首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Changes in the secondary structure of DNA and non-histone chromosomal protein HMGB1 were studied by circular dichroism and UV spectroscopy. We have demonstrated that the HMGBI protein is able to change its secondary structure upon binding to DNA. We estimated the proportion of bound protein on the assumption that there were two spectrally distinguishable forms of the HMGB1 in solution. The bound protein fraction decreases with increasing protein to DNA ratios (r) from 0.48 at r = 0.13 to 0.06 at r = 2.43. It has been shown that HMGB1 is able to induce considerable changes in DNA structure even when the amount of the protein directly associated with DNA is low.  相似文献   

2.
HMO1 proteins are abundant Saccharomyces cerevisiae (yeast) High Mobility Group Box (HMGB) protein (Kamau, Bauerla & Grove, 2004). HMGB proteins are nuclear proteins which are known to be architectural proteins (Travers, 2003). HMO1 possesses two HMGB box domains. It has been reported that double box HMGB proteins induce strong bends upon binding to DNA. It is also believed that they play an essential role in reorganizing chromatin and, therefore, are likely to be involved in gene activation. To characterize DNA binding we combine single molecule stretching experiments and AFM imaging of HMO1 proteins bound to DNA. By stretching DNA bound to HMO1, we determine the dissociation constant, measure protein induced average DNA bending angles, and determine the rate at which torsional constraint of the DNA is released by the protein. To further investigate the local nature of the binding, AFM images of HMO1-DNA complexes are imaged, and we probe the behavior of these complexes as a function of protein concentration. The results show that at lower concentrations, HMO1 preferentially binds to the ends of the double helix and links to the separate DNA strands. At higher concentrations HMO1 induces formation of a complex network that reorganizes DNA. Although HMG nuclear proteins are under intense investigation, little is known about HMO1. Our studies suggest that HMO1 proteins may facilitate interactions between multiple DNA molecules.  相似文献   

3.
4.
The complexes of DNA–HMGB1 protein–manganese ions have been studied using the circular dichroism (CD) technique. It was shown that the interactions of both the protein and metal ions with DNA in this three-component system differ from those in two-component complexes. The manganese ions did not affect the CD spectrum of the free HMGB1 protein. However, Mn2+ ions induced considerable changes in the CD spectrum of free DNA in the spectral range of 260–290 nm. The presence of Mn2+ ions prevented the formation of the ordered supramolecular structures typical of HMGB1–DNA complexes. The interaction of manganese ions with DNA had a marked influence on the local DNA structure, changing the properties of protein-binding sites and resulting in a marked decrease in cooperativity of HMGB1–DNA binding. Such changes in the mode of protein–DNA interactions occurred at concentrations as small as 0.01 mM Mn2+. Moreover, the changes in local DNA structure induced by the manganese ions promoted the appearance of new HMGB1 binding sites in the DNA double helix. At the same time, interactions with the HMGB1 protein induced alterations in the structure of the DNA double helix, which increased with an increase in the protein-to-DNA ratio. These alterations made the DNA–protein complex especially sensitive to manganese ions. Under these conditions the Mn2+ ions strongly affected the DNA structure, which was reflected in abrupt changes in the CD spectra of DNA in the complex in the range of 260–290 nm. Thus, structural changes in the DNA double helix in three-component DNA–HMGB1–Mn2+ complexes result from the combined and interdependent interactions of DNA with Mn2+ ions and HMGB1 molecules.  相似文献   

5.
Our previous studies demonstrated that high mobility group box‐1 (HMGB1), a typical damage‐associated molecular pattern (DAMP) protein, is associated with the disease activity of antineutrophil cytoplasmic antibody (ANCA)‐associated vasculitis (AAV). Moreover, HMGB1 participates in ANCA‐induced neutrophil activation. The current study aimed to investigate whether HMGB1 regulated the interaction between neutrophils and glomerular endothelial cells (GEnC) in the presence of ANCA. Correlation analysis on HMGB1 levels in AAV patients and soluble intercellular cell adhesion molecule‐1 (sICAM‐1) levels or vascular endothelial growth factor (VEGF) levels, which are markers of endothelial cell activation, was performed. The effect of HMGB1 on neutrophil migration towards GEnC, respiratory burst and degranulation of neutrophils in coculture conditions with GEnC was measured. The activation of neutrophils, the activation and injury of GEnC, and the consequent pathogenic role of injured GEnC were evaluated. Plasma levels of HMGB1 correlated with sICAM‐1 and VEGF (r = 0.73, P < 0.01; r = 0.41, P = 0.04) in AAV patients. HMGB1 increased neutrophil migration towards GEnC, as well as respiratory burst and degranulation of neutrophils in the presence of ANCA in the coculture system. In the presence of robust neutrophil activation, GEnC were further activated and injured in the coculture system of GEnC and neutrophils. In addition, injured GEnC could produce TF‐positive leuco‐endothelial microparticles and endothelin‐1 (ET‐1), while NF‐κB was phosphorylated (S529) in the injured GEnC. Plasma levels of HMGB1 correlated with endothelial cell activation in AAV patients. HMGB1 amplified neutrophil activation and the activation and injury of GEnC in the presence of ANCA.  相似文献   

