首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
With 2-methoxy-6-chloroacridone as a lead compound, we synthesized and tested acridone derivatives to develop a better understanding of the anti-malarial structure-activity relationships. Over 30 acridone derivatives were synthesized. The most potent compounds contained extended alkyl chains terminated by trifluoromethyl groups and located at the 3-position of the tricyclic system. Acridones optimized in the length of the side chain and the nature of the terminal fluorinated moiety exhibited in vitro anti-malarial IC(50) values in the low nanomolar and picomolar range and were without cytotoxic effects on the proliferation and differentiation of human bone marrow progenitors or mitogen-activated murine lymphocytes at concentrations up to 100,000-fold higher. Based on a structural similarity to known anti-malarial agents it is proposed that the haloalkoxyacridones exert their anti-malarial effects through inhibition of the Plasmodium cytochrome bc(1) complex. Haloalkoxyacridones represent an extraordinarily potent novel class of chemical compounds with the potential for development as therapeutic agents to treat or prevent malaria in humans.  相似文献   

2.
In our continuing search for antimalarial leads from South African marine organisms we have examined the antiplasmodial organic extracts of the endemic marine red alga Plocamium cornutum (Turner) Harvey. Two new and three known halogenated monoterpenes were isolated and their structures determined by standard spectroscopic techniques. The 3,7-dimethyl-3,4-dichloro-octa-1,5,7-triene skeleton is common to all five compounds. Interestingly, compounds bearing the 7-dichloromethyl substituent showed significantly higher antiplasmodial activity toward a chloroquine sensitive strain of Plasmodium falciparum.  相似文献   

3.
Atovaquone is an antimalarial agent that specifically inhibits the cytochrome bc(1) complex of the cytochrome pathway. High-level atovaquone resistance is associated with a point mutation in the cytochrome b gene. A pair of isogenic clinical isolates of Plasmodium falciparum derived from before and after the acquisition of atovaquone resistance was used to determine whether the change in the cytochrome b gene resulted in changes in respiration in response to atovaquone. Since P. falciparum appears to utilize a branched respiratory system comprising both the cytochrome and an alternative respiratory pathway, the proportion of each pathway utilized by the sensitive and resistant parasites was investigated. Atovaquone inhibited total parasite oxygen consumption by up to 66% in the sensitive isolate but only up to 28% in the resistant isolate. Both the atovaquone-sensitive and the atovaquone-resistant parasites were comparably sensitive to the alternative pathway inhibitor, salicylhydroxamic acid. Atovaquone appeared to partially inhibit the rate of oxygen consumed through the alternative pathway in only the atovaquone-sensitive isolate. Cross resistance was noted between atovaquone and a new antimalarial agent WR243251. However, the level of WR243251 resistance was very modest compared to the level of atovaquone resistance. WR243251 was shown to rapidly reduce the rate of parasite oxygen consumption by almost 80% in the atovaquone-sensitive isolate and by 57% in the atovaquone-resistant isolate. Drug interaction studies suggest that atovaquone and WR243251 may inhibit growth additively or with mild synergy. Together, these results suggest that while WR243251 may inhibit respiration, its target of action probably differs from that of atovaquone.  相似文献   

4.
Atovaquone represents a class of antimicrobial agents with a broad-spectrum activity against various parasitic infections, including malaria, toxoplasmosis and Pneumocystis pneumonia. In malaria parasites, atovaquone inhibits mitochondrial electron transport at the level of the cytochrome bc1 complex and collapses mitochondrial membrane potential. In addition, this drug is unique in being selectively toxic to parasite mitochondria without affecting the host mitochondrial functions. A better understanding of the structural basis for the selective toxicity of atovaquone could help in designing drugs against infections caused by mitochondria-containing parasites. To that end, we derived nine independent atovaquone-resistant malaria parasite lines by suboptimal treatment of mice infected with Plasmodium yoelii; these mutants exhibited resistance to atovaquone-mediated collapse of mitochondrial membrane potential as well as inhibition of electron transport. The mutants were also resistant to the synergistic effects of atovaquone/ proguanil combination. Sequencing of the mitochondrially encoded cytochrome b gene placed these mutants into four categories, three with single amino acid changes and one with two adjacent amino acid changes. Of the 12 nucleotide changes seen in the nine independently derived mutants 11 replaced A:T basepairs with G:C basepairs, possibly because of reactive oxygen species resulting from atovaquone treatment. Visualization of the resistance-conferring amino acid positions on the recently solved crystal structure of the vertebrate cytochrome bc1 complex revealed a discrete cavity in which subtle variations in hydrophobicity and volume of the amino acid side-chains may determine atovaquone-binding affinity, and thereby selective toxicity. These structural insights may prove useful in designing agents that selectively affect cytochrome bc1 functions in a wide range of eukaryotic pathogens.  相似文献   

