首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The mouse metallothionein II (MT-II) gene is located approximately 6 kilobases upstream of the MT-I gene. A comparison of the sequences of mouse MT-I and MT-II genes (as well as those of other mammals) reveals that the coding regions are highly conserved even at "silent" positions but that the noncoding regions and introns are extremely divergent between primates and rodents. There are four blocks of conserved sequences in the promoters of mouse MT-I, mouse MT-II, and human MT-IIA genes; one includes the TATAAA sequence, and another has been implicated in regulation by heavy metals. Mouse MT-I and MT-II mRNAs are induced to approximately the same extent in vivo in response to cadmium, dexamethasone, or lipopolysaccharide. Mouse MT-I and MT-II genes are regulated by metals but not by glucocorticoids after transfection into HeLa cells.  相似文献   

3.
The W7 mouse thymoma cell line does not express the metallothionein-I (MT-I) gene in the presence of either cadmium or glucocorticoids, unlike most other cell lines. This cell line was therefore used as a model system for studying the role of DNA methylation on MT-I gene expression. The extent of DNA methylation within the MT-I gene and its flanking regions was determined by comparing the cleavage patterns generated by the isoschizomeric restriction enzymes Hpa II and Msp I. In W7 cells, all of the Hpa II sites in the vicinity of the MT-I gene are methylated, whereas in cells that have an expressible MT-I gene (for example, Friend erythroleukemia cells) all of these Hpa II sites are unmethylated. When W7 cells are treated for a few hours with 5-azacytidine, the MT-I gene becomes inducible by both cadmium and glucocorticoids. Addition of hydroxyurea along with 5-azacytidine prevents MT-I gene induction, suggesting that incorporation of 5-azacytidine into DNA is required before this gene can be activated. To determine whether 5-azacytidine treatment changes the methylation pattern near the MT-I gene, we treated W7 cells with 5-azacytidine and selected inducible cells in 10 μM cadmium. All of the Hpa II sites within the MT-I gene are unmethylated in these cadmium-resistant W7 cells. In addition, flanking DNA sequences are also undermethylated in a pattern similar to that seen in Friend erythroleukemia cells that express the MT-I gene. The possible significance of methylation as a mechanism of gene commitment during cell differentiation is discussed.  相似文献   

4.
Human metallothionein MT-I and MT-II processed genes   总被引:4,自引:0,他引:4  
U Varshney  L Gedamu 《Gene》1984,31(1-3):135-145
Two intronless pseudogenes, corresponding to the human metallothionein MT-I and MT-II processed genes, have been isolated from a human genomic library. MT-I processed gene has accumulated a number of mutations including a nonsense mutation giving rise to a termination codon at amino acid position 21, and a single base deletion at amino acid position 47 causing a shift in the reading frame. MT-II processed gene is a full-length perfect copy of its corresponding mRNA except for a few mutations. Most of the mutations in MT-II processed gene are silent except that the amino acid glycine (GGT) at position 10 is changed to serine (AGT) due to a transition. Both MT-I and MT-II processed genes possess poly(A) sequences of 21 and 17 nucleotides, respectively, 3' to the consensus AATAAA sequence. While these genes are quite similar in their sequences at the 3'-untranslated region, they show less than 50% homology in the 5'-untranslated sequences. Two direct repeats of 16 and 18 nucleotides in length define the limits of the MT-I and MT-II processed genes, respectively, and have been confirmed by S1 nuclease mapping analysis. In both MT-I and MT-II processed genes these direct repeats towards the 5' end of the gene start with an AhaIII (TTTAAA) restriction site. Our studies suggest that these direct repeats are the results of the insertion site duplication.  相似文献   

