerful than either FBATs or classic linkage analysis; (2) can unbiasedly estimate genetic parameters regardless of whether association exists, thus remedying the bias and less precision of traditional linkage analysis in the presence of association; and (3) is capable of identifying tight linkage alone. The new approach also holds the theoretical advantage that it can extract statistical information to the maximum extent and thereby improve mapping accuracy and power because it integrates multilocus population-based association study and pedigree-based linkage analysis into a coherent framework. Furthermore, our method is numerically stable and computationally efficient, as compared to existing parametric methods that use the simplex algorithm or Newton-type methods to maximize high-order multidimensional likelihood functions, and also offers the computation of Fisher's information matrix. Finally, we apply our methodology to a genetic study on bone mineral density (BMD) for the vitamin D receptor (VDR) gene and find that VDR is significantly linked to BMD at the one-third region of the wrist.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号