5.
Our prior work on tricyclic acridones combined with a desire to minimize the tricyclic system led to an interest in antimalarial quinolones and a reexamination of endochin, an experimental antimalarial from the 1940’s. In the present article, we show that endochin is unstable in the presence of murine, rat, and human microsomes which may explain its relatively poor antimalarial activity in mammalian systems. We also profile the structure–activity relationships of ≈30 endochin-like quinolone (ELQ) analogs and highlight features that are associated with enhanced metabolic stability, potent antiplasmodial activity against multidrug resistant strains of Plasmodium falciparum, and equal activity against an atovaquone-resistant clinical isolate. Our work also features an ELQ construct containing a polyethylene glycol carbonate pro-moiety that is highly efficacious by oral administration in a murine malaria model. These findings provide compelling evidence that development of ELQ therapeutics is feasible.  相似文献   

6.
The mitochondrial electron transport system is necessary for growth and survival of malarial parasites in mammalian host cells. NADH dehydrogenase of respiratory complex I was demonstrated in isolated mitochondrial organelles of the human parasite Plasmodium falciparum and the mouse parasite Plasmodium berghei by using the specific inhibitor rotenone on oxygen consumption and enzyme activity. It was partially purified by two sequential steps of fast protein liquid chromatographic techniques from n-octyl glucoside solubilization of the isolated mitochondria of both parasites. In addition, physical and kinetic properties of the malarial enzymes were compared to the host mouse liver mitochondrial respiratory complex I either as intact or as partially purified forms. The malarial enzyme required both NADH and ubiquinone for maximal catalysis. Furthermore, rotenone and plumbagin (ubiquinone analog) showed strong inhibitory effect against the purified malarial enzymes and had antimalarial activity against in vitro growth of P. falciparum. Some unique properties suggest that the enzyme could be exploited as chemotherapeutic target for drug development, and it may have physiological significance in the mitochondrial metabolism of the parasite.  相似文献   

7.
A series of original quinazolines bearing a 4-thiophenoxy and a 2-trichloromethyl group was synthesized in a convenient and efficient way and was evaluated toward its in vitro antiplasmodial potential. The series revealed global good activity against the K1-multi-resistant Plasmodium falciparum strain, especially with hit compound 5 (IC(50)=0.9 μM), in comparison with chloroquine and doxycycline chosen as reference-drugs. Both the in vitro cytotoxicity study which was conducted on the human HepG2 cell line and the in vitro antitoxoplasmic screening against Toxoplasma gondii indicate that this series presents an interesting selective antiplasmodial profile. Structure-activity- and toxicity relationships highlight that the trichloromethyl group plays a key role in the antiplasmodial activity and also show that the modulation of the thiophenol moiety influences the toxicity/activity ratio.  相似文献   