6.
Sleeping Beauty (SB) is the most active Tc1/ mariner-type transposon in vertebrates. SB contains two transposase-binding sites (DRs) at the end of each terminal inverted repeat (IR), a feature termed the IR/DR structure. We investigated the involvement of cellular proteins in the regulation of SB transposition. Here, we establish that the DNA-bending, high-mobility group protein, HMGB1 is a host-encoded cofactor of SB transposition. Transposition was severely reduced in mouse cells deficient in HMGB1. This effect was rescued by transient over-expression of HMGB1, and was partially complemented by HMGB2, but not with the HMGA1 protein. Over-expression of HMGB1 in wild-type mouse cells enhanced transposition, indicating that HMGB1 can be a limiting factor of transposition. SB transposase was found to interact with HMGB1 in vivo, suggesting that the transposase may recruit HMGB1 to transposon DNA. HMGB1 stimulated preferential binding of the transposase to the DR further from the cleavage site, and promoted bending of DNA fragments containing the transposon IR. We propose that the role of HMGB1 is to ensure that transposase–transposon complexes are first formed at the internal DRs, and subsequently to promote juxtaposition of functional sites in transposon DNA, thereby assisting the formation of synaptic complexes.  相似文献   

7.
8.
Mechanisms of interaction of DNA with nonhistone chromosomal protein HMGB1 and linker histone H1 have been studied by means of circular dichroism and absorption spectroscopy. Both proteins are located in the internucleosomal regions of chromatin. It is demonstrated that the properties of DNA-protein complexes depend on the protein content and cannot be considered as a mere summing up of the effects of individual protein components. Interaction of the HMGB1 and H1 proteins is shown with DNA to be cooperative rather than competitive. Lysine-rich histone H1 facilitates the binding of HMGB1 to DNA by screening the negatively charged groups of the sugar-phosphate backbone of DNA and dicarboxylic amino acid residues in the C-terminal domain of HMGB1. The observed joint action of HMGB1 and H1 stimulates DNA condensation with the formation of anisotropic DNA-protein complexes with typical ψ-type CD spectra. Structural organization of the complexes depends not only on DNA-protein interactions but also on interaction between the HMGB1 and H1 protein molecules bound to DNA. Manganese ions significantly modify the mode of interactions between components in the triple DNA-HMGB1-H1 complex. The binding of Mn2+ ions weakens DNA-protein interactions and strengthens protein-protein interactions, which promote DNA condensation and formation of large DNA-protein particles in solution.  相似文献   

9.
The intrinsic viscosity of sonicated calf thymus DNA (molecular weight 4–5 × 105) increases and the sedimentation constant decreases, with increasing binding of proflavine at 0. 2 ionic strength and at 25°C. The measurements correspond to a linear increase in length of the almost rodlike DNA molecules with the amount of proflavine bound; independent calculations from viscosity and sedimentation measurements yield almost identical results. Over the range of r (moles of proflavine bound per moles of nucleotides) equal to zero to r = 0.13, the length increases by about 20%. This extension is compatible with the intercalation hypothesis proposed by Lerman. Density increments at various values of r, at constant chemical potential of diffusible solutes, were determined. It was also found that, in addition to the known isosbestic point of DNA-proflavine complexes at 455.5 mμ, an additional isosbestic point exists at 225.5 mμ; this proved extremely useful for the evaluation of binding studies.  相似文献   

10.
The interaction of calf thymus DNA with Cu2+and Pb2+ was studied in aqueous solution at pH 6.5 with metal/DNA (P) (P = phosphate) molar ratios (r) 1/80, 1/40, 1/20, 1/10, 1/4, 1/2, and 1, using Fourier Transform ir (FTIR) spectroscopy. Correlations between the ir spectral changes, metal ion binding mode, DNA condensation, and denaturation, as well as conformational features, were established. Spectroscopic evidence has shown that at low metal/DNA (P) molar rations 1/80 and 1/40, copper and lead ions bind mainly to the PO of the backbone, resulting in increased base-stacking interaction and duplex stability. The major copper ion base binding via G-C base pairs begins at r > 1/40, while the lead ion base binding occurs at r > 1/20 with the A-T base pairs. The denaturation of DNA begins at r = 1/10 and continues up to r = 1/2 in the presence of copper ions, whereas a partial destabilization of the helical structure was observed for the lead ion at high metal ion concentration (r = 1/2). Metal-DNA binding also results in DNA condensation. No major departure from the B-family structure was observed, upon DNA interaction with these metal ions. © 1993 John Wiley & Sons, Inc.  相似文献   

