首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 765 毫秒
1.
A laboratory spray gun and a production spray gun were investigated in a scale-up study. Two Schlick spray guns, which are equipped with a new antibearding cap, were used in this study. The influence of the atomization air pressure, spray gun-to tablet bed distance, polymer solution viscosity, and spray rate were analyzed in a statistical design of experiments. The 2 spray guns were compared with respect to the spray width and height, droplet size, droplet velocity, and spray density. The droplet size, velocity, and spray density were measured with a Phase Doppler Particle Analyzer. A successful scale-up of the atomization is accomplished if similar droplet sizes, droplet velocities, and spray densities are achieved in the production scale as in the laboratory scale. This study gives basic information for the scale-up of the settings from the laboratory spray gun to the production spray gun. Both spray guns are highly comparable with respect to the droplet size and velocity. The scale-up of the droplet size should be performed by an adjustment of the atomization air pressure. The scale-up of the droplet velocity should be performed by an adjustment of the spray gun to tablet bed distance. The presented statistical model and surface plots are convenient and powerful tools for scaling up the spray settings if the spray gun is changed from laboratory spray gun to the production spray gun. Published: January 19, 2007  相似文献   

2.
Air assistance on field sprayers creates a forced airstream under the spray boom which blows the spray droplets into the crop. The advantages of this relative new technique are less drift of spray droplets and the possibility to reduce the amount of pesticides and spray Liquid. The purpose of this work was to investigate the effect of air assistance on the characteristics of spray droplets and their driftability. Based on air velocity measurements on an air assisted field sprayer, a system of air assistance was developed in addition to a laser-based measuring set-up for the characterisation of spray droplets. With this set-up, the effect of air support on the droplet characteristics was investigated for different settings of the air assistance. The effect on spray drift was quantified based on field drift measurements. A reducing effect on the total amount of spray drift was demonstrated for the Hardi ISO F 110 02, F 110 03 and LD 110 02 nozzles with drift reduction factors a(d) of, respectively, 2.08, 1.77 and 1.53. The use of air support had no significant effect for the LD 110 03 nozzles on the total amount of spray drift. Comparing droplet size and drift results, it was found that air support has the highest impact on the amount of spray drift for the finer sprays by increasing droplet velocities. The effect of air support on droplet sizes is rather limited.  相似文献   

3.
4.
Anin vitro human nasal model was developed as a tool to study the local tolerabiliity of nasal powder forms using excised nasal mucosa in a diffusion chamber. The suitability of this model was tested using Sandostatin® (SMS) an octapeptide analog of somatostatin, as a reference drug enhanced by Avicel® (microcrystalline cellulose) or lactose (100 mesh). The standard nasal spray vehicle was taken as a harmless control and 1% chenodeoxycholate (CDC) as a harmful control in terms of local tolerability. The extent of peptide permeation was determined by measuring SMS concentration in the receiving chamber. The labeling of SMS was detected by immunoperoxidase staining on cross sections. The local tolerability for all tested forms was assessed by histopathological examination and scanning electron microscopy. The apparent permeation coefficient allowed us to rank the absorption of the tested drug forms as Avicel > spray=lactose>1%CDC. For all formulations, SMS was detected in the epithelium. No changes of the nasal mucosa could be observed with Avicel, lactose or nasal spray vehicle in the presence or absence of SMS. 1%CDC with or without drug showed an immediate destruction of the nasal epithelium. The validation of thisin vitro model using human nasal mucosa will be further discussed as a tool for assessing the local tolerability of intranasally applied test substances.Abbreviations CDC chenodeoxycholate - SMS Sandostatin® or octreotide  相似文献   