5.
6.
Southern blot analysis has identified several metallothionein gene sequences in a human pathogenic yeast Candida glabrata. Two of these genes encoding proteins designated MT-I and MT-II have been cloned and sequenced. No introns were found in either of the genes. The complete primary structure of MT-II was also determined by protein sequencing methods. As isolated, MT-I and MT-II consist of 62 and 51 amino acids, respectively. The only residues predicted from the nucleotide sequence but not present in the isolated protein are the amino-terminal methionines in each sequence. MT-I contains 18 cysteines, 14 of which are present as Cys-X-Cys motifs and two additional cysteines in a Cys-X-X-Cys sequence. The sequence of MT-II contains 16 cysteinyl residues, 14 of which are in Cys-X-Cys sequences. Fluorescence spectroscopy indicates the presence of Cu(I)-thiolate bonds in both proteins. The binding stoichiometries are 11-12 for MT-I and 10 for MT-II. Under certain nutritional conditions, a truncated form of MT-II was also produced. Northern analysis of the total cellular RNA from copper-treated cells showed that both MT-I and MT-II genes are regulated by this metal ion in a concentration-dependent fashion. The concentrations of MT-II mRNA appeared to be higher than that of MT-I mRNA at all concentrations of copper sulfate tested. Both genes are inducible by silver but not by cadmium salts. Cadmium ions, however, are effective in reducing the control levels of both MT-I and MT-II mRNAs.  相似文献   

7.
The assembly of the lipid-linked oligosaccharide, Glc(3)Man(9)GlcNAc(2)-P-P-Dol, occurs on the rough ER membrane in an ordered stepwise manner. The process is highly conserved among eukaryotes. In order to isolate the human mannosyltransferase I (MT-I) gene involved in the process, we used the Saccharomyces cerevisiae MT-I gene ( ALG1 ), which has already been cloned. On searching the EST database with the amino acid sequence of the ALG1 gene product, we detected seven related human EST clones. A human fetal brain cDNA library was screened by PCR using gene-specific primers based on the EST nucleotide sequences and a 430 bp cDNA fragment was amplified. The cDNA library was rescreened with this 430 bp cDNA, and two cDNA clones (HR1-3 and HR1-4) were isolated and sequenced. On a homology search of the EST database with the nucleotide sequence of HR1-3, we detected a novel human EST clone, AA675921 (GenBank accession number). Based on the nucleotide sequences of AA675921 and HR1-4, we designed gene-specific PCR primers, which allowed to amplify a 1.8 kb cDNA from human fetal brain cDNA. This cDNA was cloned and shown to contain an ORF encoding a protein of 464 amino acids. We designated this ORF as Hmat-1. The amino acid sequence deduced from the Hmat-1 gene showed several highly conserved regions shared with the yeast and nematode MT-I sequences. Furthermore, this 1.8 kb cDNA successfully complemented the S. cerevisiae alg1-1 mutation, indicating that the Hmat-1 gene encodes the human MT-I and that the function of this enzyme was conserved between yeast and human.  相似文献   

8.
DNA regions of 10 and 7 kb that flank the mouse metallothionein II (MT-II) and MT-I genes, respectively, were combined with a minimally marked MT-I (MT-I*) gene and tested in transgenic mice. This construct resulted in (i) position-independent expression of MT-I* mRNA and copy number-dependent expression, (ii) levels of hepatic MT-I mRNA per cell per transgene that were about half that derived from endogenous MT-I genes, (iii) appropriate regulation by metals and hormones, and (iv) tissue distribution of transgene mRNA that resembled that of endogenous MT-I mRNA. These features were not observed when MT-I* was tested without the flanking regions. These MT-I flanking sequences also improved the expression of rat growth hormone reporter genes, with or without introns, that were under the control of the MT-I promoter. Moreover, they enhanced expression from two of four heterologous promoters/enhancers that were tested. Deletion analysis indicated that regions known to have DNase I-hypersensitive sites were necessary but not sufficient for high-level expression. These data suggest that the DNA regions flanking the mouse MT-I and MT-II genes have functions like the locus control regions described for other genes.  相似文献   

9.
10.
11.
12.
Repetitive DNA sequences near three human beta-type globin genes.   总被引:7,自引:7,他引:0       下载免费PDF全文
Five repetitive DNA sequences, of average length 259 bp, have been identified in the intergenic regions which flank three human beta-tupe globin genes. A pair of inverted repeat sequences, separated by 919 bp, was found 1.0 kb to the 5' side of the epsiln-globin gene. Each contains a homologous Alu I site. Another repetitive sequence, with the same orientation as the inverted repeat sequence closest to the epsilon-globin gene, lies about 2.2 kb to the 5' side of the delta-globin gene. A pair of inverted repeat sequences, with the same relative orientations as the other pair and separated by about 800 bp, was found about 1.5 kb to the 3' side of the beta-globin gene.  相似文献   