11.
12.
The ability of HMGB1 protein to recognize bent DNA and to induce bending in linear duplex DNA defines HMGB1 as an architectural factor. It has already been demonstrated that the binding affinity of the protein for various bent DNA structures is enhanced upon in vivo acetylation at Lys2. Here we investigate how this modification of HMGB1 affects its ability to bend DNA. We report that the modified protein cannot bend short DNA fragments but, instead, stimulates joining of the same fragments via their ends. The same properties are exhibited in vivo by acetylated HMGB1 lacking its acidic tail. Further, in vitro acetylation of the truncated protein at Lys81 (possible upon tail removal only) restores the protein's bending ability, while the level of stimulation of DNA end joining is strongly reduced. We conclude, therefore, that the ability of HMGB1 to bend DNA or to stimulate end joining is modulated in vitro by acetylation. In an attempt to explain the properties of in vivo-acetylated HMGB1, its complexes with DNA have been analyzed by both protein-DNA cross-linking and atomic force microscopy. Unlike the parental protein, bound mainly within the internal sequences, acetylated HMGB1 binds preferentially to DNA ends. We propose that the loading of acetylated protein on DNA ends accounts for both the failure to bend DNA and the stimulation of DNA end joining.  相似文献   

13.
Circular dichroism of aminoacridines bound to DNA   总被引:1,自引:0,他引:1  
The binding curves of 1-, 2-, 3-, and 9-aminoacridine and proflavine on native DNA and the circular dichroism (CD) spectra of the bound cations have been determined under the same conditions. The variation of the CD spectra with the amount (r) of aminoacridine bound per DNA phosphorus was of two main kinds: (1) the rotational strength of those aminoacridines which possess a 3-amino group depended markedly on r and decreased to relatively small values (or zero) at zero r; or, (2) the rotational strength changed relatively little with r and tended to a finite value at zero r. The relevance of these observations is discussed with respect to interelation models of the complexes and with respect to possible explanations of the basis of this induction of optical activity.  相似文献   

14.
The ubiquitous, eukaryotic, high-mobility group box (HMGB) chromosomal proteins promote many chromatin-mediated cellular activities through their non-sequence-specific binding and bending of DNA. Minor-groove DNA binding by the HMG box results in substantial DNA bending toward the major groove owing to electrostatic interactions, shape complementarity, and DNA intercalation that occurs at two sites. Here, the structures of the complexes formed with DNA by a partially DNA intercalation-deficient mutant of Drosophila melanogaster HMGD have been determined by X-ray crystallography at a resolution of 2.85 Å. The six proteins and 50 bp of DNA in the crystal structure revealed a variety of bound conformations. All of the proteins bound in the minor groove, bridging DNA molecules, presumably because these DNA regions are easily deformed. The loss of the primary site of DNA intercalation decreased overall DNA bending and shape complementarity. However, DNA bending at the secondary site of intercalation was retained and most protein-DNA contacts were preserved. The mode of binding resembles the HMGB1 box A-cisplatin-DNA complex, which also lacks a primary intercalating residue. This study provides new insights into the binding mechanisms used by HMG boxes to recognize varied DNA structures and sequences as well as modulate DNA structure and DNA bending.  相似文献   

15.
We have solved the solution structure of the N-terminal region of the fission yeast centromere protein, Abp1, bound to a 21-base pair DNA fragment bearing its recognition site (Mw = 30 kDa). Although the two DNA-binding domains in the Abp1 protein were defined well by a conventional NOE-based NMR methodology, the overall structure of the Abp1 protein was poorly defined, due to the lack of interdomain distance restraints. Therefore, we additionally used residual dipolar couplings measured in a weakly aligned state, and rotational diffusion anisotropies. Neither the NH residual dipolar couplings nor the backbone 15N T 1/T 2 data were sufficient to determine the overall structure of the Abp1 protein, due to spectral overlap. We used a combination of these two orientational restraints (residual dipolar coupling and rotational diffusion anisotropy), which significantly improved the convergence of the overall structures. The range of the observed T 1/T 2 ratios was wider (20–50 for the secondary structure regions of Abp1) than the previously reported data for several globular proteins, indicating that the overall shape of the Abp1DNA complex is ellipsoid. This extended form would facilitate the recognition of the two separate sites in the relatively long DNA sequence by the DNA-binding domains of Apb1.  相似文献   