5.
 An insight into the nature of prevailing meteorological conditions and the manner in which they interact with spraying parameters is an important prerequisite in the analysis of the dynamics of agrochemical sprays. Usually, when these sprays are projected from hydraulic nozzles, their initial velocity is greater than that of the ambient wind speed. The flowfield therefore experiences changes in speed and direction which are felt upstream as well as downstream of the spray droplets. The pattern of the droplet flow, i.e. the shape of the streamlines marking typical trajectories, will be determined by a balance of viscous forces related to wind speed, inertial forces resulting from the acceleration of the airstream and pressure forces which can be viewed in terms of the drag forces exerted on the spray droplets themselves. At a certain distance in the ensuing motion, when the initial velocity of the spray droplets has decreased sufficiently for there to be no acceleration, their trajectories will be controlled entirely by the random effects of turbulence. These two transport processes in the atmosphere can be modelled mathematically using computers. This paper presents a model that considers the velocity of spray droplets to consist of a ballistic velocity component superimposed by a random-walk velocity component. The model is used to study the influence of meteorological and spraying parameters on the three-dimensional dynamics of spray droplets projected in specified directions in neutral and unstable weather conditions. The ballistic and random-walk velocity components are scaled by factors of (1–ξ) and ξ respectively, where ξ is the ratio of the sedimentation velocity and the relative velocity between the spray droplets and the surrounding airstream. This ratio increases progressively as the initial velocity of the spray droplet decreases with air resistance and attains a maximum when the sedimentation velocity has been reached. As soon as this occurs, the random-walk process predominates. The computed effects of the release height of spray droplets, atmospheric turbulence intensity, evaporation, drop size spectrum, wind velocity and wind direction on the transport process have been studied and an analysis of spray drift is provided. Received: 5 March 1997 / Accepted: 17 December 1997  相似文献   

6.
Smith  Darren A.  Ridgway  Mark S. 《Hydrobiologia》2019,829(1):143-166

Zooplankton diel vertical migration (DVM) is an ecologically important process, affecting nutrient transport and trophic interactions. Available measurements of zooplankton displacement velocity during the DVM in the field are rare; therefore, it is not known which factors are key in driving this velocity. We measured the velocity of the migrating layer at sunset (upward bulk velocity) and sunrise (downwards velocity) in summer 2015 and 2016 in a lake using the backscatter strength (VBS) from an acoustic Doppler current profiler. We collected time series of temperature, relative change in light intensity chlorophyll-a concentration and zooplankton concentration. Our data show that upward velocities increased during the summer and were not enhanced by food, light intensity or by VBS, which is a proxy for zooplankton concentration and size. Upward velocities were strongly correlated with the water temperature in the migrating layer, suggesting that temperature could be a key factor controlling swimming activity. Downward velocities were constant, likely because Daphnia passively sink at sunrise, as suggested by our model of Daphnia sinking rate. Zooplankton migrations mediate trophic interactions and web food structure in pelagic ecosystems. An understanding of the potential environmental determinants of this behaviour is therefore essential to our knowledge of ecosystem functioning.

  相似文献   

7.
An actuated, lateral leg spring model is developed to investigate lateral plane locomotion dynamics and stability on inclines. A single actuation input, the force-free leg length, is varied in a feedforward fashion to explicitly and implicitly match prescribed lateral and fore-aft force profiles, respectively. Forward dynamic simulations incorporating the prescribed leg actuation are employed to identify periodic orbits for gaits in which the leg acts to either push the body away from or pull the body towards the foot placement point. Gait stability and robustness to external perturbation are found to vary significantly as a function of slope and velocity for each type of leg function. Results of these analyses suggest that the switch in leg function from pushing to pulling is governed by gait robustness, and occurs at increasing inclines for increasing velocities.  相似文献   