8.
The dichloromethane extract of the leaves of Vernonia staehelinoides Harv. (Asteraceae) showed in vitro activity (IC(50) approximately 3 microg/ml) against the chloroquine-sensitive (D10) and the chloroquine-resistant (K1) strains of Plasmodium falciparum. Through conventional chromatographic techniques and bioassay-guided fractionation two structurally-related hirsutinolides displaying in vitro antiplasmodial activity (IC(50) approximately 0.2 microg/ml against D10) were isolated and identified by spectroscopic data. Compounds 1, 8 alpha-(2-methylacryloyloxy)-3-oxo-1-desoxy-1,2-dehydrohirsutinolide-13-O-acetate, and 2, 8 alpha-(5'-acetoxysenecioyloxy)-3-oxo-1-desoxy-1,2-dehydrohirsutinolide-13-O-acetate were found to be cytotoxic to mammalian Chinese Hamster Ovarian (CHO) cells at similar concentrations but proved to be attractive scaffolds for structure-activity relationship studies. Two main privileged substructures, a 2(5H)-furanone unit and a dihydrofuran-4-one unit, were identified as potential pharmacophores which may be responsible for the observed biological activity. Mucochloric and mucobromic acids were selected as appropriate 2(5H)-furanone substructures and these were shown to have comparable activity against the D10 and superior activity against the K1 strains relative to the hirsutinolide natural product. Mucochloric and mucobromic acids also show selective cytotoxicity to the malaria parasites compared to mammalian (CHO) cells in vitro. The antiplasmodial data obtained in respect of these two acids suggests that the 2(5H)-furanone substructure is a key pharmacophore in the observed antiplasmodial activity.  相似文献   

9.
(1H-Pyridin-4-ylidene)amines containing lipophilic side chains at the imine nitrogen atom were prepared as potential clopidol isosteres in the development of antimalarials. Their antiplasmodial activity was evaluated in vitro against the Plasmodium falciparum W2 (chloroquine-resistant) and FCR3 (atovaquone-resistant) strains. The most active of these derivatives, 4m, had an IC50 of 1 μM against W2 and 3 μM against FCR3. Molecular modeling studies suggest that (1H-pyridin-4-ylidene)amines may bind to the ubiquinol oxidation Qo site of cytochrome bc1.  相似文献   

10.
Atovaquone is a substituted hydroxynaphthoquinone that is widely used to prevent and clear Plasmodium falciparum malaria and Pneumocystis jirovecii pneumonia. Atovaquone inhibits respiration in target organisms by specifically binding to the ubiquinol oxidation site at center P of the cytochrome bc(1) complex. The failure of atovaquone treatment and mortality of patients with malaria and P. jirovecii pneumonia has been linked to the appearance of mutations in the cytochrome b gene. To better understand the molecular basis of atovaquone resistance, we have introduced seven of the mutations from atovaquone-resistant P. jirovecii into the cytochrome b gene of Saccharomyces cerevisiae and thus obtained cytochrome bc(1) complexes resistant to inhibition by atovaquone. In these enzymes, the IC(50) for atovaquone increases from 25 nm for the enzyme from wild-type yeast to >500 nm for some of the mutated enzymes. Modeling of the changes in cytochrome b structure and atovaquone binding with the mutated bc(1) complexes provides the first quantitative explanation for the molecular basis of atovaquone resistance.  相似文献   

11.
A set of derivatives encompassing structural modifications on the privileged phenalenone scaffold were assessed for their antiplasmodial activities against a strain of chloroquine sensitive Plasmodium falciparum F32. Two compounds exhibited considerable effects against the malaria parasite (IC50 ? 1 μg/mL), one of which maintained the same level of activity in a chloroquine-resistant strain. This is the first record of antiplasmodial activity on this type of scaffold, providing a new structural motif as a new lead for antimalarial activity.  相似文献   

12.
In the course of our search for new antiplasmodial alkaloids from Strychnos icaja, we have isolated five alkaloids: three monomers, protostrychnine and genostrychnine, previously described in Strychnos nux-vomica, pseudostrychnine, already found in the leaves of the plant, a new bisindolic alkaloid, named strychnogucine C, and the first naturally occurring trimeric indolomonoterpenic alkaloid: strychnohexamine. This latter trimeric alkaloid presented an antiplasmodial activity against the FCA Plasmodium falciparum line near 1 microM.  相似文献   