16.
The multistep kinetics through which DNA-binding proteins bind their targets are heavily studied, but relatively little attention has been paid to proteins leaving the double helix. Using single-DNA stretching and fluorescence detection, we find that sequence-neutral DNA-binding proteins Fis, HU and NHP6A readily exchange with themselves and with each other. In experiments focused on the Escherichia coli nucleoid-associated protein Fis, only a small fraction of protein bound to DNA spontaneously dissociates into protein-free solution. However, if Fis is present in solution, we find that a concentration-dependent exchange reaction occurs which turns over the bound protein, with a rate of kexch = 6 × 104 M−1s−1. The bacterial DNA-binding protein HU and the yeast HMGB protein NHP6A display the same phenomenon of protein in solution accelerating dissociation of previously bound labeled proteins as exchange occurs. Thus, solvated proteins can play a key role in facilitating removal and renewal of proteins bound to the double helix, an effect that likely plays a major role in promoting the turnover of proteins bound to DNA in vivo and, therefore, in controlling the dynamics of gene regulation.  相似文献   

17.
G. Bhat  A. C. Roth  R. A. Day 《Biopolymers》1977,16(8):1713-1724
A strong, positive, extrinsic CD band ([θ]242.5 = ~2 × 10?3 deg cm2/dmole) has been observed for a α-bromo-poly[methylene-1,4-phenylenecarbonyloxyethylene(dimethylamino) bromide] (I). The extrinsic Cotton effect is attributed to the ordered arrangement of the aromatic chromophores along the DNA helix. The extrinsic band had a linear dependence on the amount of polycation I added from r ≤ 0.3 to r = ~0.5, but decreased thereafter. Addition of the polycation decreased the positive CD band of DNA at 275 nm. The transformation of B → C form in the presence of salts or other polycations caused similar changes. The decrease in [θ]275 was reversed at higher concentrations of the polycation (r > 0.4). Thermal denaturation studies indicated both stabilization of the helix conformation (Δtm = 21°C) and a high degree of cooperativity in the melting of DNA-polycation complex as compared to native calf thymus DNA. Using the linear relationship between r (polycation residue/DNA phosphate) and F (fraction of bound base pairs), a value of 0.6 was derived for β (number of monomer residues of polycation/nucleotide). Both electrostatic and hydrophobic effects probably influence the stability of the DNA-polycation complex, since the strength of the 242.5 nm CD band is a function of both salt and urea concentrations.  相似文献   

18.
The analysis of absorption and circular dichroism spectra in UV and IR regions showed that Ca2+ ions interact with the phosphate groups of DNA and the HMGB1 protein. Not only the negatively charged C-terminal part of the protein molecule, but also its DNA-binding domains participate in the interaction with metal ions. The latter leads to a change in the mode of protein–DNA interaction. The presence of Ca2+ ions prevents the formation of ordered supramolecular structures specific for the HMGB1–DNA complexes but promotes intermolecular aggregation. The structure of DNA complexes with the HMGB1 protein lacking the C-terminal tail appeared to be the most sensitive to the presence of Ca2+ ions. These data indicate that Ca2+ ions play no structural role in the HMGB1–DNA complexes, and their presence is not necessary for DNA compaction in such systems.  相似文献   

19.
A protein, identifiable as calmodulin (CaM), has been isolated from the seedling tissue of Pharbitis nil. The method has been developed to isolate a high quality protein from plant tissue containing the high content of polyphenols. This protein was relatively heat-stable and bound to hydrophobic resin in calcium-dependent manner. It was recognized by the antibody against pea and carrot, but did not bind to antibody against Dictyostelium discoideum. This protein had Mr of 15 kDa and 18.5 kDa in the presence and absence of Ca2+, respectively, and was able to stimulate calmodulin-deficient cAMP phosphodiesterase. Based on its migration on SDS-PAGE gels, Mr and binding to anti-CaM antibodies it was deduced that calmodulin from P. nil is essentially identical to calmodulin isolated from other plants.  相似文献   

20.
The presentation by antigen-presenting cells of immunodominant peptide segments in association with major histocompatibility complex (MHC) encoded proteins is fundamental to the efficacy of a specific immune response. One approach used to identify immunodominant segments within proteins has involved the development of predictive algorithms which utilize amino acid sequence data to identify structural characteristics or motifs associated with in vivo antigenicity. The parallel-computing technique termed ‘neural networking’ has recently been shown to be remarkably efficient at addressing the problem of pattern recognition and can be applied to predict protein secondary structure attributes directly from amino acid sequence data. In order to examine the potential of a neural network to generalize peptide structural feature related to binding within class II MHC-encoded proteins, we have trained a neural network to determine whether or not any given amino acid of a protein is part of a peptide segment capable of binding to HLA-DR1. We report that a neural network trained on a data base consisting of peptide segments known to bind to HLA-DR1 is able to generalize features relating to HLA-DR1-binding capacity (r = 0.17 and p = 0.0001).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号