8.
Oxytocin (OT) in the central nervous system (CNS) influences social cognition and behavior, making it a candidate for treating clinical disorders such as schizophrenia and autism. Intranasal administration has been proposed as a possible route of delivery to the CNS for molecules like OT. While intranasal administration of OT influences social cognition and behavior, it is not well established whether this is an effective means for delivering OT to CNS targets. We administered OT or its vehicle (saline) to 15 primates (Macaca mulatta), using either intranasal spray or a nebulizer, and measured OT concentration changes in the cerebral spinal fluid (CSF) and in blood. All subjects received both delivery methods and both drug conditions. Baseline samples of blood and CSF were taken immediately before drug administration. Blood was collected every 10 minutes after administration for 40 minutes and CSF was collected once post-delivery, at the 40 minutes time point. We found that intranasal administration of exogenous OT increased concentrations in both CSF and plasma compared to saline. Both delivery methods resulted in similar elevations of OT concentration in CSF, while the changes in plasma OT concentration were greater after nasal spray compared to nebulizer. In conclusion our study provides evidence that both nebulizer and nasal spray OT administration can elevate CSF OT levels.  相似文献   

9.
Aminoethoxyvinylglycine (AVG) is an ethylene biosynthesis inhibitor that is commonly applied to apple trees prior to harvest to delay ripening and reduce fruit drop. To help understand how selected environmental factors and spray adjuvants affect AVG uptake, penetration of 14C-AVG through enzymatically isolated tomato (Solanum lycopersicon L.) fruit cuticular membranes (CM) was studied using a finite-dose diffusion system in which penetration is monitored from a drying spray droplet/deposit through an interfacing CM into a receiver solution. Penetration of AVG was initially rapid (4.1 % at 1 h after application), slow after droplet drying (12.5 % by 120 h after application), and averaged 20.7 % of the amount applied at 37 days after application. Rate and amount of AVG penetration were positively related to AVG concentration. Rewetting the dried droplet deposit with deionized water caused a transient increase in penetration that ceased when the droplet dried again. Increasing relative humidity from 50 to 100 % above the dried droplet deposit markedly increased penetration. Increasing temperature from 10 to 30 °C at constant water vapor pressure deficit (0.35 kPa) increased AVG penetration between 0 and 6 h after application but had little effect on penetration thereafter. LiCl, CaCl2, and MgCl2 at 100 mM increased AVG penetration at 120 h after application; lower concentrations had no effect. Our results indicate that AVG penetration was enhanced by increasing humidity above the droplet deposit or by the addition of hygroscopic salts to the spray solution, thereby maintaining the AVG mobility in the droplet deposit.  相似文献   

10.
The characterization of Bovine Serum Albumin mass transfer mechanisms in a spray column using an aqueous two-phase system composed of poly(ethylene glycol) and a modified starch-Reppal PES 100-is done. The poly(ethylene glycol) rich phase is used as the dispersed phase and protein transfer takes place from the dispersed phase to the continuous phase. The effect of dispersed phase superficial velocity, system composition, continuous phase height and distribution system design on either overall protein mass transfer coefficient or column hold-up is described. It is shown that continuous phase superficial velocity and phase composition are the main controlling factors for protein transfer. It is also observed that, with the tested system, only at very low dispersed phase superficial velocities is it possible to operate the spray column as an extraction column. In this system the upper operating limit of the dispersed phase velocity is ten times smaller than in other aqueous two-phase systems.List of Symbols ATPS Aqueous Two-Phase System - BSA Bovine Serum Albumin - C i kg m–3 inlet dispersed phase protein concentration - C 0 kg m–3 outlet dispersed phase protein concentration - C d kg m–3 dispersed phase protein concentration - C c kg m–3 continuous phase protein concentration - D m column internal diameter - H hold-up - h, h d m dispersion height - h 0 m initial dispersion height (initial continuous phase height) - k da s–1 overall mass transfer coefficient - m protein partition coefficient - n number of holes of distribution system - PEG Poly(ethylene glycol) - Q m3 s–1 dispersed phase volumetric flow rate - S m2 column internal area - V m3 dispersion volume A. Venâncio was supported by a JNICT (Junta Nacional de Investigaçäo Científica e Tecnológica) grant.  相似文献   