13.
The Plasmodium mitochondrial electron transport chain has received considerable attention as a potential target for new antimalarial drugs. Atovaquone, a potent inhibitor of Plasmodium cytochrome bc(1), in combination with proguanil is recommended for chemoprophylaxis and treatment of malaria. The type II NADH:ubiquinone oxidoreductase (NDH2) is considered an attractive drug target, as its inhibition is thought to lead to the arrest of the mitochondrial electron transport chain and, as a consequence, pyrimidine biosynthesis, an essential pathway for the parasite. Using the rodent malaria parasite Plasmodium berghei as an in vivo infection model, we studied the role of NDH2 during Plasmodium life cycle progression. NDH2 can be deleted by targeted gene disruption and, thus, is dispensable for the pathogenic asexual blood stages, disproving the candidacy for an anti-malarial drug target. After transmission to the insect vector, NDH2-deficient ookinetes display an intact mitochondrial membrane potential. However, ndh2(-) parasites fail to develop into mature oocysts in the mosquito midgut. We propose that Plasmodium blood stage parasites rely on glycolysis as the main ATP generating process, whereas in the invertebrate vector, a glucose-deprived environment, the malaria parasite is dependent on an intact mitochondrial respiratory chain.  相似文献   

14.
The phytochemical investigation of the leaves of Siparuna pauciflora yielded three novel sesquiterpenoids: the germacrane sipaucin A, the elemane sipaucin B and sipaucin C, comprising a new type of carbon skeleton. In addition, four known aporphine alkaloids-nor-boldine, boldine, laurotetanine, and N-methyl-laurotetanine-were obtained. The evaluation of the antiplasmodial activity of the isolated compounds against two strains of Plasmodium falciparum (PoW, Dd2) showed a moderate activity of nor-boldine.  相似文献   

15.
Hydroxy-naphthoquinones are competitive inhibitors of the cytochrome bc1 complex that bind to the ubiquinol oxidation site between cytochrome b and the iron-sulfur protein and presumably mimic a transition state in the ubiquinol oxidation reaction catalyzed by the enzyme. The parameters that affect efficacy of binding of these inhibitors to the bc1 complex are not well understood. Atovaquone®, a hydroxy-naphthoquinone, has been used therapeutically to treat Pneumocystis carinii and Plasmodium infections. As the pathogens have developed resistance to this drug, it is important to understand the molecular basis of the drug resistance and to develop new drugs that can circumvent the drug resistance. We previously developed the yeast and bovine bc1 complexes as surrogates to model the interaction of atovaquone with the bc1 complexes of the target pathogens and human host. As a first step to identify new cytochrome bc1 complex inhibitors with therapeutic potential and to better understand the determinants of inhibitor binding, we have screened a library of 2-hydroxy-naphthoquinones with aromatic, cyclic, and non-cyclic alkyl side-chain substitutions at carbon-3 on the hydroxy-quinone ring. We found a group of compounds with alkyl side-chains that effectively inhibit the yeast bc1 complex. Molecular modeling of these into the crystal structure of the yeast cytochrome bc1 complex provides structural and quantitative explanations for their binding efficacy to the target enzyme. In addition we also identified a 2-hydroxy-naphthoquinone with a branched side-chain that has potential for development as an anti-fungal and anti-parasitic therapeutic.  相似文献   

16.
Hydroxy-naphthoquinones are competitive inhibitors of the cytochrome bc(1) complex that bind to the ubiquinol oxidation site between cytochrome b and the iron-sulfur protein and presumably mimic a transition state in the ubiquinol oxidation reaction catalyzed by the enzyme. The parameters that affect efficacy of binding of these inhibitors to the bc(1) complex are not well understood. Atovaquone, a hydroxy-naphthoquinone, has been used therapeutically to treat Pneumocystis carinii and Plasmodium infections. As the pathogens have developed resistance to this drug, it is important to understand the molecular basis of the drug resistance and to develop new drugs that can circumvent the drug resistance. We previously developed the yeast and bovine bc(1) complexes as surrogates to model the interaction of atovaquone with the bc(1) complexes of the target pathogens and human host. As a first step to identify new cytochrome bc(1) complex inhibitors with therapeutic potential and to better understand the determinants of inhibitor binding, we have screened a library of 2-hydroxy-naphthoquinones with aromatic, cyclic, and non-cyclic alkyl side-chain substitutions at carbon-3 on the hydroxy-quinone ring. We found a group of compounds with alkyl side-chains that effectively inhibit the yeast bc(1) complex. Molecular modeling of these into the crystal structure of the yeast cytochrome bc(1) complex provides structural and quantitative explanations for their binding efficacy to the target enzyme. In addition we also identified a 2-hydroxy-naphthoquinone with a branched side-chain that has potential for development as an anti-fungal and anti-parasitic therapeutic.  相似文献   