13.
14.
Repetitive DNA sequences in the bovine corticotropin-beta-lipotropin precursor gene region have been mapped and subjected to nucleotide sequence analysis. Two of the four repetitive DNA segments found are located in the 5'-flanking region, and one each within the intervening sequences. Each repetitive DNA segment contains one to three highly homologous unit sequences with an approximate length of 120 base pairs. All the unit sequences are flanked on the 3' side by tandem repeats. There are about 10(5) copies of the repetitive DNA in the bovine genome. Comparison of the bovine repetitive sequences with those of other mammalian species reveals the presence of a homologous segment of approximately 40 base pairs. This segment and the region preceding it in the bovine repetitive DNA exhibit sequence homology with the region encompassing the origin of DNA replication in papovaviruses.  相似文献   

15.
The mouse metallothionein-I homopurine/homopyrimidine (MT-I R/Y) sequence is a 128-base pair element located approximately 1.2 kilobase pairs upstream of the MT-I gene. Previous in vitro studies of this sequence in purified plasmids indicated the formation of a non-B DNA structure stabilized by acidic pH and negative supercoiling. We now present a detailed in vitro and in vivo analysis of the MT-I R/Y sequence using chemical probes of DNA structure and ligation-mediated polymerase chain reaction. In vivo analysis suggests neither profound base unpairing nor protein binding within the MT-I R/Y sequence before or after metal induction of MT-I. We conclude for this element that the propensity to adopt an unusual DNA structure in vitro does not imply the occurrence of such a structure in vivo. We were able to show both in purified genomic DNA and in vivo that only isolated thymines and the 3' terminal thymine in strings of consecutive thymines are modified significantly by KMnO(4), indicating an altered thymine accessibility pattern within the R/Y sequence. This KMnO(4) reactivity pattern is more consistent and predictable within the R/Y sequence when compared with flanking sequences. We propose a simple steric interference model to explain the observed pattern of KMnO(4) modification of thymines.  相似文献   

16.
Summary The structure of three members of a repetitive DNA family from the genome of the nematodeCaenorhabditis elegans has been studied. The three repetitive elements have a similar unitary structure consisting of two 451-bp sequences in inverted orientation separated by 491 bp, 1.5 kb, and 2.5 kb, respectively. The 491-bp sequence separating the inverted 451-bp sequences of the shortest element is found adjacent to one of the repeats in the other two elements as well. The combination of the three sequences we define as the basic repetitive unit. Comparison of the nucleotide sequences of the three elements has allowed the identification of the one most closely resembling the primordial repetitive element. Additionally, a process of co-evolution is evident that results in the introduction of identical sequence changes into both copies of the inverted sequence within a single unit. Possible mechanisms are discussed for the homogenization of these sequences. A direct test of one possible homogenization mechanism, namely homologous recombination between the inverted sequences accompanied by gene conversion, shows that recombination between the inverted repeats does not occur at high frequency.  相似文献   

17.
18.
19.
20.
Nucleotide sequence of the gene for human factor IX (antihemophilic factor B)   总被引:97,自引:0,他引:97  
Two different human genomic DNA libraries were screened for the gene for blood coagulation factor IX by employing a cDNA for the human protein as a hybridization probe. Five overlapping lambda phages were identified that contained the gene for factor IX. The complete DNA sequence of about 38 kilobases for the gene and the adjacent 5' and 3' flanking regions was established by the dideoxy chain termination and chemical degradation methods. The gene contained about 33.5 kilobases of DNA, including seven introns and eight exons within the coding and 3' noncoding regions of the gene. The eight exons code for a prepro leader sequence and 415 amino acids that make up the mature protein circulating in plasma. The intervening sequences range in size from 188 to 9473 nucleotides and contain four Alu repetitive sequences, including one in intron A and three in intron F. A fifth Alu repetitive sequence was found immediately flanking the 3' end of the gene. A 50 base pair insert in intron A was found in a clone from one of the genomic libraries but was absent in clones from the other library. Intron A as well as the 3' noncoding region of the gene also contained alternating purine-pyrimidine sequences that provide potential left-handed helical DNA or Z-DNA structures for the gene. KpnI repetitive sequences were identified in intron D and the region flanking the 5' end of the gene. The 5' flanking region also contained a 1.9-kb HindIII subfamily repeat. The seven introns in the gene for factor IX were located in essentially the same position as the seven introns in the gene for human protein C, while the first three were found in positions identical with those in the gene for human prothrombin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号