11.
When making an application of any crop protection material such as an herbicide or pesticide, the applicator uses a variety of skills and information to make an application so that the material reaches the target site (i.e., plant). Information critical in this process is the droplet size that a particular spray nozzle, spray pressure, and spray solution combination generates, as droplet size greatly influences product efficacy and how the spray moves through the environment. Researchers and product manufacturers commonly use laser diffraction equipment to measure the spray droplet size in laboratory wind tunnels. The work presented here describes methods used in making spray droplet size measurements with laser diffraction equipment for both ground and aerial application scenarios that can be used to ensure inter- and intra-laboratory precision while minimizing sampling bias associated with laser diffraction systems. Maintaining critical measurement distances and concurrent airflow throughout the testing process is key to this precision. Real time data quality analysis is also critical to preventing excess variation in the data or extraneous inclusion of erroneous data. Some limitations of this method include atypical spray nozzles, spray solutions or application conditions that result in spray streams that do not fully atomize within the measurement distances discussed. Successful adaption of this method can provide a highly efficient method for evaluation of the performance of agrochemical spray application nozzles under a variety of operational settings. Also discussed are potential experimental design considerations that can be included to enhance functionality of the data collected.  相似文献   

12.
The architecture of the filamentous green alga Cladophora glomerata (L.) Kütz. and the composition of this alga's epiphytes [primarily the diatoms Epithemia turgida (Ehrenb.) Kütz., Epithemia sorex Kütz., and Cocconeis pediculus Ehrenb.] were examined in different velocity regimes. After transferring algal-bearing cobbles among velocities, the effects of changes in velocity were also examined. Cladophora branching pattern did not initially differ among slow, medium, and fast velocities, indicating that stable water velocities did not affect branching pattern. Two weeks after cobble transfer, Cladophora in fast velocity had fragmented more (i.e. had fewer filaments and fewer branch points per length of filament and had a higher percentage of unbranched filaments) than Cladophora in slow velocity. Fragmentation was greatest in tufts moved from slow velocity, suggesting velocity-associated differences in susceptibility to breakage. Epiphytic assemblage composition differed among slow, medium, and fast velocities and between locations on the filament (base and apex). Cocconeis pediculus dominated where exposure to high velocity was greater (filament apices in medium and fast velocities), whereas the Epithemia spp. dominated where lower velocities occurred (filament bases in all velocities and apices in slow velocity). Two weeks after the cobble transfer, the translocated diatom assemblages had changed and the original pattern of diatom distribution was restored.  相似文献   

13.
Cuet  P.  Pierret  C.  Cordier  E.  Atkinson  M. J. 《Coral reefs (Online)》2011,30(1):37-43

Phosphate uptake (P-uptake) into coral reef communities has been hypothesized to be mass-transfer limited. One method of demonstrating mass-transfer limitation of P-uptake is to show dependence of P-uptake on water velocity. Water velocity across reef flats varies with tides and swell; thus, we measured P-uptake over the entire reef flat on eight different days, representing a range in water velocities. P-uptake was calculated from changes in P concentration of the water column. Changes in P concentration were measured by water sampling at six sites along a 300-m cross-reef transect while simultaneously measuring water velocity. To smooth the variability in phosphate concentrations, peristaltic pumps were used to get time-integrated water samples for 4–6 h at each site. Water velocities were measured in the middle of the transect using an acoustic Doppler current profiler and were averaged to match the time-integrated water sampling. Depth-averaged cross-reef water velocities were 0.031 ± 0.013 m s−1 (mean ± SD), while the root-mean-square water velocities, accounting for oscillatory flow, averaged 3.3 times higher, 0.101 ± 0.021 m s−1 (mean ± SD). Phosphate decreased along all transects. The first-order rate constant for P-uptake (S) was 8.5 ± 2.4 m d−1 (mean ± SD) and increased linearly with root-mean-square water velocity. The Stanton number derived from oscillatory flow, the ratio of the first-order rate constant for P-uptake to the root-mean-square water velocity (S/U rms), was (9.4 ± 1.2) × 10−4 (mean ± SD). P-uptake ranged from 0.2 to 1.1 mmol P m−2 d−1, demonstrating that P-uptake is variable on short time scales and is directly related to P concentration and water velocity.