17.
In a search for new plant-derived biologically active compounds against malaria parasites, five essential oils extracted from the Cameroonian plants Xylopia phloiodora, Pachypodanthium confine, Antidesma laciniatum, Xylopia aethiopica, and Hexalobus crispiflorus were evaluated in regard to their anti-plasmodial activity against the W2 strain of Plasmodium falciparum. The oils were obtained from the plants with 0.12, 0.13, 0.18, 0.6 and 0.1% yields (relatively to dried material weight) respectively. Analysis by gas chromatography and mass spectrometry identified mainly terpenoids, among which alpha-copaene, gamma-cadinene, delta-cadinene, alpha-cadinol, spathulenol and caryophyllene oxide were most commonly found. The five oils were active against Plasmodium falciparum in culture. The most effective was the oil of Hexalobus crispiflorus, with an IC50 of 2 microg/ml.  相似文献   

18.
Fourteen ferrocenyl aminohydroxynaphthoquinones, analogues of atovaquone, were synthesized from the hydroxynaphthoquinone core. These novel atovaquone derivatives were tested for their in vitro activity against two apicomplexan parasites of medical importance, Toxoplasma gondii and Plasmodium falciparum, including resistant strains to atovaquone (T. gondii) and chloroquine (P. falciparum). Three of these ferrocenic atovaquone derivatives composed of the hydroxynaphthoquinone core plus an amino-ferrocenic group and an aliphatic chain with 6-8 carbon atoms were found to be significantly active against T. gondii. Moreover, these novel compounds were also effective against the atovaquone-resistant strain of T. gondii (Ato(R)).  相似文献   

19.
A series of dibenzylideneacetones (A1-A12) and some of their pyrazolines (B1-B4) were synthesized and evaluated in vitro for blood stage antiplasmodial properties in Plasmodium falciparum culture using SYBR-green-I fluorescence assay. The compound (1E, 4E)-1,5-bis(3,4-dimethoxyphenyl)penta-1,4-dien-3-one (A9) was found to be the most active with IC50 of 1.97 μM against chloroquine-sensitive strain (3D7) and 1.69 μM against chloroquine-resistant field isolate (RKL9). The MTT based cytotoxicity assay on HeLa cell line has confirmed that A9 is selective in its action against malaria parasite (with a therapeutic index of 166). Our results revealed that these compounds exhibited promising antiplasmodial activities which can be further explored as potential leads for the development of cheaper, safe, effective and potent drugs against chloroquine-resistant malarial parasites.  相似文献   

20.
The bioassay-guided purification of an n-hexane extract from the leaves of Piper hostmannianum var. berbicense led to the isolation of four monoterpene or prenyl-substituted dihydrochalcones (1a, 1b, 2, 3) as well as the known compounds 2',6'-dihydroxy-4'-methoxydihydrochalcone (4), linderatone (5), strobopinin (6), adunctin E (7) and (-)-methyllinderatin (8). Their structures were established on the basis of NMR and X-ray analysis. (-)-Methyllinderatin, linderatone and 2',6'-dihydroxy-4'-methoxydihydrochalcone exhibited the most potent antiplasmodial activity with IC50 values of 5.64, 10.33 and 12.69 microM, respectively against both chloroquine-sensitive and resistant strains of Plasmodium falciparum (F32,FcB1). The activity of (-)-methyllinderatin was confirmed in vivo against Plasmodium vinckei petteri in mice (80% of reduction of parasitemia) at a dose of 20 mg/kg/day.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号