  相似文献   

14.
The goal of quality by design (QbD) in cell culture manufacturing is to develop manufacturing processes which deliver products with consistent critical quality attributes (CQAs). QbD approaches can lead to better process understanding through the use of process parameter risk ranking and statistical design of experiments (DOE). The QbD process starts with an analysis of process parameter risk with respect to CQAs and key performance indicators (KPIs). Initial DOE study designs and their factor test ranges are based on the outcomes of the process parameter risk ranking exercises. Initial DOE studies screen factors for significant influences on CQAs as well as characterize responses for process KPIs. In the case study provided here, multifactor process characterization studies using a scale-down model resulted in significant variation in charge heterogeneity of a monoclonal antibody (MAb) as measured by ion-exchange chromatography (IEC). Iterative DOE studies, using both screening and response surface designs, were used to narrow the operating parameter ranges so that charge heterogeneity could be controlled to an acceptable level. The data from the DOE studies were used to predict worst-case conditions, which were then verified by testing at those conditions. Using the approach described here, multivariate process parameter ranges were identified that yield acceptable CQA levels and that still provide operational flexibility for manufacturing.  相似文献   

15.
A mathematical approach was developed to estimate spray deposition patterns in the nasal cavity based on the geometric relationships between the emitted spray plume and the anatomical dimensions of the nasal valve region of the nasal cavity. Spray plumes were assumed to be spherical cones and the nasal valve region was approximated as an ellipse. The effect of spray plume angle (15–85°) on the fraction of the spray able to pass through the nasal valve (deposition fraction) was tested for a variety of nasal valve (ellipse) shapes and cross-sectional areas based on measured dimensions from pediatric and adult nasal cavities. The effect of the distances between the tip of the nasal spray device and the nasal valve (0.2–1.9 cm) on the deposition fraction was also tested. Simulation results show that (1) decreasing spray plume angles resulted in higher deposition fractions, (2) deposition fraction was inversely proportional to the spray distance and the nasal valve (ellipse) major/minor axis ratio, and (3) for fixed major/minor axis ratios, improved deposition occurred with larger nasal valve cross-sectional areas. For a typical adult nasal valve, plume angles of less than 40° emitted from a distance of 1 cm resulted depositions greater than 90% within the main nasal cavity, whereas for a 12-year-old child, only the most narrow plume angles (<?20°) administered resulted in significant deposition beyond the nasal valve.  相似文献   

16.
A newly developed spray tower was used to characterise droplet distribution and coverage of conidial suspensions of Metarhizium anisopliae ATCC 62176 and Beauveria bassiana NI8 with different spray volumes. ATCC 62176 and NI8 had different spray models which could be caused by the surface physicochemical characteristics of the strains and conidia.  相似文献   

17.
We have simultaneously measured the electroretinogram (ERG) and the metarhodopsin content via fluorescence in white-eyed, wild-type Drosophila and the arrestin2 hypomorphic mutant (w ;arr2 3 ) at a range of stimulus wavelengths and intensities. Photoreceptor response amplitude and termination (transition between full repolarization and prolonged depolarizing afterpotential, PDA) were related to visual pigment conversions and arrestin concentration. The data were implemented in a kinetic model of the rhodopsin–arrestin cycle, allowing us to estimate the active metarhodopsin concentration as a function of effective light intensity and arrestin concentration. Arrestin reduction in the mutant modestly increased the light sensitivity and decreased the photoreceptor dynamic range. Compared to the wild type, in the mutant the transition between full repolarization and PDA occurred at a lower metarhodopsin fraction and was more abrupt. We developed a steady-state stochastic model to interpret the dependence of the PDA on effective light intensity and arrestin content and to help deduce the arrestin to rhodopsin ratio from the sensitivity and PDA data. The feasibility of different experimental methods for the estimation of arrestin content from ERG and PDA is discussed.  相似文献   

18.
The influences of the fluid superficial velocity, sample concentration, loading volume, and wash cycle on the recovery and corresponding purification factors for α1-antitrypsin [syn. α1-proteinase inhibitor (α1-PI) ] from crude mixtures of human plasma proteins were investigated using packed and expanded beds of DEAE-Spherodex LS. As part of this study, the effect of fluid superficial velocity on the bed dispersion number (D v) and dispersion coefficient (D) for this adsorbent in expanded beds was determined with feedstocks containing human serum albumin (HSA), the most abundant of the contaminating proteins in human plasma protein preparations used for the isolation of α1-PI. When multicomponent protein feedstocks prepared from human plasma were examined with DEAE-Spherodex LS, reduced chromatographic productivity was observed for α1-PI as the extent of column utilization and the superficial velocity were increased, yet the opposite trend was evident for HSA. In particular, higher adsorption capacities and recoveries were obtained for α1-PI at lower fluid superficial velocities with both packed and expanded bed conditions. These findings indicate that for process scale purifications of α1-PI from multicomponent feedstocks with expanded beds containing this silica-based ion-exchange adsorbent, the optimal range of superficial velocities to achieve the highest bed productivity will not be synonymous with maximally fluidized modes of operation. Rather, the results confirm that the adsorbent has an optimum operational performance when fluidization procedures corresponding to plug flow expansion are employed for the capture of α1-PI. These findings also indicate that advantage can be taken of displacement effects between closely related protein species with packed and expanded bed systems containing the DEAE-Spherodex LS type of ion-exchange porous silicas.  相似文献   

19.
Measurements of sedimentation were combined with water samples to calculate settling velocity of suspended particulate matter (SPM) in lakes. The study sites were open water stations and enclosures in Lake Erken (Sweden) and Lake Balaton (Hungary). Settling velocities were found to vary considerably both inside and outside the enclosures. Within sites, the differences between 25th and 75th percentiles of measured settling velocities of SPM were two‐ or three‐fold. Median settling velocities of SPM ranged from around 0.5 m/d in the enclosures of Lake Erken to more than 8 m/d in the open water of Lake Balaton. Special relevance was attributed to flocculation, which is known to be affected by, e.g., SPM concentration and turbulence. Even though not directly measured, the less turbulent environment inside the enclosures was suggested to explain the low settling velocity compared to the open water environment. Settling velocity apparently correlated with water current speed (r2 = 0.66; n = 12). Stepwise multiple linear regressions were used to relate the variability in settling velocity of SPM to the variability of possible controlling factors in a number of data subsets. In most cases, one variable describing the total amount of settling material (e.g., SPM) and one variable reflecting the composition of settling material (e.g., total phosphorus) were chosen. The use of suspended solids concentration to predict settling velocity in mass balance models was discussed. It was found that the mean slope between SPM and vSPM was close to 0.1 (m4d–1 g–1). (© 2004 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

20.
Column experiments were conducted to evaluate the effect of pore velocity on the extent of biodegradation of cis-dichloroethene (cis-DCE) during transport in porous media. Columns were filled with homogeneous glass beads and inoculated with a culture capable of complete dechlorination of tetrachloroethene to ethene. A constant concentration of cis-DCE was maintained in the columns’ influent. Three different pore velocities were tested in duplicate, subjecting each column to a constant velocity. At high flow velocity, degradation of cis-DCE to ethene was nearly complete within the residence time of the columns. However, at medium and low flow velocities, incomplete dechlorination was observed. After 7 weeks, DNA was harvested from the columns to determine differences in the microbial populations. Results suggest that Dehalococcoides sp. were present in higher quantities in the high-velocity columns, consistent with the observed dechlorination. These results suggest that, at contaminated groundwater sites, heterogeneity of groundwater velocity may be one factor that contributes to heterogeneous distribution of biological activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号